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Abstract 

 

It is frequently assumed that facial identity and facial expression are analysed in functionally and 

anatomically distinct streams within the core visual face processing system. To investigate 

whether expression and identity interact during the visual processing of faces, we employed a 

sequential matching procedure where participants compared either the identity or the expression 

of two successively presented faces, and ignored the other irrelevant dimension.  Repetitions 

versus changes of facial identity and expression were varied independently across trials, and 

event-related potentials (ERPs) were recorded during task performance. Irrelevant facial identity 

and irrelevant expression both interfered with performance in the expression and identity 

matching tasks. These symmetrical interference effects show that neither identity nor expression 

can be selectively ignored during face matching, and suggest that they are not processed 

independently. N250r components to identity repetitions that reflect identity matching 

mechanisms in face-selective visual cortex were delayed and attenuated when there was an 

expression change, demonstrating that facial expression interferes with visual identity matching. 

These findings provide new evidence for interactions between facial identity and expression 

within the core visual processing system, and question the hypothesis that these two attributes 

are processed independently. 

 

 

 

 

 

 

Keywords: face perception; face recognition; facial expression; emotion; ERP; N250r 

 



3 
 

 
 

1. Introduction 

Faces provide different socially important signals, including information related to 

identity, emotional state, gender, the direction of attention, or speech. The question whether 

facial attributes such as identity and emotional expression are processed independently by 

specialised cognitive and neural mechanisms, or are initially analysed together by shared face-

selective visual processes, remains an issue of considerable debate. Two influential models of 

face processing (Bruce & Young, 1986; Haxby, Hoffman, & Gobbini, 2000) assume that identity 

and expression recognition are functionally and anatomically separable. According to Bruce and 

Young (1986), facial identity and emotional expression are processed by different visual routes 

that separate at an early phase of visual-perceptual processing. Haxby et al. (2000) assume that 

within the “core system” of visual-perceptual face processing, invariant facial attributes such as 

identity are analysed in a ventral processing stream that includes the inferior occipital cortex and 

the fusiform face area (FFA), while changeable attributes such as emotional expression are 

processed in a separate route from occipital cortex to the superior temporal sulcus (STS).   

The hypothesis that the processing of facial identity and facial expression are based on 

dissociable cognitive and neural mechanisms is supported by neuropsychological evidence from 

patients that show a selective impairment in their ability to recognize the identity of particular 

faces but remain able to recognize emotional facial expression (e.g., Bruyer et al., 1983; Jones & 

Tranel, 2001; Nunn, Postma, & Pearson, 2001). Individuals with developmental prosopagnosia 

that have severe problems with face recognition also often show little impairment in tasks that 

require the discrimination of facial expressions (e.g., Duchaine, Parker, & Nakayama, 2003). 

Additional behavioural evidence for the independence of face identity and facial expression 

recognition comes from studies of participants with normal face recognition abilities. Bruce 

(1986) found that facial expression judgments were unaffected by whether a particular face was 

personally familiar or not (see also Campbell, Brooks, de Hann, & Roberts, 1996; Young, 

Mcweeny, Hay, and Ellis, 1986). What remains unclear is whether these behavioural findings 
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reflect dissociations between facial identity and expression during face perception or at later 

memory-related stages of face processing.  

Neuroimaging evidence for the functional and anatomical dissociation of identity and 

expression processing within the core perceptual face system is currently inconclusive. In line 

with the classic account proposed by Haxby et al (2000), the FFA has been shown to be sensitive 

to repetitions of face identity (Rotshtein, Henson, Treves, Driver, & Dolan, 2005; Winston, 

Henson, Fine-Goulden, & Dolan, 2004; Yovel & Kanwisher, 2005), while the STS was found to 

be sensitive to dynamic aspects of face perception such as repetitions of expression (Andrews & 

Ewbank, 2004; Ganel, Valyear, Goshen-Gottstein, & Goodale, 2005; Harris, Young, & Andrews, 

2012; Winston, Henson, Fine-Goulden, & Dolan, 2004). A recent fMRI adaptation study by 

Harris, Young, and Andrews (2014) has suggested that brain regions involved in the recognition 

of facial identity or expression are differentially sensitive to surface-based versus edge-based 

visual signals. However, other studies suggest that these dissociations may not be clear-cut.  

Activity in the FFA has been shown to be larger in response to expressive versus neutral faces 

(Furl, Henson, Friston, & Calder, 2013; Vuilleumier, Armony, Driver, & Dolan, 2001), and 

adaptation effects by repetitions of facial expressions have been found in the FFA (Ganel et al., 

2005; Harris et al., 2012; Fox, Moon, Iaria, & Barton, 2009). Furthermore, there is also fMRI 

evidence that the STS is sensitive to repetitions of face identity (Fox et al., 2009).  

Interactions between facial identity and expression have been observed in behavioural 

studies that used variations of Garner‘s interference paradigm (Garner, 1976), where observers 

have to make judgments with respect to one particular attribute of a visual stimulus (e.g., shape) 

while ignoring another task-irrelevant attribute (e.g., colour). Performance in a baseline condition 

where the irrelevant attribute is held constant (e.g., all stimuli have the same colour) is compared 

to performance in a filtering condition where relevant and irrelevant attributes both vary 

randomly and independently across trials. Impaired performance in the filtering condition 

(Garner interference) shows that the two stimulus attributes cannot be processed independently. 
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Such interference effects were indeed observed in experiments where facial identity and 

expression served as relevant and irrelevant attributes in different blocks. In one set of studies, 

variations of task-irrelevant facial identity interfered with facial expression judgments, but 

identity judgments were unaffected when the irrelevant expression of faces varied randomly 

(Schweinberger, Burton, & Kelly, 1999; Schweinberger & Soukup, 1998). In another study, 

symmetrical Garner interference effects were observed, with changes in facial expression 

impairing identity judgments, and changes in facial identity having a negative impact on 

expression judgments (Ganel & Goshen-Gottstein, 2004). The symmetrical or asymmetrical 

nature of such interference effects between expression and identity may be linked to the relative 

discriminability of changes within these two dimensions (e.g., Wang, Fu, Johnston, & Yan, 2013). 

However, and more importantly, the existence of Garner interference effects between facial 

expression and identity demonstrates that changes in the currently task irrelevant dimension 

cannot be completely ignored, and therefore strongly suggests that expression and identity are 

not processed entirely independently. 

