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SUMMARY

We have developed a genetic algorithm for building
macromolecular complexes using only a 3D-electron
microscopy densitymap and the atomic structures of
the relevant components. For efficient sampling the
method usesmap feature points calculated by vector
quantization. The fitness function combines amutual
information score that quantifies the goodness of fit
with a penalty score that helps to avoid clashes be-
tween components. Testing the method on ten as-
semblies (containing 3–8 protein components) and
simulated density maps at 10, 15, and 20 Å resolution
resulted in identification of the correct topology in
90%, 70%, and 60% of the cases, respectively. We
further tested it on four assemblies with experimental
maps at 7.2–23.5 Å resolution, showing the ability of
the method to identify the correct topology in all
cases. We have also demonstrated the importance
of the map feature-point quality on assembly fitting
in the lack of additional experimental information.

INTRODUCTION

Protein and nucleic acid assemblies are central to the workings

of the cell, and a great deal of understanding is gained from

determining the structures, interfaces, and interactions of their

components. X-Ray crystallography has been the mainstay of

such studies, but cryoelectron microscopy (cryo-EM) is increas-

ingly being used to characterize large and heterogeneous com-

plexes that are difficult to study by other techniques (Cheng,

2015; Elmlund and Elmlund, 2015; Lander et al., 2012; Thalassi-

nos et al., 2013). In particular, cryoelectron tomography com-

bined with subtomogram averaging allow for the structure deter-

mination of macromolecular machinery in near-native contexts

(for instance when they are membrane-bound), which is difficult

to achieve with other methods (Zeev-Ben-Mordehai et al., 2014).
However, the low resolutions characteristic of such reconstruc-

tionsmake interpretation of atomic interfaces impossible without

integrating information from other higher-resolution studies.

Many computational methods have been developed to help fit

atomic models of individual components from crystallography,

nuclear magnetic resonance, or structure prediction into low-

resolution density maps (Esquivel-Rodriguez and Kihara, 2013;

Thalassinos et al., 2013; Villa and Lasker, 2014). Such methods

can be broadly classified into flexible fitting (Topf et al., 2008),

whereby the conformation of the atomic model is considered

partially malleable, and rigid fitting (Roseman, 2000), whereby

the conformation of each model remains fixed. Most of these

methods are designed to optimize the fit of a single component

into a density map, even if the map is of a larger assembly.

Ideally, the available techniques can be extended to address

the problem of fitting multiple components simultaneously into

the assembly densitymaps (assembly fitting). The immediate dif-

ficulties in such implementations include the huge increase in the

configuration search space and the need to score multi-compo-

nent interactions in addition to the similarity between the atomic

model and EM map. The number of configurations available to

find an optimal fit for three-component assembly (with a given

search radius of 360� with step size of 10�) is of the order of

1014. This is only considering rotational moves, given the initial

placement of components. If we consider the translational posi-

tion of each component, the number of configurations to be

explored would be far larger. Therefore, one needs to use heuris-

tic methods to intelligently reduce the configuration space and

search it efficiently. Thus, to efficiently identify the optimal solu-

tion, assembly fitting requires an efficient global optimization

technique coupled with a robust scoring scheme.

A few tools have been developed for assembly fitting. These

include techniques based on exhaustive sampling (Birmanns

et al., 2011; Kawabata, 2008), combinatorial optimization using

a divide-and-conquer approach (Lasker et al., 2009),multiple pro-

tein docking procedure using the 3DZernike descriptor (Esquivel-

Rodriguez andKihara, 2012), andpoint setmatching using integer

quadratic programming (Zhang et al., 2010). Most methods use

a density-based cross-correlation score to measure the good-

ness of fit, in combination with scores borrowed from protein-
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protein docking to favor inter-component interactions and

penalize non-favorable interactions (Lasker et al., 2009). In some

methods, symmetry restraints are appliedwhere appropriate (Ka-

wabata, 2008; Lasker et al., 2009). In the absence of symmetry,

assembly fitting becomes even more challenging. It has been

shown that the use of additional experimental constraints can

improve the predictions (van Zundert et al., 2015).

Since the configuration space is so immense, an exhaustive

sampling isnot feasible.Heuristicmethods that aim tofindoptimal

or good solutions by examining only a fraction of the possible

candidate solutions serve as a good alternative to the exhaustive

sampling approach for finding the global optimum. One particular

global optimization technique of interest is the genetic algorithm

(GA), a heuristic searchmethod that seeks to emulate the process

of natural selection (Goldberg, 1989). GAs have been applied to

various problems in structural biology, for example in ab initio

modeling (Arunachalam et al., 2006; Contreras-Moreira et al.,

2003), protein-proteindocking (Gardiner etal., 2003), comparative

protein structure modeling (John and Sali, 2003), fitting models

into small-angle X-ray scattering profiles (Chacon et al., 2000),

and, more recently, in EM density fitting (Esquivel-Rodriguez

andKihara, 2012).Here,weapply aGA for thepurposesof assem-

bly fitting calledg-TEMPy (Genetic Algorithm forModelingMacro-

molecular Assemblies with Template and EM comparison using

Python). g-TEMPy is developed from the TEMPy Python package

(Farabella et al., 2015). Most of the assembly-fitting methods

described above use the cross-correlation coefficient tomeasure

the goodness-of-fit. Here, for the first time, we use amutual infor-

mation score (Vasishtan and Topf, 2011) within such context.

