
Disproving termination with overapproximation
Byron Cook∗†, Carsten Fuhs†, Kaustubh Nimkar† and Peter O’Hearn†

∗Microsoft Research
†University College London

Abstract—When disproving termination using known tech-
niques (e.g. recurrence sets), abstractions that overapproximate
the program’s transition relation are unsound. In this paper we
introduce live abstractions, a natural class of abstractions that can
be combined with the recent concept of closed recurrence sets
to soundly disprove termination. To demonstrate the practical
usefulness of this new approach we show how programs with
nonlinear, nondeterministic, and heap-based commands can be
shown nonterminating using linear overapproximations.

1. INTRODUCTION

A program is terminating iff its transition relation (when
restricted to reachable states) is well-founded. Because every
subrelation of a well-founded relation is itself well-founded,
if we prove an abstraction that overapproximates the program
to be terminating, then we have proved the concrete program
terminating. The reverse, unfortunately, is not true: the exis-
tence of a nonterminating overapproximating abstraction does
not imply that the original concrete program is nonterminat-
ing. Thus, when proving nontermination, we currently cannot
make use of the many techniques from program analysis that
overapproximate programs.

In this paper we revisit a recently introduced concept
called a closed recurrence set [8]. The existence of a closed
recurrence set for a program implies that the program does not
terminate. Curiously, the existence of a closed recurrence set
for an overapproximating abstraction (meeting certain restric-
tions, which we formalize as live abstractions) also implies
nontermination of the original concrete program. Thus, when
combined with our technique, we can now use overapproxi-
mating abstractions when attempting to prove nontermination.

To demonstrate the usefulness of our approach we describe
an experimental evaluation where nonlinear, nondeterministic,
and heap-based programs are proved to be nonterminating
using off-the-shelf overapproximating linear abstractions.

Limitations. As discussed in detail in the paper: not all over-
approximating abstractions are compatible with our approach.
We address this problem by describing the conditions on ab-
stractions that make the abstraction sound for our approach, as
the notion of live abstractions. Many of the known abstractions
indeed meet these conditions. Additionally, closed recurrence
sets are not complete, i.e. in some cases a closed recurrence set
will not exist for nonterminating programs. In these situations
our approach can still help in combination with previous
techniques to disprove termination (e.g. underapproximation)
in cases where existing techniques alone could not.

In our automation, counterexamples to termination are
expressed as simple while loops, a.k.a. lasso paths, which

are used extensively in the termination and nontermination
proving literature. Unfortunately, not all counterexamples to
termination can be expressed as lassos (see e.g. [8, Section 4]
for a program where only aperiodic nonterminating runs exist).
Furthermore, as done in TNT [18], when disproving termi-
nation of real programs with complex control-flow graphs,
we must first search for candidate lassos before applying our
approach. Like TNT, our tool also exhaustively searches pro-
gram’s control flow graph for candidate lassos. Alternatively,
candidate lassos can be obtained from a termination prover
when it fails to prove termination. Thus our technique can be
efficiently combined with a termination prover.

Related work. Termination proving tools are now well-
known, e.g. [5], [6], [11], [12], [14], [15], [22], etc. The
difference here is that we are disproving, rather than proving
termination. While in some trivial cases termination provers
can easily disprove termination (e.g. when variables are not
modified in an infinite loop), in practice this is not the focus
for these tools. Failure to find a termination proof does not
imply a proof of nontermination. Thus dedicated techniques
for nontermination proving are essential.

Since termination is not a safety property, its falsification
cannot always be witnessed by a finite trace; thus testing
cannot reliably be used to identify termination bugs.

In recent work, Chen et al. [8] introduce the notion of closed
recurrence sets, upon which we build in this paper. Chen et al.
combine closed recurrence sets with counterexample-guided
underapproximation to harness safety provers for proving non-
termination. The method hinges on the availability of suitable
safety provers for the regarded class of programs, which
currently makes an application of their method to nonlinear or
heap-based programs difficult. We go beyond this limitation.

Closed recurrence sets were inspired by TNT [18], which
uses a characterization of nontermination by (open) recurrence
sets. Note that closed recurrence sets are stronger than recur-
rence sets: a recurrence set exists iff a program is nonterminat-
ing, whereas closed recurrence sets only imply nontermination;
that is why they are useful for approximation. We show that
additional techniques can be used to mitigate the relative
strength of the condition. In contrast to us, TNT is restricted
to programs using linear arithmetic. Our approach supports
unbounded nondeterminism in the program’s transition rela-
tion, whereas TNT is restricted to deterministic commands.
As discussed later, this is due to a happy interaction between
the definition of closed recurrence sets and Farkas’ lemma.

Larraz et al. [23] prove non-termination via Max-SMT
solving. The method explores all strongly connected subgraphs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/42134506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of a program’s CFG and thus can find witnesses for non-
termination that need not be lasso paths. However this ap-
proach is limited to linear arithmetic as well.

Termination analysis tools for constraint-logic programs
(e.g. [30]) can in cases be used to prove nontermination of
imperative programs (e.g. JULIA [31] can show nontermination
for Java bytecode programs if the abstraction to constraint-
logic programs is exact, but provides no witness like a recur-
rence set to the user). The main difficulty here is in the applica-
tion of the tools to imperative programs, as overapproximating
abstractions are typically used for converting languages such
as Java and C to constraint-logic programs. These abstractions
are in general unsound for directly proving nontermination.
Our work may in fact have application in this domain.

APROVE [15] uses SMT solving to prove nontermination of
Java programs [7]. First nontermination of a loop regardless of
its context is proved, then reachability of the loop with suitable
values. The drawback of their technique is that they require
either that (after program slicing to the variables that influence
the loop control flow) the values of the program variables are
always the same at the loop header or that the loop conditions
themselves must be loop invariants.