Based on such behavioural findings, and a critical re-evaluation of neuropsychological 

and neuroimaging evidence in support of separate visual processing streams for facial identity 

and facial expression, Calder and Young (2005) argue that the cognitive and neural mechanisms 

involved in the perceptual analysis of facial identity and expression show considerable overlap. 

These authors suggest that areas within the core face processing system do not show a strict 

functional and anatomical segregation between identity and expression processing (see also 

Calder, 2011, for further discussion). The debate about whether identity and expression have 

separate and parallel visual processing streams remains unresolved, primarily because it is 

difficult to determine whether facial identity and expression already interact at relatively early 

perceptual stages of face processing or only at later post-perceptual stages on the basis of 

behavioural data alone. For example, Garner interference effects between identity and expression 

might be primarily generated during a late response-related stage, where the selection of “same” 
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responses is delayed when two faces differ on the irrelevant dimension, and the selection of 

“different” responses is delayed when they share the same task irrelevant feature (e.g., Garner, 

1988; see also Atkinson, Tipples, Burt, & Young, 2005, for evidence that Garner interference 

between the gender and expression of a face might at least in part reflect interactions during 

response selection). While fMRI measures are able to identify the anatomical locations where 

identity and emotion are processed, they cannot provide precise information about the time 

course of identity and emotion processing. In contrast, event-related potential (ERP) measures 

can allow more direct insights into whether and how facial identity and expression interact 

during early visual perceptual face processing stages (see Martens, Leuthhold, & Schweinberger, 

2010, for evidence from response-related ERP components that facial identity and expression 

can be processed in parallel).  

The earliest and most frequently studied face-sensitive ERP component is the N170, 

which reflects an enhanced negativity for faces as compared to non-face objects at lateral 

posterior occipito-temporal electrodes that is typically maximal around 170ms after stimulus 

onset (e.g., Bentin, Allison, Puce, Perez, & McCarthy, 1996; Eimer, 2000). Although the N170 

component can be sensitive to face identity under specific experimental conditions such as 

prolonged adaptation to a particular facial identity (e.g. Caharel, d’ Arripe, Ramon, Jacques & 

Rossion, 2009), many studies have found that the N170 does not differ between familiar and 

unfamiliar faces (e.g., Eimer, 2000; Bentin & Deouell, 2000). A more robust electrophysiological 

marker of identity-sensitive face processing is the N250r component that can be observed in 

experiments where face images are presented sequentially (e.g., Begleiter, Porjesz, & Wang, 1995; 

Schweinberger, Pfütze, & Sommer, 1995; Schweinberger, Pickering, Burton, & Kaufmann, 2002; 

Schweinberger, Huddy, & Burton, 2004). When a face of the same individual is repeated, an 

enhanced negativity emerges approximately 220ms post-stimulus at bilateral occipito-temporal 

electrodes relative to non-repetition trials. This N250r component is thought to be elicited by an 

identity match between a perceptual face representation and a stored representation in visual face 
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memory (Schweinberger & Burton, 2003. The fact that N250r components are elicited in 

response to two different images of the same individual (e.g., Bindemann, Burton, Leuthold, & 

Schweinberger, 2008; Kaufmann, Schweinberger, & Burton, 2009; Zimmermann & Eimer, 2013, 

2014) demonstrates that this component does not simply reflect repetitions of low-level image 

features, but is sensitive to higher-level visual aspects of facial identity, and may therefore 

correspond to the activation of view-independent face recognition units in the Bruce and Young 

(1986) model. Dipole source analyses of the N250r and its MEG counterpart (M250r 

component) suggest that these components are generated in posterior regions of the fusiform 

gyrus that are likely to correspond to the FFA (Bindemann et al., 2008; Schweinberger, Pickering, 

Jentzsch, Burton, & Kaufmann, 2002; Schweinberger, Kaufmann, Moratti, Keil, & Burton, 

2007). This is in line with fMRI and intracranial recording studies which found that FFA activity 

in response to faces is modulated by repetitions versus change of facial identity (Engell & 

McCarthy, 2014; Kanwisher, McDermott, & Chun, 1997; Rotshtein et al., 2005, Winston et al., 

2004; Yovel & Kanwisher, 2005). The identity matching processes that give rise to the N250r 

component are thus likely to take place within the core visual-perceptual face processing 

network.  

The goal of the current study was to find out whether and how face identity matching 

processes are affected by facial expression. Previous studies that measured ERP markers of face 

identity and facial expression processing (Bobes, Martin, Olivares, & Valdes-Sosa, 2000; Münte 

et al., 1998) found that a mismatch in the identity or expression between two successively 

presented faces resulted in a broadly distributed negativity (N400) that emerged around 350-

400ms post-stimulus. These N400 components were interpreted as reflecting the difficulty of 

integrating an identity or expression change into the context established by a previously seen 

face. However, none of these earlier studies measured N250r components as marker of face 

identity matching processes in visual face memory. In the present experiment, we investigated 

whether the N250r to identity repetitions is modulated by repetitions versus changes of facial 
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expression, as such modulations would indicate that identity and expression interact at relatively 

early visual-perceptual stages of face processing. A sequential face matching task was employed, 

where two face stimuli (S1 and S2) were presented successively at fixation on each trial, and were 

separated by a short interval (200- 300ms). In two different task conditions (identity and 

expression tasks), participants had to decide whether or not the S2 face matched the S1 face in 

terms of its identity or its expression. The other attribute that was task-irrelevant (expression in 

the identity task; identity in the expression task) was varied orthogonally, giving rise to four 

possible combinations of repetitions or changes in identity or expression between S1 and S2. On 

some trials, facial expression and identity were either both repeated or both changed. On other 

trials, the task-relevant attribute was repeated while the irrelevant attribute changed, or vice 

versa. These four different types of repetition or change trials were presented in a random order 

and with equal probability.  

If identity and expression are processed by separate mechanisms within the core face 

processing system, directing attention to one of these dimensions and ignoring the other 

irrelevant dimension should be straightforward. In this case, performance in the identity 

matching task should be unaffected by repetitions versus changes in facial expression, and 

performance in the expression matching task should be independent of facial identity. 