We begin by describing the details behind the g-TEMPy algo-

rithm. We then demonstrate its performance on a benchmark of

simulated and experimental cases. Finally, we discuss the impli-

cations of g-TEMPy for the structural characterization of large

assemblies.

RESULTS

Theory
Our goal is to identify a near-native configuration of a macromo-

lecular assembly, given its individual protein components and a

cryo-EM-derived density map at low to intermediate resolution.

The predicted configuration needs to fit optimally into the density

map, as well as satisfy the general physical rules of protein com-

plexes, i.e. to avoid overlap between components. To this end,

we adopted a GA that simultaneously fits the components into

the density map. A GA works by discovering, emphasizing,

and recombining good solutions in a highly parallel fashion,

and is particularly suitable for solving computational problems

that require searching through a huge number of possibilities

for solutions (Mitchell, 1996). It starts with a set of candidate so-

lutions and assumes that high-quality candidate ‘‘parent’’ solu-

tions from different regions in the space can be combined to pro-

duce high-quality candidate ‘‘child’’ solutions. Our GA sampling

scheme assumes no prior information about the starting posi-

tions and rotations of the assembly components in the map.

The fitness function quantifies the match between the map and

the model, and accounts for the atomic clashes between the

components. We now describe the implementation details of

the method (Figure 1).
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Sampling Using GA
Genotype Encoding

A ‘‘genotype’’ is made up of a number of variable entities called

‘‘genes.’’ These genes are the parameters that characterize the

state of themodel. A group of genotypesmake up a ‘‘population’’

of assembly models. This population is iteratively improved

upon, creating ‘‘generations’’ of new solutions and maintaining

only the best scoring solutions in the population. In our assem-

bly-fitting scenario, each genotype in the population describes

the position and rotation of each component structure in the as-

sembly map. Each genotype consists of two types of genes: a

translation gene and a rotation gene (one each for every compo-

nent). The translation gene is a 3D Cartesian vector representing

the displacement of the component in Angstrom units (relative to

an initial random position in the center of the map). The rotation

gene is an integer indexing a list of quaternions.

Generation of Initial Population

The initial population is a set of randomly generated geno-

types, or a set of genotypes seeded in some other fashion.

Here, a vector quantization (VQ) algorithm was implemented

to create a number of feature points in the target map that is

equal to the number of assembly components (VQ feature-

point set) (Zhang et al., 2010). The VQ algorithm uses a neural

gas clustering technique to extract feature points from a den-

sity map following a procedure described elsewhere (Wriggers

et al., 1999). Feature points are defined as the centers of

density clusters, which as a whole capture the characteristic

features of the density distribution. The result of the algorithm

depends on the selected values for the density threshold

(Zhang et al., 2010). Also, due to numerical instabilities, inde-

pendent VQ runs with identical starting conditions can pro-

duce slightly different points. Since the variation for a given

point position can only be up to 3 Å, for the purpose of GA

we only use a set of VQ points produced from a single run us-

ing the density threshold value of 2s from the mean. These

feature points are assumed to roughly correspond to the cen-

troids of each component. 50% of the genotypes in the initial

population are created by randomly placing each component

on any of the feature points. The remaining 50% are subjected

to the same procedure, but an additional displacement is

applied, with the maximum range equal to twice the minimum

distance between all pairs of feature points. Orientations for

each component are randomly selected from a uniform distri-

bution of 5,000 quaternions (Shoemake, 1992). The population

size is kept to 160.

Generation of New Population

New child genotypes constituting the new population are

created using two different schemes, defined as crossover oper-

ations and diversity operations:

1. In the crossover operation, two genotypes are selected.

This is done by applying a tournament selection (Mitchell,

1996) twice. This selection process starts by randomly

picking two genotypes (tournament size = 2) from the pop-

ulation and by selecting only the one with the highest

fitness genotype (parent). This process is repeated to pro-

duce two parent genotypes. For each gene in the fittest

between the two selected parent genotypes, a crossover

operation is applied by exchanging its value with the



Figure 1. Schematic Diagram Describing

the Process of Fitting Multiple Components

into the Assembly Maps Using a Genetic

Algorithm

The method takes the individual components in

the assembly and the density map of the assembly

as an input. The genetic algorithm starts with a

population of assembly fits generated randomly

using the feature points obtained through a vector

quantization technique. The population of fits is

iteratively improved through many generations by

applying crossover andmutation operators and by

retaining the best assembly fits based on the

fitness function. The fittest member in the final

generation is further refined using Flex-EM and

produced as an output. The number of members N

in the population is kept to 160 and the number of

generations to 100.
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corresponding gene in the other parent. The modified ge-

notype serves as the new child genotype. This operation is

applied at a probability of 0.8. Each crossover event is fol-

lowed by a mutation operation that randomly modifies the

value of the crossed-over gene (in the child genotype). In a

mutation operation, the translation gene is mutated by

adding a random vector with a length ranging between

0 and the minimum of all the distances between the VQ

points. The rotation gene is mutated by randomly replac-

ing a quaternion (with equal probability for each quater-

nion). The probability of applying the mutation operation

is typically set to 0.2 at the first generation and linearly de-
Structure 23, 1–1
creases to 0.01 at the final genera-

tion. The crossover operation helps

to create variation in the popula-

tion, while the mutation operation

is essential to avoid convergence

to local minima.