The tool INVEL [34] analyzes nontermination of Java pro-
grams using a combination of theorem proving and invariant
generation. Like Brockschmidt et al. [7], we were unable
to obtain a working version of INVEL. Note that in the
empirical evaluation by Brockschmidt et al. [7], the APROVE
tool (which we have compared against) subsumed INVEL
on INVEL’s data set. Finally, INVEL is only applicable to
deterministic integer programs, whereas our approach allows
nondeterminism and heap-based data structures as well.

Gulwani et al. [17] can prove nontermination in some cases
by proving the exit points of the program unreachable, but
use a restriction to linear arithmetic. Their technique is fairly
imprecise in the presence of nondeterminism in the input.

Atig et al. [2] reduce nontermination of multithreaded
programs to nontermination reasoning for sequential programs.
Our work complements Atig et al., as we improve the under-
lying sequential tools that future multithreaded tools can use.

Previous works (e.g. [10], [19], [32]) describe techniques for
proving properties expressed in branching-time temporal logic
of infinite-state programs. Nontermination can be encoded
in these logics (e.g. in CTL, nontermination is EG pc 6=
END). Our work complements these previous works. Here
we facilitate the use of overapproximation.

Finally, several automatic tools exist for proving non-
termination of term rewrite systems (e.g. [13], [16], [29]).
However, in nontermination analysis for term rewriting the
entire state space is considered as legitimate initial states for
a (possibly infinite) evaluation sequence, whereas our setting
also factors in reachability from the initial states.

2. ILLUSTRATING EXAMPLE

Before formally introducing our approach, we first describe
the idea informally using an example. Imagine that we want
to show nontermination of the toy program in Fig. 1(a). Here

assume(j ≥ 1 and k ≥ 1);
while i ≥ 0 do

i := j × k;
j := j + 1;
k := k + 1;
skip; // location `

done

assume(j ≥ 1 and k ≥ 1);
while i ≥ 0 do

i := nondet();
j := j + 1;
k := k + 1;
assume(i ≥ 1);

done

(a) (b)
Fig. 1. Nonlinear program (a), and its linear abstraction (b). The command
assume [27] only allows executions to continue when the condition holds,
nondet represents nondeterministic choice.

we are using an assume statement [27], which does not allow
executions to pass unless the condition is valid.1

We are looking to find initial values for i, j and k from which
an infinite run is possible. Indeed, such a run is possible: from
the state (i = 1, j = 1, k = 1) the program can perform a
sequence of loop iterations via the states (i = 1, j = 2, k = 2),
(i = 4, j = 3, k = 3), (i = 9, j = 4, k = 4), . . . leading to an
infinite run. This set of states G = {(i = 1, j = 1, k = 1), (i =
1, j = 2, k = 2)}, (i = 4, j = 3, k = 3), (i = 9, j = 4, k =
4), . . .} meets a criterion that defines a recurrence set [18]:
during the execution of the while loop the program can get
into the set of states G, and when in G it is possible to stay in G
during an iteration of the loop. Finding a valid recurrence set
such as this is a complete method of proving nontermination.

Now the question is, how can we automatically find such a
proof of nontermination? The difficulty here is the nonlinear
assignment i := j × k: most automatic formal verification tech-
niques struggle to support nonlinear arithmetic in a scalable
fashion. An arbitrary overapproximation of this program will
not help in this context. The problem is that if we prove
nontermination of the overapproximation we still have not
proved nontermination of the original concrete program. The
reason is that—due to the nature of overapproximation—a
nonterminating execution in the overapproximation need not
correspond to any execution in the concrete program.

To avoid this problem we can use an overapproximating
abstraction of our program such that the abstraction satis-
fies certain conditions. We call such an abstraction a live
abstraction. See Section 3. Such an abstraction is shown
in Fig. 1(b). This abstraction uses nondeterministic choice
(i.e. nondet) to abstract away the nonlinear command and
also uses a linear location invariant at location ` from the
original program (i ≥ 1). Note that in Fig. 1(b) we do not
alter the loop condition from the original program but only
overapproximate the transitions that can take place inside the
loop. This abstraction is a live abstraction and is thus a safe
abstraction for our approach. Later in Section 3 we give the
necessary conditions for an abstraction to be a live abstraction.
Most of the abstractions used in the termination literature
satisfy the properties of a live abstraction.

Our approach is based on the following insight: if we can

1For termination, we can encode assume(e) ≡ if ¬e then exit(); fi

2

assume(j ≥ 1 and k ≥ 1);
while i ≥ 0 and m ≥ 0 do

i := j × k;
j := j + 1;
k := k + 1;
m := nondet();

done

assume(j ≥ 1 and k ≥ 1);
while i ≥ 0 and m ≥ 0 do

i := j × k;
j := j + 1;
k := k + 1;
m := nondet();
assume(m ≥ 0);

done

(a) (b)

assume(j ≥ 1 and k ≥ 1);
while i ≥ 0 and m ≥ 0 do

i := nondet();
j := j + 1;
k := k + 1;
m := nondet();
assume(m ≥ 0);
assume(i ≥ 1);

done

(c)
Fig. 2. Nonlinear program (a), its underapproximation (b), and the resulting
linear abstraction (c).

prove existence of a set of states G at the loop head in the live
abstraction meeting the following conditions then we know
that both the abstraction and the original concrete program are
nonterminating: a) G is nonempty and at least one state in G is
reachable, b) every state in G has at least one transition, and c)
all transitions from G in the abstraction only lead to G. If these
conditions hold then G is a closed recurrence set. This now
allows us to use tools on the overapproximating abstraction
rather than the original program to establish nontermination.
Here such a set could be given by G = {s | s |= i ≥ 1}.

Combining over- and underapproximation. Sometimes
closed recurrence sets are alone not enough: we may still
require the use of underapproximation. However, even then,
our approach facilitates the mixture of over- and underapprox-
imation to make more powerful nontermination proving tools.