Furthermore, N250r components that are triggered during face identity matching processes 

when identity is task-relevant should not be affected by repetitions versus changes in facial 

expression. In contrast, if identity and expression interact at early perceptual stages within the 

core visual face processing system, the attentional separation of these two dimensions should be 

more difficult, resulting in behavioural interference effects from the irrelevant dimension (i.e., 

impaired detection of a task-relevant repetition when there is a change in the irrelevant attribute, 

and impaired detection of a task-relevant change when the irrelevant attribute is repeated). 

Furthermore, N250r components elicited by face identity repetitions in the identity task should 

be modulated by repetitions versus changes in task-irrelevant facial expression. A facilitation of 
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face identity matching processes by a concurrent repetition of facial expression should result in 

larger and possibly earlier N250r components to identity repetitions relative to trials with an 

expression change. Such expression-dependent modulations of N250r components in the 

identity task would show that task-irrelevant facial expression cannot be ignored during the 

perceptual matching of facial identity.  

 To test whether face identity matching processes are also elicited when facial identity is 

irrelevant, and to investigate whether these processes are affected by facial expression, N250r 

components to identity repetitions versus changes were also measured in the expression 

matching task. In a previous study (Zimmermann & Eimer, 2014), task-irrelevant identity 

repetitions triggered N250r components in a view-matching task, suggesting that when different 

attributes of a face have to be maintained in working memory, identity will also be encoded and 

retained even when it can be ignored (see also Neumann, Mohamed, & Schweinberger, 2011, for 

additional evidence that N250r components can be elicited by face identity repetitions in a 

context where faces are task-irrelevant). If this is the case, N250r components to identity 

repetitions should also be observed in the expression task of the present study. If facial 

expression and identity interact during visual stage of face processing, the effects of expression 

repetitions versus changes on these N250r components should be similar to those observed in 

the identity task. 

 Because identity and expression were varied orthogonally, it was also possible to study 

electrophysiological correlates of facial expression matching processes independently of facial 

identity. In a behavioural study, Fox and Barton (2007) found expression-specific adaptation 

effects even when face identity changed, in line with the existence of identity-independent visual 

representations of facial expression. If such representations exist, they could be activated when 

the expression of two sequentially presented faces has to be matched. This might be reflected by 

N250r-like components to expression repetitions as compared to expression changes in the 

expression task. To investigate this possibility independently from any simultaneous identity 
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matching processes, we compared ERPs to expression repetitions and expression changes on 

trials where the S1 and S2 faces showed two different individuals. 

 

2. Methods 

2.1. Participants 

Sixteen participants (7 female) aged 21-40 years (mean age 28.3 years) took part in the 

study. Their face recognition abilities were tested with the Cambridge Face Memory Test 

(CFMT; Duchaine & Nakayama, 2006). All CFMT scores were within ±1 standard deviation of 

the mean. One additional participant was tested but removed from the sample because they 

showed a highly atypical “inverted” N250r component (an enhanced lateral posterior positivity 

to identity repetitions versus changes) in all task conditions. 

 

2.2. Stimuli and Procedure 

Stimuli were taken from the NimStim database (Tottenham et al., 2009). Black-and-white 

photographs of six different male faces were used. In each photograph, the actor showed a 

happy, fearful, or neutral facial expression. There were two different versions (mouth-open or 

mouth-closed) for each individual person and facial expression, resulting in a total of 36 different 

face images (see Figure 1 for examples). External facial features were removed from all face 

images, and the average luminance of all images was equated (22 cd/m2), using Adobe 

Photoshop. All stimuli were presented at the centre of a CRT monitor at a viewing distance of 

approximately 100 cm against a grey background (15 cd/m2). On each trial, two face images (S1 

and S2) were presented in succession. To avoid repetitions of physically identical images and 

thus identical retinal stimulation on trials where both identity and expression of S1 were repeated 

as S2, all S2 images were 10% larger than the S1 images (4.68º x 6.09º versus 4.25º x 5.67º), and 

all S1-S2 stimulus pairs differed with respect to their mouth features (mouth-open followed by 

mouth-closed, or vice versa; see Figure 1). Stimulus presentation and response collection was 
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controlled with the Cogent 2000 toolbox (www.vislab.ucl.ac.uk/Cogent/) for 

MATLAB(Mathworks, Inc.). 

 

Figure 1. Examples of face stimuli pairs shown on different trials.  

Participants had to match either the identity or the expression of two 

successively presented faces, and to ignore repetitions or changes in the other 

currently irrelevant dimension. On each trial, two different versions of face 

images (mouth-open or mouth-closed) were shown, and the second face was 

10% larger than the first face. The top row shows identity repetition trials, and 

the bottom row identity change trials. Expression repetition and expression 

change trials are shown on the left and right, respectively.  Only images of 

male faces were included in the stimulus set. 

 

On each trial, the S1 face was presented for 300ms, followed by a jittered inter-stimulus 

interval of 200-300ms, and the S2 face (300ms duration). The interval between successive trials 

was varied randomly between 1400ms and 1500ms. On each trial, the identity and the expression 

of the S1 face could either be the same or differ from the identity and expression of the S2 face. 

These two factors were varied orthogonally and randomly across trials, resulting in four 
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equiprobable trial types (identity repetition/expression repetition; identity repetition/expression 

change; identity change/expression repetition; identity change/expression change; see Figure 1). 

There were two blocked task conditions (identity task and expression task). Each task consisted 

of 504 trials (126 trials for each of the four different trial types), separated into 8 blocks. In the 

identity task, participants had to respond to an identity repetition or change between the S1 and 

S2 face by pressing one of two response buttons, regardless of whether there was an expression 

repetition or change between these two faces. In the expression task, they had to respond to an 

expression repetition or change between the S1 and S2 face, and ignore identity repetitions 

versus changes. Responses were made with the index and middle finger, and response hand was 

counterbalanced across participants. Images of three different individuals with three different 

emotional expressions were shown in two different versions (mouth-open or mouth-closed) in 

each of the two tasks, resulting in 18 face images for the identity task, and 18 different face 

images for the expression task. The order in which the two tasks were performed was 

counterbalanced across participants. Prior to the start of the first experimental block, participants 

completed one training block of 30 trials for the identity task, and an additional training block 

for the expression task. Following the main experiment, all participants completed the 

Cambridge Face Memory Task (CFMT), where the faces of six target individuals shown from 

different viewpoints have to be memorized, in order to be later distinguished from distractor 

faces (see Duchaine & Nakayama, 2006, for a detailed description of the CFMT). 