2. In the diversity operation, two pairs

of genes (each representing the

state of a component defined by a

translation and a rotation value)

are randomly selected in the fittest

genotype and swapped. A muta-

tion operation (described above)

is then applied to the child geno-

type. All genes in the child geno-

type are mutated with a constant

mutation rate of 0.1. Child geno-

types from the crossover and di-

versity operations constitute 90%

and 10% of the total population

size, respectively.

Selection Scheme and Termination

A new population consists of 160 child

genotypes (same size as the initial popu-

lation), which are created using cross-

over, diversity, and mutation operations,

and are merged with the 160 genotypes

from the previous parent generation.
Then the 160 genotypes with the best fitness scores (see below)

from the combined 320 child and parent genotypes are selected

as the next-generation genotypes.

In our scheme, we run 20 independent GAs producing 20 pre-

dicted assembly fits (each starting from the same VQ point set).

Each GA terminates after 100 generations. The output from each

GA run is the predicted assembly that corresponds to the fittest

genotype in the last generation.

Fitness Function
The GA sampling is combined with a fitness function to quantify

the match between the density map and the model (goodness of
2, December 1, 2015 ª2015 The Authors 3
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fit) as well as a clash score to prevent component volumes from

overlapping with each other. The fitness score, F, is given by:
F = (n 3 MI) � PS, (Equatio
n 1)

where n is the number of components in the assembly, MI is the

mutual information representing the goodness of fit, and PS is a

term to penalize for clashes.

The mutual information is calculated as follows (Farabella

et al., 2015):

MIðX;YÞ=
X

x˛X

X

y˛Y

pðx; yÞlog pðx; yÞ
pðxÞpðyÞ ; (Equation 2)

where X and Y correspond to the density values of the voxels in

the probe and target maps; p(x) and p(y) are given by the per-

centage of voxels with density values equal to x and y, respec-

tively; and p (x,y) is given by the percentage of aligned voxels

with value x in the probe map and y in the target map. The

map density is divided into 20 bins. We have previously shown

that this score performs well compared with the widely used

cross-correlation coefficient (Vasishtan and Topf, 2011).

The PS is calculated by first generating for each component a

grid with a value of 0 for all the volume elements (voxels). Then all

voxels containing the backbone or the Cb atoms of the compo-

nents are set to a value of 1. For a given pair of grids, we calculate

the ratio between the volume of the overlapping voxels and the

sum of the volume of the voxels of the two individual grids (voxel

size is set to 3.5 Å). The PS is defined as the sum of all pairwise

fraction overlaps and can take any value greater than or equal to

0. The score was designed in such a way that severe atomic

clashes between components are penalized while mild clashes

are tolerated, to aid better sampling.
Benchmark
The method was tested on both simulated and experimental

‘‘target’’ maps of protein assemblies. The simulated benchmark

contains a total of ten assemblies (Table 1). For each assembly,

the method was tested using three different simulated maps at

10, 15, and 20 Å resolution. These maps were produced by blur-

ring the atomic positions of the assemblies using a Gaussian

point-spread function with sigma factor of 0.356 (Vasishtan

and Topf, 2011). The voxel sizes of simulated maps were kept

to 3.5 Å. The number of components in the assembly ranges

from three to eight and the component size ranges between 88

and 525 residues. The experimental benchmark contains four

assembly maps taken from the Electron Microscopy Databank

(EMDB) (Lawson et al., 2011). The EMDB entries for the assem-

bly maps are 1340, 1980, 2355, and 1046 at 9.0, 7.2, 16.0, and

23.5 Å resolution, respectively (Table 2). The PDB entries for

the fits that correspond to EMDB maps are PDB: 2P4N, 4A6J,

4BIJ, and 1GRU, respectively. For measuring the prediction ac-

curacy we consider a deposited fit as the reference fit (‘‘native

fit’’). The number of components ranges from three to seven.

Below, and in Tables 1 and 2, we describe the results of running

g-TEMPy for each of the test cases. For illustration purposes, we

show in Figures 2 and 3 the results of five examples from the

simulated benchmark (PDB: 1CS4, 2B09, 1MDA, 1TYQ, 2GC7,

which represent different numbers of components) and all the

test cases from the experimental benchmark, respectively.
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Prediction Accuracy: Simulated Benchmark
10 Å Resolution

For the best-predicted (BP) assemblies using target maps

simulated at 10 Å resolution, the topology score (TS, see

Experimental Procedures for details) ranged between 0.8 and

1.0 (prior to refinement, Table 1A). The translation and rotation

components of the assembly placement score (APS) (Lasker

et al., 2009) (see Experimental Procedures for details) ranged

from 1.3 to 7.9 Å and 13.3� to 79.9�, respectively (Table 1A).