Consider the program in Fig. 2(a). Here it is difficult to
find a useful linear overapproximation directly because of
the nondeterministic assignment to the variable m. However
if an underapproximation of a program is nonterminating,
then the original program itself is nonterminating as well.
Here we can use known techniques to automatically find an
underapproximation that rules out the unwanted transitions.
Consider the program in Fig. 2(b), an underapproximation of
the program in Fig. 2(a) restricting the choice for nondeter-
ministic assignment to the variable m. Using our approach we
can now easily find a useful linear overapproximation that is
a live abstraction for this program. The program in Fig. 2(c)
is a linear overapproximation of the underapproximation in
Fig. 2(b). Here, we can find a closed recurrence set G = {s |
s |= i ≥ 1∧m ≥ 0} for the program in Fig. 2(c), which proves

nontermination of the program in Fig. 2(b), which in turn
proves nontermination of the program in Fig. 2(a). Note that
it is unsound to first overapproximate and then underapproxi-
mate: as in this example we must first underapproximate and
then overapproximate. Also note that for overapproximations
we only consider live abstractions.

3. CLOSED RECURRENCE SETS AND OVERAPPROXIMATION

In this section we discuss closed recurrence sets and their
relationship to overapproximation.

Transition Systems. A transition system (S,R, I, F) is de-
fined by a set of states S, a transition relation R ⊆ S × S,
a set of initial states I ⊆ S and a set of final states F ⊆ S.
For a state s with R(s, s′), we say that s′ is a post-state of s
and that s is a pre-state of s′. We also call s′ a successor of s
under R. Execution of a transition system can only halt in a
final state, so every state s /∈ F must have a successor under
R, and any final state f ∈ F has no successors under R.

Example. Consider the example in Fig. 1(a). We can de-
scribe the loop and its initial condition as a transition system
(S,R, I, F) where any state s is basically a tuple (i, j, k) of
values of variables and S = Z3, R = {(s, s′) | s, s′ � i ≥ 0 ∧
i′ = j×k∧ j′ = j+1∧k′ = k+1}, I = {s | s � j ≥ 1∧k ≥ 1},
F = {s | s � i < 0}.

A. Closed recurrence sets.

A transition system (S,R, I, F) is nonterminating iff there
exists an infinite transition sequence s0

R−→ s1
R−→ s2

R−→ . . .
with s0 ∈ I . Gupta et al. [18] characterize nontermination of a
relation R by the existence of a recurrence set, viz. a nonempty
set of states G such that for each s ∈ G there exists a transition
to some s′ ∈ G. Here we extend the notion of a recurrence
set to transition systems. A transition system (S,R, I, F) has
a recurrence set (or open recurrence set) of states G(s) iff

∃s.G(s) ∧ I(s), (1)
∀s∃s′.G(s)→ R(s, s′) ∧ G(s′). (2)

A transition system (S,R, I, F) is nonterminating iff it has a
recurrence set of states.

Quantifier alternation as in Condition (2) can be a headache
for automation. To avoid this problem Gupta et al. [18] restrict
the transition relation to deterministic programs only. In this
case we can represent the post-state s′ using a unique expres-
sion in terms of the pre-state s. Thus the existential quantifier
can be eliminated by instantiating it with this expression.

Example. For the loop from Fig. 1(a), we can have a
recurrence set G = {(i = 1, j = 1, k = 1), (i = 1, j = 2, k =
2), (i = 4, j = 3, k = 3), (i = 9, j = 4, k = 4), . . . }.

Definition (Closed Recurrence Set [8])
A set G is a closed recurrence set for a transition system
(S,R, I, F) iff the following three conditions hold:

∃s.G(s) ∧ I(s) (3)
∀s∃s′.G(s)→ R(s, s′) (4)

∀s∀s′.G(s) ∧R(s, s′)→ G(s′) (5)

3

In contrast to standard (open) recurrence sets, we now
require a purely universal property: for each s ∈ G and for
each of its successors s′, also s′ must be in the recurrence
set (Condition (5)). So instead of requiring that we can stay
in the recurrence set, we now demand that we must stay in
the recurrence set. This has several advantages. First, without
quantifier alternation, Farkas’ lemma can now be applied
directly. This now helps us to incorporate nondeterministic
transition systems too. Secondly, the interaction with overap-
proximation is improved. The downside is that the condition
can be too strong.

There is an additional problem: what if a state s in our
recurrence set G has no successor s′ at all? This would bring
our alleged infinite transition sequence to a sudden halt, yet
our universal formula would trivially hold. To deal with this
issue, we must impose that each s ∈ G has some successor
s′ (Condition (4)). But this existential statement need not
mention that s′ must be in G again—our previous universal
statement already takes care of this. In this way, we have
gained something: the existential quantifier in Condition (4)
refers only to the (known) transition relation R and, as we
shall see in the Section 5 on automation, the condition can
be easily automated in spite of quantifier alternation when we
search for a closed recurrence set G.

Example. For the loop from Fig. 1(b), we can have a closed
recurrence set G = {s | s � i ≥ 1}. G satisfies all the
conditions of a closed recurrence set.

Theorem (Closed Recurrence Sets are Recurrence Sets
[8]) Let G be a closed recurrence set for (S,R, I, F). Then G
is also a standard (open) recurrence set for (S,R, I, F).

If our transition system is deterministic, every recurrence set
is also a closed recurrence set. In particular, closed recurrence
sets characterize nontermination in the setting of Gupta et al.
[18], which assumes deterministic programs.

Corollary (Recurrence Sets are Closed Recurrence Sets
for Deterministic Transition Systems)
Let G be a recurrence set for (S,R, I, F) such that for every
state s there exists at most one state s′ with R(s, s′). Then G
is also a closed recurrence set for (S,R, I, F).