 

2.3. EEG recording and analyses 

EEG was recorded using a BrainAmps DC amplifier with a 40Hz low-pass filter and a 

sampling rate of 500Hz from 27 Ag-AgCl scalp electrodes. Electrodes at the outer canthi of both 

eyes were used to record the horizontal electrooculogram (HEOG). During recording, EEG was 

referenced to an electrode on the left earlobe, and was re-referenced offline relative to the 

common average of all scalp electrodes. Electrode impedances were kept below 5kΩ. The EEG 
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was epoched from 100ms before to 500ms after the onset of the second face image (S2) on each 

trial. Epochs with HEOG activity exceeding ±30μV (horizontal eye movements), activity at Fpz 

exceeding ±60μV (blinks and vertical eye movements), and voltages at any electrode exceeding 

±80μV (movement artefacts) were removed from analysis. EEG was averaged relative to a 

baseline between 50ms prior to 50ms after S2 onset, for each combination of identity (repetition 

versus change), expression (repetition versus change), separately for the two identity and 

expression tasks. Only trials with correct responses were included in the ERP analyses. ERPs 

were averaged across four posterior electrodes over the right hemisphere (P8, PO8, P10 and 

P10) and the equivalent four electrodes over the left hemisphere (P7, PO7, P9 and PO9). 

N250r components were quantified on the basis of ERP mean amplitudes calculated 

during a window from 220ms to 320ms after S2 onset. Repeated-measures ANOVAs were 

conducted on these mean amplitude values for the factors identity (repetition versus change), 

expression (repetition versus change), and hemisphere (left versus right), separately for the 

identity and expression tasks. An additional ANOVA was conducted across both tasks, with task 

(identity versus expression) as additional factor. Analogous analyses were conducted on 

behavioural performance measures for the factors identity and expression. When significant 

interactions between identity and expression were found in these analyses, these interactions 

were further explored with follow-up t-tests. Bonferroni corrections for multiple comparisons 

were applied when appropriate. 

To test whether N250r components emerged later on expression change trials relative to 

expression repetition trials, N250r onset latency analyses were conducted. These analyses were 

performed with a jackknife-based procedure based on grand-averaged difference waveforms 

obtained by subtracting ERPs on identity change trials from identity repetition trials, separately 

for the identity and expression tasks. The jackknifing procedure estimates onset latencies from 

grand averages that are computed from subsamples of participants where one participant is 

successively excluded from the original sample (Miller, Patterson, & Ulrich, 1998). N250r onset 
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latencies were computed within a 200-300ms post-stimulus time window, and were defined 

relative to absolute voltage threshold values of -0.7μV (identity task) and -0.4μV (expression 

task), which both correspond to 30% of the mean peak amplitude of the two N250r difference 

waves in these two tasks. N250r onset latencies on expression repetition and expression change 

trials were compared with t-tests, with t-values corrected according to the formula described by 

Miller et al. (1998).  Because these planned comparisons were testing directional hypotheses, 

these t-tests were one-tailed. To explore the involvement of identity-independent visual 

representations of facial expression in face matching processes, we also compared ERPs to 

expression repetitions versus changes, specifically for those trials with an identity change 

between the two faces. Because expression repetition effects emerged later than the N250r to 

identity repetitions, which corresponded with slower reaction times in the expression matching 

task, ERP mean amplitudes measured at the same four posterior electrode pairs that were used 

for the standard N250r analyses were analysed within a 280-500ms post-stimulus time window.

 In addition to the N250r, further analyses were conducted for the earlier visual P1 and 

N170 components, based on ERP mean amplitudes obtained from 100-130ms (P1 component) 

and 150-200ms (N170 component) at lateral posterior electrodes. 

 

3. Results 

3.1. Behavioural performance 

Figure 2 shows reaction times (RTs) and error rates for the four different types of trials 

in the identity and expression tasks. Separate ANOVAs were conducted for RTs and error rates 

in each task, with the factors identity (repetition versus change) and expression (repetition versus 

change). 
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Figure 2. Mean reaction times (top panel) and error percentages (bottom 

panel) in the identity task and the expression task. Results are shown 

separately for each of the four combinations of identity (repetition versus 

change) and expression (repetition versus change). Error bars depict standard 

errors of the mean.  

 

In the identity task, the RT analysis revealed main effects of identity, F(1,15)=9.39, 

p<.008, ηp
2=.39, and expression F(1,15)=41.85, p<.0001, ηp

2=.74, with faster RTs for identity 

repetitions (544ms) than identity changes (576ms), and for expression repetitions (550ms) than 

expression changes (570ms). There was also an interaction between identity and expression, 

F(1,15)=40.91, p<.0001, ηp
2=.73. RTs on identity repetition trials were faster when facial 

expression was also repeated than when expression changed (520ms versus 570ms; t(15)=7.86, 

p<.0001). In contrast, RTs on identity change trials were faster when expression changed than 
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when it was repeated (570ms versus 582ms; t(15)=2.36, p<.05). There were no main effects of 

identity or expression on error rates, both F<1.1, but an interaction between these two factors 

was observed, F(1,15)=11.54, p<.004, ηp2=.44. Errors on identity repetition trials were more 

frequent when facial expression changed than when it was repeated (8.2% versus 2.1%; 

t(15)=2.53, p<.05). On identity change trials, error rate was higher when expression was repeated 

than when it changed (6.7% versus 3.3%; t(15)=2.58, p<.05). 

A similar pattern of results was observed in the expression task. For RTs, there were 

main effects of identity, F(1,15)=5.73, p<.03, ηp
2=.28 and expression, F(1,15)=6.81, p<.02,  

ηp
2=.31, with faster responses for identity repetitions versus changes (601ms versus 611ms), and 

for expression repetitions versus changes (597ms versus 615ms). An interaction between identity 

and expression, F(1,15)=30.48, p<.0001, ηp2=.67, was also observed. RTs on expression 

repetition trials were faster when facial identity was repeated than when it changed (578ms versus 

616 ms; t(15)=4.53, p<.001). In contrast, RTs on expression change trials were faster when facial 

identity changed than when it was repeated (607ms versus 624ms; t(15)=4.41, p<.001). For error 

rates, main effects of identity, F(1,15)=5.14, p<.04, ηp2=.26, and expression, F(1,15)=7.19, p<.02,  

ηp2=.32, were accompanied by an interaction between both factors, F(1,15)=6.51, p<.02, 

ηp2=.30. Errors on expression repetition trials were more frequent when facial identity changed 

than when it was repeated (14.1% versus 7.4%; t(15)=2.55, p<.05). On expression change trials, 

there were more errors when the identity of a face was repeated than when it changed (7.5% 

versus 4.2%; t(15)=2.37, p<.05). 