The Ca root-mean-square deviation (RMSD) (see Experimental

Procedures for details) between the components of the BP as-

semblies and the corresponding native assemblies ranged from

3.2 to 16.9 Å (Table 1A). In eight of the ten cases (all except

PDB: 1MDA and 1SGF), the BP assemblies identified by the

GA had correct topology with TS = 1.0. In the case of PDB:

1MDA, only for chain M, the configuration deviated consider-

ably with respect to the native assembly. The translation and

rotation values of component placement score (CPS) were

19.6 Å and 82.2�, respectively (Table S1A). Similarly for the

case of PDB: 1SGF, chain Y deviated considerably with respect

to the native (CPS: translation = 27.8 Å and rotation = 81.4�)
(Table S1A). In 50% of cases (PDB: 1CS4, 2DQJ, 2BO9,

1GPQ, and 2BBK), the topology of the highest-scoring (HS) as-

sembly was correctly predicted, with a TS = 1.0, and in the

case of PDB: 1CS4 it was also the BP assembly (Table 1A).

The BP assembly was found within the top five ranks in eight

of ten cases, and in seven of ten cases was found within top

three ranks. In all the cases at 10 Å resolution, the fitness

values of the native assemblies were always better than the

predicted assemblies.

Following Flex-EM refinement (Topf et al., 2008) (see Experi-

mental Procedures for details), the APS for the BP assemblies

ranged from 0.5 to 8.2 Å for the translational and 1.0� to 77.3�

for the rotational score components, respectively (Figure 2A

and Table 1A). The refinement helped to reduce the RMSD of

the BP assembly of PDB: 1CS4 from 4.0 to 2.8 Å; of PDB:

2DQJ from 3.5 to 0.7 Å; of PDB: 1VCB from 7.7 to 4.8 Å; and

of 1GPQ from 3.2 to 0.6 Å (Table 1A). In all other cases (four of

which had TS = 1 prior to refinement), the refinement resulted

in a marginal decrease or increase in RMSD. This is due to the

fact that in those cases the starting fits (BP) before refinement

deviate (at least in one of the components) considerably from

the native structure with a minimum and maximum RMSD of

10.9 and 16.9 Å, respectively. It is worth noting that for

the case of PDB: 1MDA (a six-component assembly), the TS

improved from 0.8 to 1.0 after Flex-EM refinement (Table 1A).

Despite this improvement, the RMSD indicated that the model

is far from its native configuration (reduced from 14.1 to

12.0 Å). The Ca RMSD with respect to the native component

chain IDs J, H, and L was 4.8, 7.3, and 2.9 Å, respectively,

whereas the Ca RMSD of the components with chain IDs M, B,

and A was 16.5, 22.9, and 17.6 Å, respectively. The CPS (the

translation and rotation pair) for the latter three chains was

(9.7 Å, 86.9�), (8.1 Å, 155.6�), and (2.0 Å, 157.1�), respectively.
Even though all the components were placed correctly, as evi-

denced by the good TS, the higher RMSD for chains M, B, and

A resulted mainly from a rotation of these chains relative to their

corresponding native position (Figure 2B, chains M, B, and A

shown in green, red, and yellow, respectively).



Table 1. Summary of Model Accuracy in the Simulated Benchmark

NC

Test

Casea
BP BP after Flex-EM HS HS after Flex-EM Rank

of BPTS APS (Å, �) RMSD (Å) TS APS (Å, �) RMSD (Å) TS APS (Å, �) RMSD (Å) TS APS (Å, �) RMSD (Å)

A. 10 Å Resolution

3 1CS4 1.0 1.4, 15.0 4.0 1.0 2.3, 5.3 2.8 1.0 1.4, 15.0 4.0 1.0 2.3, 5.3 2.8 1

2DQJ 1.0 2.3, 15.5 3.5 1.0 0.6, 1.5 0.7 1.0 2.3, 18.0 3.9 1.0 0.7, 8.7 1.7 5

1VCB 1.0 5.3, 28.4 7.7 1.0 2.5, 21.8 4.8 0.3 19.0, 91.3 25.3 0.3 19.1, 91.8 25.5 16

4 2BO9 1.0 1.5, 13.3 3.3 1.0 2.0, 14.6 4.0 1.0 1.4, 49.6 9.9 1.0 2.5, 50.2 10.3 2

1GPQ 1.0 1.3, 15.4 3.2 1.0 0.5, 1.0 0.6 1.0 1.4, 16.4 3.3 1.0 1.1, 21.7 3.9 3

2BBK 1.0 5.6, 54.9 10.9 1.0 3.9, 61.3 11.3 1.0 5.4, 89.6 14.9 1.0 5.9, 82.8 15.3 2

6 1MDAb 0.8 7.7, 79.9 14.1 1.0 5.0, 74.0 12.0 0.8 7.7, 79.9 14.1 1.0 5.0, 74.0 12.0 1