B. Live abstractions

We now describe generic conditions on abstractions that are
sufficient to establish soundness for nontermination proving
using our approach, in the form of live abstractions.

Live Abstractions. We assume that an abstraction of T =
(S,R, I, F) is a system Tα = (Sα, Rα, Iα, Fα), with a
concretion (or meaning) function [[·]] : Sα → P(S).

Definition (Live Abstraction)
An abstraction Tα = (Sα, Rα, Iα, Fα) is live iff

∀s∀s′∀a.R(s, s′) ∧ s ∈ [[a]]→ ∃a′.Rα(a, a′) ∧ s′ ∈ [[a′]]
(Simulation)

∀f∀g. f ∈ F ∧ f ∈ [[g]]→ g ∈ Fα

(Upward Termination)

The Simulation (or, ‘up simulation’) condition is a standard
one for overapproximation: it says that any steps you can take
in the concrete transition system can be overapproximated
in the abstract transition system. The Upward Termination
condition says that for every final state in the concrete tran-
sition system, any corresponding abstract state is also a final
state in the abstract transition system. Together Simulation and
Upward Termination imply that for every terminating run in
the concrete transition system, also any corresponding run in
the abstract transition system is terminating.

The connection of these conditions to disproving termina-
tion then is: if there is an initial state a0 from which all compu-
tations in the abstract program are nonterminating and there is
an initial state s0 in the concrete program such that s0 ∈ [[a0]],
then all computations in the concrete program starting from s0
are nonterminating (i.e., for live abstractions, closed recurrence
carries over from the abstract to the concrete).

Theorem (Soundness)
Consider a live abstraction (Sα, Rα, Iα, Fα) for a transition
system (S,R, I, F). Suppose Gα is a closed recurrence set for
(Sα, Rα, Iα, Fα) and for some a0 we have Gα(a0)∧Iα(a0)∧
∃s0.(s0 ∈ [[a0]] ∧ I(s0)). Then there also exists a closed
recurrence set G = {s | ∃a.Gα(a)∧s ∈ [[a]]} for (S,R, I, F).

Proof. We need to prove Conditions (3), (4), and (5) for G.
For Condition (3) for G: We have for some a0, Gα(a0) ∧

Iα(a0) ∧ ∃s0.(s0 ∈ [[a0]] ∧ I(s0)). Thus for such s0 we have
I(s0) and the definition of G implies G(s0). Thus we have
Condition (3) for G.

For Condition (4) for G: Let s such that G(s). We now prove
that s /∈ F by contradiction. Suppose s ∈ F . The definition of
G implies ∃a.s ∈ [[a]] ∧ Gα(a). Condition (4) for Gα implies
∃a′.Rα(a, a′). However Upward Termination implies a ∈ Fα,
which implies ¬∃a′Rα(a, a′). Thus we have a contradiction.
Thus we must have s /∈ F . This gives Condition (4) for G.

For Condition (5) for G: Let s, s′ such that G(s)∧R(s, s′).
The definition of G implies ∃a.s ∈ [[a]]∧Gα(a). Moreover, the
Simulation condition gives ∃a′.Rα(a, a′)∧s′ ∈ [[a′]]. Condition
(5) for Gα implies Gα(a′). The definition of G gives G(s′) and
thus we have Condition (5) for G.

Note that similar to what many abstractions do, a live
abstraction can overapproximate the concrete initial states. For
a live abstraction to be useful for proving nontermination using
closed recurrence sets, we only need a0 ∈ Sα and s0 ∈ S that
satisfy the conditions of the soundness theorem.

Example. Recall Fig. 1(a) and its abstraction in Fig. 1(b).
We can represent the abstraction as a transition system:

Iα = {a | a � j ≥ 1 ∧ k ≥ 1} Fα = {a | a � i < 0}
Sα = Z3 Rα = {(a, a′) | (a, a′) � i ≥ 0 ∧ i′ ≥ 1

∧ j′ = j + 1 ∧ k′ = k + 1}

The abstraction contains i′ ≥ 1 in the transition relation of
the loop instead of the nonlinear update i′ = j × k. Here
the abstraction has not changed the state space, the set of
initial states and the set of final states, but it has weakened

4

the transition relation of the loop. Note that this abstraction
fulfills all criteria for a live abstraction.

Example. Consider again the examples from Fig. 1(a) and
(b). Here we have the closed recurrence set Gα = {s | s � i ≥
1} for the loop in our abstraction in Fig. 1(b). This implies
existence of a closed recurrence set G for the loop in the
concrete program in Fig. 1(a) and hence its nontermination.

Example. To see why we need the Upward Termination
condition for the abstraction, consider the following transition
system (S,R, I, F) and its abstraction (Sα, Rα, Iα, Fα):

S = {s0, s1, s2, s3} I = {s0} F = {s1}

R = {(s0, s1), (s2, s3), (s3, s0)}

Sα = {{s0}, {s1, s2}, {s3}} Iα = {{s0}} Fα = ∅

Rα = {({s0}, {s1, s2}), ({s1, s2}, {s3}), ({s3}, {s0})}

Here an abstract state is a subset of the set of all concrete
states, where we have “merged” the states s1 and s2 to a single
state. The abstraction satisfies the Simulation condition but not
Upward Termination because s1 is a final state in the concrete
transition system, but the corresponding abstract state {s1, s2}
is not a final state in the abstract transition system. The
abstraction has a closed recurrence set {{s0}, {s1, s2}, {s3}},
but the concrete transition system has no recurrence set.

4. CLASSES OF LIVE ABSTRACTIONS FOR AUTOMATION

As mentioned earlier, in our automation we focus on pro-
gram fragments of a special shape: lassos.