To assess whether the interference effects of the currently irrelevant dimension differed 

as a result of whether or not this dimension had been task-relevant previously, additional 

analyses of RTs and error rates were conducted for the identity and expression tasks, including 

the between-participant factor task order (identity task first versus expression task first). There 

were no interactions between identity, expression, and task order in either task for RTs, both 
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F<1, and error rates, both F<2.8, ruling out the possibility that the behavioural interference 

effects in the identity or expression tasks were modulated by transfer effects from the other task.   

Analyses conducted across both tasks, with task (identity versus expression) as additional 

factor, revealed a main effect of task for RTs, with faster responses in the identity task relative to 

the expression task (560ms versus 606ms; F(1,15)=10.02, p<.006, ηp2=.40). Error rates did not 

differ between the two tasks, F(1,15)=2.92, p>.05. To test whether the size of the interference 

effects of the currently irrelevant dimension differed between the identity and emotion tasks, RT 

and accuracy differences between trials where both identity and expression were congruent 

across S1 and S2 (i.e., both were repeated or both changed) and trials where these two 

dimensions were incongruent (one was repeated and the other changed) were compared between 

the two tasks. There was no significant difference in the size of the expression congruency effect 

in the identity task and the identity congruency effect in the expression task, for RTs (31ms 

versus 28ms; t(15)<1), or error rates, (4.7% versus 5.5% t(15)<1). This demonstrates that the 

interference effects from the currently task-irrelevant dimension on identity and expression 

matching performance were symmetrical. 

 

3.2. ERP results 

Figure 3 shows ERP waveforms measured at lateral posterior electrodes over the left and 

right hemisphere in response to S2 face displays in the identity and expression matching tasks on 

identity repetition and identity change trials, displayed separately for trials where facial expression 

was either repeated or changed. There were no systematic differences between task conditions 

for the early visual P1 and N170 components, except for an apparent reduction of P1 amplitudes 

on trials where both identity and repetition were repeated (see below). Following the P1 and 

N170, N250r components to identity repetitions versus changes were present in both tasks, but 

were larger in the identity task. These N250r components were larger on trials where facial 

expression was repeated than on trials with an expression change between the S1 and S2 faces. 
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To evaluate these differences, repeated-measures ANOVAs with the factors hemisphere (left, 

right), identity (repetition, change) and expression (repetition, change) were conducted for ERP 

mean amplitude values measured during the N250r time window (220-320 ms post-stimulus), 

separately for the identity and expression matching tasks. 

 

 

Figure 3. Grand-averaged ERPs elicited at lateral posterior electrodes during 

the 500ms interval after the onset of the S2 face, shown separately for the 

identity task (top panel) and the expression task (bottom panel). ERPs were 

averaged across four posterior electrodes over the left hemisphere (P7, PO7, 

P9 and PO9) and the equivalent four electrodes over the right hemisphere (P8, 
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PO8, P10 and PO10). Waveforms are shown separately for each of the four 

combinations of identity repetition versus change and expression repetition 

versus change. 

 

 

Figure 4. Left panel: Scalp distribution of N250r components measured in the 

identity task on expression repetition and expression change trials. These 

topographic maps were generated by subtracting ERP mean amplitudes 

measured in the 220-320ms post-stimulus time window on identity change 

trials from ERPs on identity repetition trials. Right panel: Topographic maps 

of N250r components to identity repetitions versus identity changes in the 

expression task (shown separately for trials with expression repetitions and 

expression changes), and a scalp map of the difference between expression 

repetitions and expression changes observed on identity change trials in the 

expression task. The topography of this expression repetition effect was 

computed for the 280-500ms post-stimulus time window. 

 

N250r components in the identity task. There was a main effect of identity, F(1,15)=25.83, 

p<.001, ηp2=.63, reflecting the presence of N250r components to identity repetitions versus 



20 
 

 
 

changes. There was also a main effect of expression, F(1,15)= 50.57, p<.0001, ηp
2=.77, and, 

critically, a significant interaction between identity and expression, F(1,15)=7.45, p<.02, ηp2=.33. 

N250r amplitudes on trials with identity repetitions versus changes (collapsed across both 

hemispheres) were larger when facial expression was repeated (-2.58μV versus -0.54μV; 

t(15)=6.39, p<.0001) than when expression changed (-1.72μV versus -0.33μV; t(15) = 3.53, 

p<.007). Figure 4 (left panels) shows the scalp topography of N250r components elicited on 

expression repetition and expression change trials. These scalp maps were computed by 

subtracting ERP mean amplitudes in the N250r time window (220-320ms post-stimulus) on 

identity change trials from ERPs on identity repetition trials, separately for trials with expression 

repetitions or changes. Both maps show the typical N250r topography, with a bilateral posterior 

negativity (that is more pronounced in the identity task) accompanied by a more broadly 

distributed fronto-central positivity. Although the N250r appears to be more pronounced over 

the left hemisphere, the interaction between identity and hemisphere was not significant, F< 1.7. 

An additional analysis with task order as a between-participant factor found no three-way 

interaction between identity, expression, and task order, F(1,14)= 2.24, p=.16, demonstrating 

that the effect of expression repetitions versus changes on N250r amplitudes did not depend on 

whether expression had been task-relevant before.  