1SGF 0.8 7.9, 58.7 16.7 0.8 8.2, 58.3 16.1 0.8 8.0, 87.4 20.5 0.8 9.6, 89.9 19.7 9

7 1TYQb 1.0 4.6, 71.2 16.9 1.0 3.7, 71.2 16.3 0.7 24.8, 87.8 34.8 0.7 27.8, 89.8 37.7 3

8 2GC7b 1.0 4.6, 77.1 11.9 1.0 2.5, 77.3 10.9 0.6 16.5, 88.4 22.5 0.6 16.7, 89.3 23.3 2

B. 15 Å Resolution

3 1CS4 1.0 1.9, 8.8 3.0 1.0 1.4, 7.4 2.3 1.0 1.9, 10.0 3.1 1.0 0.8, 1.5 0.9 2

2DQJ 1.0 2.1, 10.0 2.9 1.0 0.6, 1.7 0.7 1.0 2.1, 10.0 2.9 1.0 0.6, 1.7 0.7 1

1VCB 1.0 6.2, 116.8 17.0 1.0 3.9, 101.5 14.2 0.0 27.7, 122.2 35.7 0.0 28.3, 106.7 35.7 20

4 2BO9 1.0 3.5, 21.5 6.1 1.0 2.4, 19.8 5.4 1.0 3.6, 49.4 11.4 1.0 2.4, 51.2 10.7 4

1GPQ 1.0 2.9, 37.5 7.3 1.0 3.2, 40.2 7.8 1.0 2.9, 90.6 12.8 1.0 3.2, 87.2 12.7 8

2BBK 1.0 7.1, 57.5 13.4 1.0 5.8, 65.5 13.4 1.0 6.9, 157.8 29.8 1.0 9.2, 146.0 29.6 12

6 1MDAb 1.0 5.5, 50.0 10.0 1.0 6.3, 48.1 10.3 0.7 22.9, 95.2 28.1 0.7 22.8, 93.1 28.4 7

1SGF 0.8 6.8, 75.7 17.9 0.8 6.5, 77.5 16.6 0.8 6.8, 88.2 20.3 0.8 6.2, 89.0 19.6 2

7 1TYQb 0.4 28.2, 126.4 39.0 0.4 28.5, 129.5 39.6 0.4 37.5, 79.1 42.4 0.4 39.9, 83.1 45.5 5

8 2GC7b 0.5 15.1, 101.4 22.9 0.5 15.8, 112.6 24.5 0.5 15.1, 101.4 22.9 0.5 15.8, 112.6 24.5 1

C. 20 Å Resolution

3 1CS4 1.0 3.2, 13.9 5.0 1.0 1.5, 8.4 2.6 0.3 17.8, 103.7 25.4 0.3 18.1, 99.4 25.6 4

2DQJ 1.0 1.5, 16.8 3.4 1.0 0.6, 1.9 0.7 1.0 1.5, 16.8 3.4 1.0 0.6, 1.9 0.7 1

1VCB 0.3 19.7, 72.6 24.2 0.3 17.4, 77.5 23.8 0.3 31.5, 163.1 39.5 0.0 31.9, 160.9 39.1 12

4 2BO9 1.0 2.7, 26.9 6.8 1.0 2.0, 22.3 5.7 1.0 2.6, 50.3 10.4 1.0 2.2, 50.8 10.6 12

1GPQ 1.0 2.2, 52.2 8.4 1.0 2.3, 53.8 9.0 1.0 2.2, 121.0 18.0 1.0 2.2, 117.2 17.7 2

2BBK 1.0 5.5, 26.0 7.9 1.0 6.4, 30.0 9.9 1.0 5.3, 56.1 11.8 1.0 5.6, 63.9 12.9 3

6 1MDAb 0.5 19.2, 101.5 27.7 0.3 20.3, 103.0 28.5 0.7 20.0, 124.6 29.6 0.5 20.4, 125.2 30.2 12

1SGF 0.8 6.6, 86.9 16.4 0.8 6.9, 90.0 16.6 0.8 6.9, 92.1 18.6 1.0 7.1, 95.2 18.0 14

7 1TYQb 0.3 27.1, 99.2 36.0 0.4 27.2, 101.4 36.6 0.1 47.8, 142.1 58.1 0.1 50.1, 143.4 59.6 8

8 2GC7b 1.0 6.9, 97.9 17.6 1.0 7.3, 94.2 17.6 0.8 12.4, 138.5 26.6 0.8 14.6, 132.8 27.4 6

NC, the number of components in the assembly; Test case, the PDB ID of the assemblies; BP, the best-predicted assembly with the lowest average Ca