Definition (Lasso) A lasso is a program fragment that
contains a sequence of commands called a stem followed by
a simple loop with guarded updates. The guard of a simple
loop is a conjunction of atomic conditions. Formally a lasso
L is a transition system (S,Rloop, Iloop, Floop) where S is the
set of states in the domain, Rloop is the transition relation of
the loop, and Iloop is the set of initial states for the loop. Iloop
represents the strongest postcondition after execution of the
stem. Floop is a set of final states for the loop such that for
every final state there is no transition inside the loop.

Abstracting nonlinear commands. We describe the abstrac-
tion that our tool uses to abstract nonlinear commands present
in the lassos. In our abstraction nonlinear assignment com-
mands are abstracted, but loop guards are kept unchanged.

Towards the purpose of abstracting assignments we first
compute a linear location invariant at the end of the loop (using
APRON’s [20] octagon abstract domain [26] in our implemen-
tation). We then replace the nonlinear update command with a
nondeterministic choice and add an assume statement with the
invariant at the end of the loop. Instead of octagons, here also
dedicated disjunctive analyses for nonlinearity (e.g. the tech-
nique by Alonso et al. [1]) can be used to increase precision
of the overapproximation. However, as our experiments show,
here we can already get quite far using standard octagons.

Consider the nonlinear lasso in Fig. 1(a) and its linear
abstraction in Fig. 3 that our tool computes. Here, i − 1 ≥

assume(j ≥ 1 and k ≥ 1);
while i ≥ 0 do

i := nondet();
j := j + 1;
k := k + 1;
assume(i − 1 ≥ 0 and i + j − 3 ≥ 0 and

i − j + 1 ≥ 0 and i + k − 3 ≥ 0); // location `
done

Fig. 3. Linear overapproximation of the program in Fig. 1(a) computed by
our tool using APRON [20]

assume(...);
assume(...);
while i × j ≥ 0 do

i := ...
j := ...
......

done

assume(...);
assume(...);
v := i × j;
while v ≥ 0 do

i := ...
j := ...
......
v := i × j;

done
(a) (b)

Fig. 4. Lasso (a) with nonlinear guards and equivalent lasso (b) with auxiliary
variable with linear guards

0∧ i + j− 3 ≥ 0∧ i− j + 1 ≥ 0∧ i + k− 3 ≥ 0 is the invariant
computed at location ` of the original lasso from Fig. 1(a) by
the APRON library using the octagon abstract domain.

Mapping nonlinear assignments to nondeterministic assign-
ments is clearly an overapproximation. This abstraction of as-
signments satisfies the Simulation condition of live abstraction
because it adds extra abstract transitions only when a concrete
transition (the assignment) is already possible. Since we do not
alter loop guards, Upward Termination holds as well because
all the final states of the original lasso are final states in the
abstract lasso too. Clearly this abstraction satisfies the condi-
tions of a live abstraction. Formally for a concrete lasso with a
transition system (S,Rloop, Iloop, Floop) our tool computes an
abstract lasso with a transition system (Sα, Rαloop, I

α
loop, F

α
loop)

where Sα = S,Rloop ⊆ Rαloop, I
α
loop = Iloop, F

α
loop = Floop

and the concretion function is essentially the identity, i.e.,
∀a ∈ Sα. [[a]] = {a}.

Dealing with nonlinear guards. We use a simple trick to get
rid of nonlinearity out of guards. Consider Fig. 4. We remove
nonlinearity present in the guards by adding an auxiliary
variable v. The rest of the analysis proceeds as before.

This approach yields nonlinear commands in the stem of
our lassos. The stem commands enter our constraints only
existentially (as we will see in Section 5). Thus constraint
solvers can deal with such constraints efficiently.

Abstracting heap-based commands. Magill et al. [25] pro-
pose an overapproximating abstraction from programs operat-
ing on the heap to purely arithmetic programs. The abstraction
is obtained by instrumenting a memory safety proof for the
program. Since in general memory safety only holds under
certain preconditions, the user can specify the shape of the

5

while p 6= null do
p := p→next;

done

while k ≥ 1 do
assume(k > 1);
l := nondet();
assume(l ≥ 1 and k = l + 1);
m := nondet();
assume(m = l + 1);
n := nondet();
assume(n = l + 1);
k := n;

done
(a) (b)

Fig. 5. Heap-based program (a) with precondition that p points to a nonempty
cyclic list and linear overapproximation (b) computed by THOR [25]

heap data structures by user-defined predicates in separation
logic [28]. We can use Magill’s tool THOR [25] to abstract
heap-based C programs into linear arithmetic programs oper-
ating over the integers. This is exemplified in Fig. 5. In the
arithmetic program the variable k tracks the length of the list
segment from p to null, and the other variables are temporaries
used in the update of k.

Magill’s PhD thesis [24, Def. 29] describes the notion of
stuttering simulation and proves (in his Thm. 18) that the
abstraction satisfies the properties of stuttering simulation. In
stuttering simulation for a transition in the concrete system,
the corresponding transition in the abstract system may contain
a sequence of steps and vice versa. An abstraction satisfying
stuttering simulation obeys standard simulation condition and
additionally for stuttering simulation to hold, the Upward
Termination condition is needed. Thus Magill’s abstraction
satisfies the properties of a live abstraction and thus is safe
for our approach of nontermination proving.

We could also abstract linked-list programs via the results
connecting lists and counter automata [4]. These results are in
fact stronger, a bisimulation rather than a simulation, for lists.

Combining over- and underapproximation. As previously
mentioned, closed recurrence sets must in some cases be
used in conjunction with underapproximation. Here we can
use existing techniques for underapproximation in combina-
tion with our own. Note that closed recurrence sets form a
complete method when combined with underapproximation,
in the sense that every nonterminating program also has an
underapproximation with a closed recurrence set.

Underapproximation. We call a transition system
(S,R′, I ′, F ′) an underapproximation of a transition system
(S,R, I, F) iff R′ ⊆ R, I ′ ⊆ I , F ⊆ F ′.