 The time course of the N250r is illustrated in Figure 5 (left panel), which shows N250r 

difference waveforms obtained by subtracting ERPs on identity change trials from ERPs on 

identity repetition trials, separately for trials where expression was repeated or changed 

(collapsed across the four electrode pairs over the left and right hemisphere). N250r amplitudes 

were larger on expression repetition trials as compared to expression change trials, t(15) = 2.73, 

p<.02. There was no three-way interaction between identity, expression, and hemisphere, F<1, 

demonstrating that the N250r amplitude reduction on trials with facial expression changes did 

not differ between hemispheres. Figure 5 also suggests that N250r components to identity 

repetitions versus changes emerged later on trials where facial expression changed relative to 
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trials where expression was repeated. This was confirmed by a jackknife-based onset analysis 

performed on N250r difference waveforms (collapsed across hemispheres) with an absolute 

onset criterion of -0.7μV (corresponding to approximately 30% of the average peak amplitude of 

the two difference waves). The N250r component on expression repetition trials preceded the 

N250r on trials with expression changes by 23ms (215ms versus 238ms), and this onset latency 

difference was reliable, tc(15)=2.96, p<.005, one-tailed. 

 

Figure 5. N250r difference waveforms obtained by subtracting ERPs on 

identity change trials from ERPs on identity repetition trials, separately for 

trials with expression repetitions (solid lines) and for expression change trials 

(dashed lines). N250r components are shown separately for the identity task 

(left) and the expression task (right). 

 

N250r components in the expression task. A main effect of identity, F(1,15)=44.61, p<.0001, 

ηp
2=.75, demonstrated that N250r components to identity repetitions versus changes were 

reliably present in the expression task even though facial identity was now task-irrelevant. There 
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was no interaction between identity and hemisphere, F<1. In addition, a significant effect of 

expression, F(1,15)=19.45, p<.001, ηp2=.65, was accompanied by an interaction between 

expression and identity F(1,15)=6.85, p<.02, ηp2=0.31. N250r components (collapsed across 

hemispheres) were present not only on trials where facial expression was also repeated (-1.48μV 

versus -.31μV;  t(15)=6.58, p<.0001), but also on expression change trials (-.54μV versus .02μV; 

t(15)=3.31, p<.01). However, as can also be seen in the topographic maps in Figure 4 (right 

panel), the N250r was significantly larger on expression repetition trials, t(15)= 2.62, p<.05. 

There was no three-way interaction between identity, expression, and hemisphere, F<1. As in 

the identity task, an additional analysis of N250r amplitudes with task order as a between-

participant factor showed that there was no three-way interaction between identity, expression, 

and task order, F<1. The N250r difference waveforms in Figure 5 (right panel) show that the 

N250r component to identity repetitions versus changes was not only reduced in size, but also 

emerged later on trials where facial expression changed relative to expression repetition trials. 

This was confirmed by a jackknife-based onset analysis performed on N250r difference 

waveforms (collapsed across hemispheres) with an absolute onset criterion of -0.4μV 

(corresponding to approximately 30% of the average peak amplitude of the two difference 

waves). The N250r component on trials where facial expression was repeated preceded the 

N250r on trials with expression changes by 22ms (221ms versus 243ms), and this onset latency 

difference was reliable, tc(15)=1.86, p<.05 (one-tailed).  

 

 Analysis of N250r components across both tasks. An ANOVA of N250r mean amplitudes 

measured in both task conditions with the factors task (identity task, expression task), 

hemisphere (right, left) identity (repetition, change) and expression (repetition, change) 

confirmed that the N250r to identity repetitions was larger in the identity task than in the 

expression task, as reflected by an interaction between task and identity, F(1,15)= 9.26, p<.01, 
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ηp
2=.38. There were no interactions between task and expression, F<1.7, and between task, 

identity, and expression, F<1. 

 

Expression repetition effects on identity change trials. A differential effect of expression 

repetitions versus changes that is independent of facial identity can be seen in Figure 3 when 

comparing ERPs on trials with an expression repetition and an identity change (green lines) and 

trials where expression and identity both changed (black lines). An enhanced negativity was 

elicited for expression repetitions versus changes on these trials in the expression task (Figure 3, 

bottom panels). This effect started later than the N250r to identity repetitions, but remained 

present during the entire 500ms measurement window. No such differential response to 

expression repetitions versus changes was apparent in the identity task. Figure 4 (far right panel) 

shows the scalp topography of the N250r-like component to expression repetitions versus 

changes on identity change trials in the expression task. This map was computed by subtracting 

ERPs measured during the 280-500ms post-stimulus time window on expression change trials 

from ERPs on expression repetition trials. The topography of the differential ERP response to 

expression repetitions versus changes was similar to the topography of the identity-sensitive 

N250r components observed in the identity and expression tasks (as shown in Figure 4). In both 

cases, a negativity over lateral visual areas was accompanied by a broadly distributed positivity.  

The focus of this positivity is more posterior for the expression repetition effect than for the 

N250r component, which is likely to reflect a temporal overlap with the P3 component that 

emerges beyond 300ms post-stimulus, and is sensitive to target events (i.e., the presence of an 

expression repetition). 

To assess this expression-specific repetition effect, an ANOVA was conducted for ERP 

mean amplitudes measured at lateral posterior electrodes on identity change trials during a 280-

500ms post-stimulus time window, for the factors task (identity task, expression task), expression 

(repetition, change), and hemisphere (right, left). There was a main effect of expression 



24 
 

 
 

F(1,15)=9.32, p<.01, ηp
2 =.38, confirming the presence of an identity-independent expression 

repetition effect. Importantly, a significant interaction between task and expression was present, 

F(1,15)=6.67, p<.03, ηp2 =.31. In the expression task, there was a significantly enhanced 

negativity on expression repetition versus expression change trials (-2.05μV versus - 1.32μV; 

t(15)= 3.44, p<.02). No such difference was present in the identity task, t<1. There was no 

interaction between expression and hemisphere, F<1.4, but a significant three-way interaction 

between task, expression, and hemisphere, F(1,15)= 7.06, p<.02, ηp
2 =.32. As can be seen in 

Figure 3 (bottom panels, green versus black lines), and in the topographical map shown in Figure 

4 (right panel), the enhanced negativity to expression repetitions versus changes on identity 

change trials in the expression task was more pronounced over the left hemisphere. A 

corresponding analysis of ERPs measured during the earlier 220–280ms post-stimulus time 

window (where the identity-sensitive N250r component was already present) found no 

significant effects of expression on identity change trials in either task. 