RMSD from the native among 20 GA runs; BP after Flex-EM, the BP assembly obtained after performing Flex-EM refinement; HS, the highest-scoring

assembly among 20GA runs; HS after Flex-EM, the HS assembly obtained after performing Flex-EM refinement; TS, the topology score describing the

fraction of components placed correctly; APS, the assembly placement score describing the average shift in Angstroms and rotation in degrees

needed to superpose all the predicted components onto their corresponding native components; RMSD, the averageCaRMSD in Angstroms between

the predicted components and its corresponding native components; Rank of BP, the rank of the BP among 20 GA predictions based on the fitness

function value. See also Table S1.
aTest cases PDB: 1CS4, 2DQJ, and 1VCB represent asymmetric complexes. For the test cases PDB: 1GPQ and 2BBK, the biological unit is a tetramer

with C2 symmetry. For the test cases PDB: 1MDA and 1SGF, the biological unit is a hexamer with C2 symmetry. For PDB: 2GC7, the biological unit is a

tetramer with the asymmetric unit containing four biological units. For the purpose of the benchmark, we used two biological units, which has a total of

eight components.
bN-terminal residues have been removed in: PDB: 1MDA chains H and J (1–31), 2GC7 chains A and E (5–44), and PDB: 1TYQ chain G (11–27).

Please cite this article in press as: Pandurangan et al., g-TEMPy: Simultaneous Fitting of Components in 3D-EM Maps of Their Assembly Using a
Genetic Algorithm, Structure (2015), http://dx.doi.org/10.1016/j.str.2015.10.013
15 Å Resolution

For the BP assemblies calculated using targetmaps simulated at

15 Å resolution, the TS ranged between 0.4 and 1.0 (prior to

refinement, Table 1B). The value of the translation and the rota-

tion components of the APS ranged from 1.9 to 28.2 Å and 8.8� to
126.4�, respectively. The RMSD of the components of the BP as-

semblies ranged from 2.9 to 39.0 Å (Table 1B). In seven of the ten

cases, the BP assemblies identified by the GA had correct topol-

ogy (TS = 1.0, Table 1B). For the remaining three cases, the CPS

revealed that only the chain IDs of PDB: 1SGF (Y: 21.5 Å, 38.8�),
Structure 23, 1–12, December 1, 2015 ª2015 The Authors 5
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(Å
,
� )

R
M
S
D
(Å
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1TYQ (A: 47.7 Å, 128.2�; B: 45.0 Å, 158.4�; F: 46.9 Å, 153.0�; G:

46.4 Å, 102.3�) and 2GC7 (F: 23.3 Å, 75.4�; B: 18.0 Å, 149.3�; C:
36.4 Å, 150.6�; G: 29.8 Å, 154.2�) deviated considerably with

respect to the native (Table S1C). Similarly to the 10 Å case, in

50% of the examples (PDB: 1CS4, 2DQJ, 2BO9, 1GPQ, and

2BBK) the topology of the HS assemblies was correctly pre-

dicted, and in the case of PDB: 2DQJ it was also the BP assem-

bly (Table 1B). The BP assembly was found within the top five

ranks in six out of ten cases and in the top ten in eight of the

ten cases. For PDB: 2DQJ (for which the BP assembly is the

same as the HS assembly), notable improvement was observed

after Flex-EM refinement, with a decrease of RMSD from 2.9 to

0.7 Å (Table 1B). In all the cases at 15 Å resolution, the fitness

values of the native assemblies were always better than the pre-

dicted assemblies.

Following refinement, the value of the translation and the

rotation components of the APS for the BP assemblies ranged

from 0.6 to 28.5 Å and 1.7� to 129.5�, respectively (Figure 2B

and Table 1B). The RMSD from the native was reduced

from 3.0 to 2.3 Å for PDB: 1CS4, from 2.9 to 0.7 Å for PDB:

2DQJ, from 17.0 to 14.2 Å for PDB: 1VCB, from 6.1 to

5.4 for PDB: 2BO9, and from 17.9 to 16.6 Å for PDB: 1SGF

(Table 1B).

20 Å Resolution

For the BP assemblies calculated using target maps simulated

at 20 Å resolution, the TS ranged between 0.3 and 1.0 (prior to

refinement, Table 1C). The value of the translation and the rota-

tion components of the APS ranged from 1.5 to 27.1 Å and 13.9

to 101.5�, respectively (Table 1C). The RMSD of the BP assem-

blies ranged from 3.4 to 36.0 Å (Table 1C). In six of the ten cases,

the BP assemblies identified by the GA had correct topology

(TS = 1.0). For the other four cases the CPS revealed that the

chain IDs of PDB: 1VCB (B: 33.2 Å, 95.1� and C: 21.7 Å,

89.6�), PDB: 1MDA (M: 23.1 Å, 122.9�; L: 12.0 Å, 130.6�; B:
32.5 Å, 125.8�; A: 37.3 Å, 114.0�), PDB: 1SGF (Y: 19.5 Å,

161.0�), and PDB: 1TYQ (A: 33.0 Å, 97.3�; B: 37.8 Å, 97.5�; C:
38.9 Å, 86.4�; F: 21.4 Å, 124.7�; G: 51.0 Å, 178.1�) deviated
considerably with respect to the native (Table S1E). In four of

the ten cases (PDB: 2DQJ, 2BO9, 1GPQ, and 2BBK) the HS as-

semblies had the correct topology, and in the case of PDB:

2DQJ it was also the BP assembly (Table 1C). The BP assembly

was found within the top five ranks in four out of ten cases and in

the top ten in six of the ten cases. In all the cases at 20 Å reso-

lution, the fitness values of the native assemblies were always

better than the predicted assemblies.