Theorem (Open Recurrence Sets Always Contain Closed
Recurrence Sets [8]) There exists a recurrence set G
for (S,R, I, F) iff there exist an underapproximation
(S,R′, I ′, F ′) of (S,R, I, F) and G′ ⊆ G such that G′ is a
closed recurrence set for (S,R′, I ′, F ′).

5. FINDING CLOSED RECURRENCE SETS

In the previous section we showed how it is possible to
prove nontermination of a program by proving the existence of

a closed recurrence set for an abstraction of the program. Here
we address the problem of how to find a closed recurrence
set for the abstracted program, i.e., a program over linear
integer arithmetic. We will search for a closed recurrence set
G described by a conjunction of linear inequalities Qx ≤ q.

We adapt the Farkas-based approach used in TNT to find
closed recurrence sets rather than recurrence sets. In our
application the restriction to deterministic relations from TNT
can be lifted. This is particularly important when working with
abstractions of programs, which can introduce nondeterminism
even when the concrete program is deterministic. It is also
essential for treating the heap, because of the nondeterminism
inherent in malloc.

In this section it will be convenient to phrase our dis-
cussion in terms of lassos expressed in linear arithmetic, as
such lassos are convenient for automation. In the domain
of linear arithmetic, a state s is just a vector x that rep-
resents the valuation of program variables. A lasso L in
linear arithmetic can be expressed as a transition system
(S,Rloop(x,x

′), Iloop(x), Floop(x)). In terms of programs,
Iloop(x) represents the strongest postcondition of a path
leading to the loop body, with precondition ‘true’ from which
the program starts, and Rloop(x,x

′) is the transition relation
corresponding to the composition of a sequence of (possibly
nondeterministic) assignment statements in the loop body,
guarded by a condition. Floop(x) represents the set of final
states such that no loop transition can take place from any final
state. As we are working in linear arithmetic, we can represent
the transition relation of the loop by systems of inequalities

Rloop(x,x
′) , Gx ≤ g ∧ Ux + U ′x′ ≤ u

where Gx ≤ g describes the guards and Ux + U ′x′ ≤ u the
updates. Here G, U and U ′ are matrices, g and u are vectors.
We make the following assumption:

∀x∃x′.Gx ≤ g → Ux + U ′x′ ≤ u. (6)

The assumption says that whenever the guards of a lasso can
be satisfied we are guaranteed to have a next state given by
the updates. This holds in a lasso with a satisfiable transition
system when every row in U ′ contains a non-zero coefficient,
which corresponds to an update of the variables.

We are in search of a predicate G expressed as a system of
inequalities using coefficients, i.e. G ≡ Qx ≤ q, where Q is a
matrix and q a vector of existentially quantified variables. The
number of rows in Q and q then corresponds to the number
of inequalities which we use.

We wish to employ a constraint solver (e.g. Z3 [21])
to find the coefficients Q and q. A difficulty in doing so
is that these conditions contain mixtures of existential and
universal quantifiers: Q and q are existentially quantified at
the top-level, and both (4) and (5) use universals. Many
constraint solvers struggle to solve problems such as these.
The standard approach (e.g. in invariant generation [9], rank
function synthesis [5] and recurrence set synthesis [18]) is
to apply Farkas’ lemma to convert the problem into a purely
existential one that is easier for existing solvers.

6

In the remainder of this section we describe a Farkas-
based reduction to automate the search for closed re-
currence sets. To find a closed recurrence set for
(S,Rloop(x,x

′), Iloop(x), Floop(x)) we must find Q and q
such that the following conditions are satisfied (here we have
substituted Qx ≤ q for G in Conditions (3), (4), and (5)):

∃x.Qx ≤ q ∧ Iloop(x) (7)
∀x∃x′.Qx ≤ q → Rloop(x,x

′) (8)
∀x∀x′.Qx ≤ q ∧Rloop(x,x

′)→ Qx′ ≤ q (9)

In order to apply Farkas’ lemma we must eliminate the ∀∃
alternation in Condition (8).2 Assumption (6) lets us remove
the existential quantifier in (8),3 which now becomes:

∀x.Qx ≤ q → Gx ≤ g (10)

Next, although it is not essential, because of (10) we can
drop Gx ≤ g from Rloop(x,x

′) in (9), thus giving us a
simpler constraint to solve:

∀x∀x′.Qx ≤ q ∧ Ux + U ′x′ ≤ u→ Qx′ ≤ q (11)

Conditions (7), (10), and (11) are sufficient constraints for
finding a closed recurrence set. Furthermore, (10) and (11) are
now in a form which facilitates applications of Farkas’ lemma
to eliminate the universal quantifiers, and we obtain:

∃Λ1 ≥ 0.Λ1Q = G ∧ Λ1q ≤ g (12)

and

∃Λ2 ≥ 0.Λ2

(
Q
U

)
= 0∧Λ2

(
0
U ′

)
= Q∧Λ2

(
q
u

)
≤ q

(13)
The constraints that we finally generate are (7), (12), and

(13). These conditions are readily solved by off-the-shelf
constraint solving tools. A satisfying assignment for these
constraints gives us values of coefficients in Q and q, thus
giving us the closed recurrence set.

Note that if the constraints are unsatisfiable, like Gupta et
al. [18] we can use Q and q with increasingly many rows (and
hence inequalities) in Qx ≤ q. In this way, we can increase
the precision of our method further.

6. IMPLEMENTATION AND EXPERIMENTS

In order to assess the practicality of our approach we have
developed a prototype implementation called ANANT. Given a
program’s CFG, ANANT exhaustively searches for candidate
lassos.4 For every lasso the tool applies our method, using
Z3 as the constraint solver for the constraints from Section 5
together with abstractions for heap and nonlinear commands

2When Gupta et al. [18] search for recurrence sets, they also need to
eliminate the ∀∃ alternation in their constraints for automation. They do so
by instantiating the existential variable explicitly with the value of the update.
The price for this is that the update must be deterministic. We do not have
this restriction.