 Early visual ERP components (P1, N170). As in many previous N250r studies, the early 

visual-evoked P1 component was smaller in both tasks when both facial identity and facial 

expression were repeated relative to trials where one or both of these attributes changed (see 

Figure 3),  this was the case in both tasks. This is likely to reflect the fact that the total amount of 

visual change between the two successively presented faces was smallest on trials where 

expression and identity were both repeated, as the P1 is highly sensitive to low-level visual 

features changes. An analysis of P1 mean amplitude values (measured during a 100-130ms post-

stimulus time window) confirmed that P1 amplitudes were smaller on trials where expression 

and identity were both repeated relative to trials where expression, identity, or both attributes 

changed between the S1 and S2 face (all p < .05). This differential P1 modulation can also be 

seen in the N250r difference waveforms (Figure 5) during the 100 -150ms interval after S2 onset. 

This early low-level sensory effect disappeared at around 180ms post-stimulus, prior to the onset 

of N250r components. There were no reliable effects of any experimental factor, or any 
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interaction between factors on the amplitude of the face-sensitive N170 component (measured 

between 150 and 200ms after S2 onset; all F < 3.4). 

 

4. Discussion 

The question whether the processing of facial identity and facial expression is based on  

separate or shared mechanisms within the core visual face processing system remains 

controversial (e.g., Calder & Young, 2005). In the present study, we have identified interactions 

between facial expression and identity that take place during visual-perceptual stages of face 

processing within the first 300ms after stimulus onset.  

The pattern of behavioural results obtained in the identity and expression tasks 

demonstrated symmetrical interference effects from task-irrelevant facial expression on identity 

matching, and from task-irrelevant facial identity on expression matching. In the identity task, 

the detection of an identity repetition between two successively presented faces was slower and 

less accurate when these faces differed in their emotional expression, and the detection of an 

identity change was impaired when facial expression was repeated. These symmetrical 

interference effects of facial expression on the matching of facial identity demonstrate that 

selective attention could not be exclusively focused on identity as the currently task-relevant 

dimension, and suggest that identity-related information was not processed independently of 

facial expression. Exactly the same pattern of interference effects was observed in the expression 

task. The detection of a facial expression repetition was impaired when there was a change in 

facial identity, and the detection of an expression change was impaired when face identity was 

repeated. The size of these behavioural interference effects from the currently task-irrelevant 

dimension did not differ between the identity and expression tasks, demonstrating the existence 

of fully symmetrical interactions between facial identity and expression. This is in line with 

previous behavioural studies that have reported symmetrical interference effects between identity 

and expression (Ganel & Goshen-Gottstein, 2004; Wang et al., 2013; but see Schweinberger & 
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Soukup, 1998; Schweinberger et al., 1999, for asymmetrical effects). The face matching tasks 

employed in the present study required comparisons between sequentially presented faces that 

followed each other in rapid succession, and involved visual memory for individual faces. The 

presence of symmetrical interference effects from expression on identity judgments, and vice 

versa, demonstrates that identity and expression were represented in visual face memory even 

when they were task-irrelevant. Given the short inter-stimulus interval between the two faces in 

the present study (200–300ms), the possibility remains that representations of task-irrelevant 

facial expression may not be actively held in working memory over longer periods. If this was the 

case, asymmetrical interference effects might have been observed with longer retention intervals.  

While these behavioural interference effects demonstrate that identity and expression 

interact at some stage during the face matching process, they do not provide direct evidence that 

these interactions occurred during the perceptual analysis of faces in the core visual face 

processing system. These effects could also have been generated at later response selection 

stages, in line with the interpretation of Garner interference as a stimulus-response compatibility 

effect (Garner, 1988). However, the N250r results observed in the present study show that facial 

identity and expression interacted during an early perceptual stage of identity-related face 

processing where visual representations of seen faces are matched with stored representations in 

visual face memory. As expected, N250r components were triggered by face identity repetitions 

as compared to changes in the identity task. Critically, this N250r to face identity repetitions was 

larger and emerged earlier on trials where facial expression was also repeated as compared to 

trials with an expression change (Figure 5, left panel). The delay of the N250r component on 

trials with an expression change as compared to expression repetition trials shows that 

interactions between identity and expression affect the time course of face identity matching 

even when facial expression is task-irrelevant and observers are instructed to ignore this 

dimension. 
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The N250r component is assumed to be generated in posterior fusiform cortex areas that 

include the FFA (Bindemann et al., 2008; Schweinberger et al., 2002), which implies that the face 

identity matching processes reflected by this component take place within the core visual face 

processing system (Haxby et al., 2000). The fact that N250r amplitudes and onset latencies in the 

identity task were systematically affected by repetitions versus changes in task-irrelevant facial 

expression therefore provides direct evidence for interactions between identity and expression 

within this core face processing system. If the N250r component reflected face identity matching 

processes within a stream that analyses identity-related visual information and is functionally and 

anatomically separate from the stream that processes facial expression, the matching of visual 

representations of facial identity should not be affected by representations of facial expression. 

In this case, the N250r should be essentially unaffected by repetitions versus changes of 

emotional facial expression. The observed delay and attenuation of N250r components on 

expression change trials in the identity task is not in line with this prediction, and demonstrates 

instead that visual perceptual face identity matching processes are strongly modulated by the 

presence of alterations in facial structure that accompany changes in emotional expression. The 

delayed onset of the N250r on expression change trials suggests that perceptual evidence for an 

identity match between a seen face and a stored visual representation of the identity of a 

previously encountered face becomes available later when there is a change in facial expression. 

The attenuation of N250r amplitudes on these trials may reflect a reduction in the efficiency of 

face identity matching processes in the presence of an expression change. The behavioural 

interference effects triggered by facial expression changes in the identity task and the interference 

effects observed at the level of the N250r component are likely to be linked. The fact that the 

N250r onset delay on expression change trials (23ms) was smaller than the corresponding RT 

delay for identity matching responses (50ms) suggests that the delay of face identity matching 

processes on these trials cannot fully explain the observed behavioural costs.  
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Face identity repetitions also triggered reliable N250r components in the expression task, 

in spite of the fact that identity was known to be irrelevant in this task. This demonstrates that 

information about the identity of the S1 face was retained and then matched with the identity of 

the S2 face, even though matching processes had to be based on facial expression. The presence 

of N250r components in a task where facial identity is formally task-irrelevant is in line with a 

previous study which observed reliable N250r components to identity repetitions in a task where 

observers had to match the view in which two successive faces were presented, and to ignore 

facial identity (Zimmermann & Eimer, 2014). Such observations show that identity does not 

have to be explicitly task-relevant in order to be encoded in visual face memory. When a 

particular face attribute other than identity has to be retained in order to be compared to another 

face image, facial identity appears to be encoded and stored in a mandatory fashion, regardless of 

task instructions. Note that task-irrelevant identity repetitions do not trigger an N250r in tasks 

that do not require observers to maintain a face representation in visual working memory 