Following Flex-EM refinement, the value of the translation and

the rotation components of the APS for the BP assemblies

ranged from 0.6 to 27.2 Å and 1.9� to 103.0�, respectively (Fig-

ure 2C and Table 1C). The RMSD of the BP assemblies PDB:

1CS4 and 2DQJ with respect to their corresponding native

structures was reduced significantly, from 5.0 to 2.6 Å and

from 3.4 to 0.7 Å, respectively (Table 1C).

Prediction Accuracy: Experimental Benchmark
Using experimental target maps, the TS of the BP and HS as-

semblies for all four cases were found to be 1.0 (prior to refine-

ment, Table 2). The value of the translation and the rotation

components of the APS ranged from 4.3 to 11.3 Å and 14.6�

to 21.0�, respectively (Table 2). In the case of the HS assembly
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Figure 2. Representative Test Cases from the Simulated Benchmark

(A) The structures of the native assemblies are shown with their PDB IDs.

(B–D) The best-predicted (BP) assemblies found in the 20 GA runs using 10 Å (B), 15 Å (C), and 20 Å (D) simulated maps are shown below their corresponding

native assemblies. The assembly placement score (APS) (translation in Angstroms and rotation in degrees) and the topology score (TS) are shown below each of

the BP assemblies.

Individual components of the assemblies are shown in cartoon representation with unique colors. The same coloring schemes are used for the individual

components of the native and the predicted assemblies.
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of PDB: 2P4N, only for chain A, the configuration considerably

deviated with respect to the native assembly. The translation

and rotation values of the CPS were 5.2 Å and 153.1�, respec-
tively (Table S2B). The RMSD of the BP assemblies ranged

from 6.3 to 13.7 Å (Table 2). The BP assembly was found within

the top five ranks in all four cases. It is also worth noting that, for

the symmetrical cases PDB: 4BIJ and 1GRU, the method identi-

fied near-native topologies for both the BP and HS assemblies

without the use of symmetry restraints. In all of these cases,

the fitness values of the native assemblies are always better

than the predicted assemblies.

Following Flex-EM refinement, the value of the translation and

the rotation components of the APS for the BP assemblies

ranged from 3.0 to 6.5 Å and 3.4� to 23.8�, respectively (Table

2 and Figure 3). The RMSD of the BP assemblies was reduced

in all cases: from 6.7 to 4.0 Å for PDB: 2P4N; from 6.3 to 3.2 Å

for PDB: 4A6J; from 13.7 to 6.8 Å for PDB: 4BIJ; and from 11.7

to 10.6 Å for PDB: 1GRU (Table 2).
Effects of VQ Feature Points on Prediction Accuracy
Each genotype (representing an assembly) in the initial popu-

lation is randomized based on the VQ feature-point set (see

Theory). To assess the effect of feature-point quality on our re-

sults, we calculated the similarity between each VQ feature-
point set (of each test case in our benchmarks) and the point

sets representing the component centroids calculated from

the corresponding native assembly (centroid point set). To

this end, we used the Hausdorff distance (HD) metric (Hutten-

locher et al., 1993). Given two finite point sets A and B, the HD

determines the degree of resemblance between them as

follows:

HDðA;BÞ=maxðhðA;BÞ; hðB;AÞÞ ; (Equation 3)

where

hðA;BÞ= max
a˛A

min
b˛B

dða;bÞ (Equation 4)

and d(a,b) is the Euclidean distance between points a and b.

Identical point sets will have HD = 0, and the HD will increase

with increasing dissimilarity.

Figure 4 shows that the relationship between the RMSD of the

BP assembly from the native assembly (before refinement) and

the HD between the VQ point set and the centroid point set

(HDVQ,centroid) is linearly correlated in all three resolutions, with

Pearson’s correlation coefficient of 0.84, 0.84, and 0.76 for 10,

15, and 20 Å resolution maps, respectively. Therefore, the ability

of the GA to identify near-native assemblies decreases with

increasing deviation between the native centroid point set and

the VQ point set (and this problem is likely to worsen with an
Structure 23, 1–12, December 1, 2015 ª2015 The Authors 7
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Figure 3. Representative Test Cases from

the Experimental Benchmark

(A) The experimental maps are shown with the

associated fits (native). The PDB ID, EMD acces-

sion number, and resolution of the map are shown

in the top row.

(B) The BP assemblies found in the 20 GA runs are

shown below their corresponding native assem-

blies. The APS (translation in Angstroms and

rotation in degrees) and the TS are shown below

each of the BP assemblies.