3The statements (6) ∧ (8) and (6) ∧ (10) are equivalent.
4ANANT uses the same syntax for transition systems as the termination

prover T2 [6]. For heap-based programs in C syntax, the lasso extraction is
currently conducted manually.

described in Section 3. If a lasso under consideration contains
a loop variable with a nondeterministic update that also
appears in the loop guard, before applying the abstraction the
tool first applies an underapproximation strategy. To obtain
the desired underapproximation the tool adds an assume-
statement at the end of the loop body that enforces the loop
guard (as done for variable m in Fig. 2(b)).

We make ANANT available for download along with its
source code at the following URL:

http://www0.cs.ucl.ac.uk/staff/K.Nimkar/live-abstraction

We compared ANANT experimentally to several other tools.
As a benchmark set (also available at the above URL), we have
gathered 33 example programs containing nonlinear, nondeter-
ministic and heap-based commands from various sources.

Since nontermination usually indicates a bug, some of
our benchmarks implement functions computing factorial,
logarithm, etc., with typical programming mistakes that lead
to nontermination. The set also includes the nonterminating
examples from Berdine et al. [3], in particular the bug in a
Windows device driver discussed in this paper. While Berdine
et al. report that their analysis uncovers this bug by absence of
a successful termination proof, we can now go a step further
and actually prove nontermination of such heap programs.

We compared ANANT to the following tools:
• APROVE [15], using the Java bytecode frontend with the

nontermination analysis by Brockschmidt et al. [7].
• JULIA [33], implementing a reduction to constraint logic

programming described by Payet and Spoto [31].
Like Brockschmidt et al. [7], we were unable to obtain
a working version of the tool INVEL [34]. Note that the
other nontermination provers (e.g. TNT [18], T2 [8] and
CPPINV [23]) are not applicable, as they do not support
programs with nonlinear or heap-based commands.

Fig. 6 shows the results of our experiments with ANANT,
APROVE, and JULIA. We ran ANANT and APROVE on an
Intel i7-2640M CPU clocked at 2.8 GHz under Linux. For
JULIA, an unknown cloud-based configuration was used. All
tools were run with 600 s timeout. As Fig. 6 shows, ANANT
succeeded on 29 of 33 benchmarks, whereas APROVE and
JULIA succeeded on only 2 and 4 benchmarks, respectively.
This difference is not surprising since overapproximation was
thus far not applicable to disproving termination for nonlinear
and heap-based programs. In contrast, as our experiments
show, we can now disprove termination in many such cases.

It is worth highlighting that e.g. on benchmark 9, ANANT
took over 4 min to disprove termination, vs. JULIA’s <7 s. This
difference may partly be due to different machine configura-
tions. However, note that a combined prover for termination
and nontermination (like APROVE or JULIA) can discard
parts of the program proved terminating and only analyze
the rest for nontermination. This can lead to a more focused
search for a nontermination proof than ANANT’s approach
of enumerating arbitrary lassos (whose termination might be
easy to prove). Thus, ideally, our contributions for disproving
termination should be combined with a termination prover.

7

ANANT APROVE JULIA
Benchmark Res Runtime Res Runtime Res Runtime
1 X 0.50 s × timeout × 7.01 s
2 X 0.55 s × timeout × 7.80 s
2a X 0.82 s × timeout × 12.01 s
3 X 0.56 s × timeout × 7.74 s
4 X 125.66 s × timeout × 12.85 s
5 X 0.45 s × 18.59 s × 7.24 s
6 X 0.48 s × 235.79 s X 7.70 s
7 X 0.59 s × 23.51 s X 11.83 s
8 X 0.26 s × 3.15 s X 5.08 s
9 X 243.00 s × 5.10 s X 6.72 s
10 X 246.83 s × 27.42 s × 11.29 s
11 X 0.63 s × timeout × 8.69 s
12 × 2.35 s × timeout × 10.67 s
13 × 1.40 s × 108.61 s × 8.54 s
14 X 121.69 s × 147.54 s × 7.33 s
15 X 131.80 s × timeout × 8.45 s
16 X 57.41 s × 18.81 s × 7.07 s
17 X 0.54 s × 24.18 s × 7.06 s
18 × 0.66 s × 28.03 s × 6.92 s
19 X 0.44 s × timeout × 7.27 s
20 × 0.74 s × timeout × 6.95 s
factorial X 0.38 s × timeout × 7.57 s
log X 0.46 s × 3.17 s × 8.59 s
log by mul X 0.63 s × timeout × 7.68 s
lasso ex1 X 0.45 s × timeout × 7.03 s
lasso ex2 X 1.21 s × 72.25 s × 8.79 s
lasso ex3 X 0.48 s × timeout × 7.28 s
nCr combi X 0.70 s × 10.45 s × 17.26 s
power X 0.43 s × timeout × 7.03 s
Create X 3.47 s X 1.75 s × 4.94 s
Insert X 177.69 s × 16.86 s × 7.77 s
Traverse X 1.23 s X 2.12 s × 50.28 s
WindowsBug X 21.69 s × 14.46 s × 50.92 s

Fig. 6. Results (“Res”) and runtimes of ANANT, APROVE, and JULIA on
29 benchmarks with nonlinear arithmetic and 4 heap-based benchmarks from
Berdine et al. [3]. Here X denotes that the tool proved nontermination, ×
means that the tool returned without a definite answer, and timeout means
that the run was terminated externally after 600 s.

7. CONCLUSION

Overapproximation is the workhorse of program analysis.
Unfortunately, overapproximation can invalidate conventional
techniques for disproving termination. In this paper we have
introduced the notion of a live abstraction to show how over-
approximation can help, not hinder nontermination proving.
The idea is to prove the existence of a closed recurrence
set rather than simply a recurrence set. This modification
in strategy allows us to use off-the-shelf overapproximating
abstractions, leading to a new set of methods for disproving
termination of real programs.