(Zimmermann & Eimer, 2014), demonstrating that face identity matching is not an entirely 

automatic process, but is under top-down control. The observation that N250r components to 

identity repetitions were reliably smaller in the expression task than in the identity task shows 

that this processing of facial identity is not completely automatic, but is modulated to some 

degree by top-down task settings. While the N250r to identity repetitions was reduced in size in 

the expression task where identity was task-irrelevant, the effects of repetitions versus changes of 

facial expression on N250r amplitudes and latencies were very similar in both tasks (see Figure 

5). As in the identity task, N250r components to identity repetitions were smaller in size and 

emerged later on expression change trials in the expression task. The size of this N250r onset 

delay was nearly identical in the two tasks (23ms versus 22ms). These observations demonstrate 

that the interference effects of facial expression on face identity matching processes, as reflected 

by the N250r component, were essentially the same regardless of whether facial identity was 

task-relevant or not. They suggest that interactions between expression and identity during the 
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early perceptual analysis of face images in the core visual face processing system occur in a 

largely stimulus-driven fashion, that is, independent of top-down task sets and selective attention 

to a particular facial dimension. 

It could be argued that the attenuation and delay of identity-sensitive N250r components 

on expression change trials may not exclusively reflect interactions between facial identity and 

expression during face identity matching processes, but is at least in part the result of low-level 

visual differences between the two successively presented faces. Such differences may have been 

more pronounced on expression change trials than on expression repetition trials. As the N250r 

component reflects identity matching processes that are based on visual comparisons between 

currently seen faces and stored visual face representations, some residual impact of low-level 

visual factors is difficult to rule out entirely, because faces that change expression inevitably 

differ in their low-level image properties. However, these factors are unlikely to fully account for 

the N250r differences observed in the present study between expression repetition and 

expression change trials. To minimize differences in the amount of visual change between S1 

and S2 faces across different types of trials, we presented two different face images (mouth-open 

or mouth-closed) on all trials. Furthermore, previous experiments have demonstrated that the 

N250r component is image-independent (e.g., Bindemann et al., 2008; Kaufmann et al., 2009). 

For example, in two recent studies (Zimmermann & Eimer, 2013, 2014), N250r amplitudes did 

not differ reliably between trials where two faces of the same individual were presented 

sequentially in the same view or in two different views, demonstrating that the N250r is much 

more sensitive  to repetitions of facial identity than to repetitions of low-level visual features. 

 A novel finding of the present study was the presence of a reliable enhanced negativity to 

expression repetitions versus changes (see also Werheid, Alpay, Jentzsch, & Sommer, 2005, for 

ERP modulations produced by priming specific emotional facial expressions). This differential 

effect was observed in the expression task on trials where S1 and S2 faces differed in their 

identity (see Figure 3, bottom panels), indicating that it is independent of face identity matching 
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processes. This enhanced negativity for expression repetitions versus changes emerged slightly 

later than the identity-sensitive N250r component, and remained present in a sustained fashion 

during the 500ms post-stimulus measurement window. Even though the N250r is primarily 

sensitive to facial identity, the expression repetition effect on identity change trials in the 

expression task may reflect an N250r-like response that is triggered when visual representations 

of the facial expressions of two sequentially presented faces are successfully matched. For this 

reason, and because the topography of this expression repetition effect was similar to the scalp 

topography of the N250r to identity repetitions versus changes in the identity task (as shown in 

Figure 4), we tentatively refer to this N250r-like response to emotion repetitions as the 

“N250rE”. If this N250rE component reflects an expression match between a seen face and a 

representation stored in visual face memory, its presence on identity change trials would suggest 

the existence of identity-independent visual representations of facial expression. Behavioural 

evidence for such representations comes from a visual adaptation study by Fox and Barton 

(2007). Prolonged exposure to adaptor faces showing a particular emotional expression biased 

judgments made in response to a subsequent ambiguous test faces towards the expression 

opposite to that shown by the adaptor faces. Critically, this effect was observed even when faces 

of different individuals were shown as adaptor and test stimuli, suggesting that emotional facial 

expression can be represented independently of facial identity. However, it should be noted that 

these adaptation effects for facial expression were larger on identity repetition trials, while 

identity-specific adaptation effects did not differ between expression repetition and expression 

change trials (Fox, Oruç, & Barton, 2008). 

In contrast to the identity-sensitive N250r component that was present also in the 

expression task where facial identity was irrelevant, the enhanced negativity to expression 

repetitions on identity change trials was only observed in the expression task, but was absent in 

the identity task. This suggests that the expressions of two successively presented faces are only 

matched when this is required by the experimental task.  However, the fact that repetitions 
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versus changes of irrelevant facial expressions interfered with task performance in the identity 

task shows that some visual information about expression was still encoded and retained in this 

task. The presence of expression-induced behavioural interference and the absence of an N250rE 

component response to facial expression in the identity task suggest that there is a difference 

between the passive maintenance of facial attributes and the active matching of such attributes 

between memorized and seen faces. Because the presence of an N250rE component to 

repetitions of facial expression has not been observed before, this effect needs to be studied 

more systematically in future experiments to confirm its reliability and its link to facial expression 

matching mechanisms. It would also be interesting to investigate whether the perceptual 

matching of task-relevant facial attributes other than identity and emotional expression is also 

accompanied by similar ERP components.  

In summary, the current study has provided new evidence for interactions between facial 

identity and expression processing. When the identity or expression of face pairs has to be 

matched, repetitions or changes in the other task-irrelevant dimension cannot be ignored. Neural 

processes involved in face identity matching operate less efficiently when faces differ in their 

expression. These findings support previous suggestions (Calder & Young, 2005; Calder, 2011) 

that the cognitive and neural mechanisms involved in the visual analysis of facial identity and 

facial expression are closely linked, and suggest that the recognition of identity and emotional 

expression are based on shared representations within the core visual face processing system. 
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