Acknowledgments. We thank the anonymous reviewers for
helpful suggestions and Fabian Emmes and Fausto Spoto for
help with the experiments.

REFERENCES

[1] Diego Esteban Alonso, Puri Arenas, and Samir Genaim. Handling
non-linear operations in the value analysis of COSTA. In Proc.
BYTECODE ’11.

[2] Mohamed Faouzi Atig, Ahmed Bouajjani, Michael Emmi, and Akash
Lal. Detecting fair non-termination in multithreaded programs. In Proc.
CAV ’12.

[3] Josh Berdine, Byron Cook, Dino Distefano, and Peter O’Hearn. Au-
tomatic termination proofs for programs with shape-shifting heaps. In
Proc. CAV ’06.

[4] Ahmed Bouajjani, Marius Bozga, Peter Habermehl, Radu Iosif, Pierre
Moro, and Thomas Vojnar. Programs with lists are counter automata.
In Proc. CAV ’06.

[5] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Linear ranking
with reachability. In Proc. CAV ’05.

[6] Marc Brockschmidt, Byron Cook, and Carsten Fuhs. Better termination
proving through cooperation. In Proc. CAV ’13.

[7] Marc Brockschmidt, Thomas Ströder, Carsten Otto, and Jürgen
Giesl. Automated detection of non-termination and NullPointer-
Exceptions for Java Bytecode. In Proc. FoVeOOS ’11.

[8] Hong-Yi Chen, Byron Cook, Carsten Fuhs, Kaustubh Nimkar, and Peter
O’Hearn. Proving nontermination via safety. In Proc. TACAS ’14.

[9] Michael A. Colón, Sriram Sankaranarayanan, and Henny B. Sipma.
Linear invariant generation using non-linear constraint solving. In Proc.
CAV ’03.

[10] Byron Cook and Eric Koskinen. Reasoning about nondeterminism in
programs. In Proc. PLDI ’13.

[11] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination
proofs for systems code. In Proc. PLDI ’06.

[12] Nachum Dershowitz, Naomi Lindenstrauss, Yehoshua Sagiv, and
Alexander Serebrenik. A general framework for automatic termination
analysis of logic programs. AAECC, 12(1-2), 2001.

[13] Fabian Emmes, Tim Enger, and Jürgen Giesl. Proving non-looping non-
termination automatically. In Proc. IJCAR ’12.

[14] Samir Genaim, Michael Codish, John P. Gallagher, and Vitaly Lagoon.
Combining norms to prove termination. In Proc. VMCAI ’02.

[15] Jürgen Giesl, Marc Brockschmidt, Fabian Emmes, Florian Frohn,
Carsten Fuhs, Carsten Otto, Martin Plücker, Peter Schneider-Kamp,
Thomas Ströder, Stephanie Swiderski, and René Thiemann. Proving ter-
mination of programs automatically with AProVE. In Proc. IJCAR ’14.

[16] Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. Proving and
disproving termination of higher-order functions. In Proc. FroCoS ’05.

[17] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan.
Program analysis as constraint solving. In Proc. PLDI ’08.

[18] Ashutosh Gupta, Thomas A. Henzinger, Rupak Majumdar, Andrey
Rybalchenko, and Ru-Gang Xu. Proving non-termination. In Proc.
POPL ’08.

[19] Arie Gurfinkel, Ou Wei, and Marsha Chechik. Yasm: A software model-
checker for verification and refutation. In Proc. CAV ’06.

[20] Bertrand Jeannet and Antoine Miné. Apron: A library of numerical
abstract domains for static analysis. In Proc. CAV ’09.

[21] Dejan Jovanovic and Leonardo de Moura. Solving non-linear arithmetic.
In Proc. IJCAR ’12.

[22] Daniel Kroening, Natasha Sharygina, Aliaksei Tsitovich, and
Christoph M. Wintersteiger. Termination analysis with compositional
transition invariants. In Proc. CAV ’10.

[23] Daniel Larraz, Kaustubh Nimkar, Albert Oliveras, Enric Rodrı́guez-
Carbonell, and Albert Rubio. Proving non-termination using Max-SMT.
In Proc. CAV ’14.

[24] Stephen Magill. Instrumentation Analysis: An Automated Method for
Producing Numeric Abstractions of Heap-Manipulating Programs. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2010.

[25] Stephen Magill, Ming-Hsien Tsai, Peter Lee, and Yih-Kuen Tsay.
Automatic numeric abstractions for heap-manipulating programs. In
Proc. POPL ’10.

[26] Antoine Miné. The octagon abstract domain. Higher-Order and
Symbolic Computation, 19(1), 2006.

[27] Greg Nelson. A generalization of Dijkstra’s calculus. TOPLAS, 11(4),
1989.

[28] Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning
about programs that alter data structures. In Proc. CSL ’01.

[29] Étienne Payet. Loop detection in term rewriting using the eliminating
unfoldings. Theor. Comput. Sci., 403(2-3), 2008.

[30] Étienne Payet and Frédéric Mesnard. A non-termination criterion for
binary constraint logic programs. TPLP, 9(2), 2009.

[31] Étienne Payet and Fausto Spoto. Experiments with non-termination
analysis for Java Bytecode. In Proc. BYTECODE ’09.

[32] Fu Song and Tayssir Touili. Pushdown model checking for malware
detection. In Proc. TACAS ’12.

[33] Fausto Spoto, Fred Mesnard, and Étienne Payet. A termination analyzer
for Java bytecode based on path-length. TOPLAS, 32(3), 2010.

[34] Helga Velroyen and Philipp Rümmer. Non-termination checking for
imperative programs. In Proc. TAP ’08.

8