Individual components of the assemblies are

shown in cartoon representation with unique

colors. The same coloring schemes are used for

the individual components of the native and the

predicted assemblies.
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increasing number of components). In all cases where the HD

between the VQ points and the native centroid point set is less

than or equal to 5 Å, the RMSD of the BP assemblies was be-

tween 2.9 and 8.4 Å.

We next compared the feature points obtained by our VQ

method andGMFIT, which is based onGaussianmixture models

(GMM) (Kawabata, 2008) (Figure S1). For GMFIT (as in our VQ im-

plementation) the number of feature points calculated was set to

the number of components in the assembly. The Pearson’s cor-

relation coefficient between HDVQ,centroid and HDGMFIT,centroid

(HD between the GMFIT point set and centroid point set) was

0.44, 0.75, and 0.67 at resolutions 10, 15, and 20 Å, respectively,

showing that there is less agreement between the two methods

at 10 Å than at worse resolutions. The average HDVQ,centroid at 10,

15, and 20 Å resolution was 8.4, 10.3, and 10.2 Å, respectively,

and the average HDGMFIT,centroid was 9.2, 11.9, and 10.8 Å,

respectively.

Given the variations between the feature-point set obtained by

different methods, we expected that the likelihood of obtaining

better predictions could potentially be improved by using multi-

ple methods. To test this hypothesis, we ran the GA using the

feature-point set generated by GMFIT for the PDB: 1GRU case

(GroEL), with the experimental map (EMD-1046, Table 2) at res-

olution 23.5 Å. For this case, GMFIT approximated the positions

of the components of the native assembly better than VQ

(HDVQ,centroid = 10.7 Å and HDGMFIT,centroid = 1.4 Å). After running

20 GA predictions, the RMSD of both the HS and BP assemblies

was 4.9 Å, in comparison with 13.2 Å and 11.7 Å, respectively, for

our original prediction using VQ feature points (Figure 5A).

Next we examined a specific case, PDB: 1SGF, whereby both

methods performed badly (with high variation between the

feature points and the native centroids), resulting in bad assem-

bly predictions by the GA. In this case, HDVQ,centroid was 21.0,

21.0, and 19.8 Å and HDGMFIT,centroid was 18.7, 20.0, and

20.1 Å at 10, 15, and 20 Å resolution, respectively. Further anal-

ysis showed that the feature points calculated by both methods

approximated correctly the positions of the centroids in four

chains (A, G, X, and Z) for all three simulated resolutions (Fig-
8 Structure 23, 1–12, December 1, 2015 ª2015 The Authors
ure 5B, top panel). However, for the two

remaining chains (B and Y, which are

elongated and closely packed relative to

the other components in the assembly),
the VQ feature points did not approximate the corresponding

native centroid positions. The RMSD of the BP assembly starting

with VQ feature points (before Flex-EM refinement) was 16.7,

17.9, and 16.4 Å at 10, 15, and 20 Å resolution (Table 1). As a con-

trol experiment, we ran 20 GA runs for PDB: 1SGF, starting with

feature points calculated from the centroid positions of the native

components. The results improved considerably (without Flex-

EM refinement), with the HS (and the identical BP) assembly hav-

ing RMSD of 4.5, 4.9, and 5.2 Å for 10, 15, and 20 Å resolution,

respectively (Figure 5B, bottom panel).

Effect of Resolution on Prediction Accuracy
From the above results we found that the accuracy of themethod

depends strongly on the accuracy of the initial feature points. To

test the effect of map resolution on the prediction accuracy, we

ran 20 GAs on the simulated benchmark at 10 and 20 Å resolu-

tion considering the native centroids of the assembly compo-

nents as the starting positions.

For 10 Å resolution, the method was able to sample the native

configuration for all test cases (based on TS) (Table S3). For the

BP assembly, the value of the APS ranged from 0.1 to 0.4 Å

(translation) and 7.7� to 49.6� (rotation), respectively (Table

S3A). The RMSD of the BP assemblies ranged from 1.8 to

9.1 Å (Table S3A). In nine out of ten cases, the RMSD of the

BP assemblies was <5 Å. In all cases, the BP assemblies identi-

fied by the GA had correct topology (TS = 1.0), and the HS as-

semblies identified also had correct topology (Table S3A). The

BP assembly was found within the top five ranks in nine of the

ten cases.

At 20 Å resolution the performance did not deteriorate signifi-

cantly, with the method sampling the native configuration for all

test cases (Table S4). For the BP assembly, the value of the

translation and the rotation components of the APS ranged

from 0.1 to 0.4 Å and 7.0� to 77.4�, respectively (Table S4A).

The RMSD of the BP assemblies ranged from 1.7 to 11.4 Å (Table

S4A). In eight out of ten cases, the RMSD of the BP assemblies

was approximately <5 Å. In all cases, the BP assemblies identi-

fied by the GA had correct topology (TS = 1.0) and in all except



A B C

Figure 4. Effect of Feature-Point Set Generation by Vector Quantization on Prediction Accuracy

(A–C) The linear relationship between the average Ca RMSD of the BP assembly and HDVQ,centroid (Hausdorff distance between the VQ points set of the density

map and the point set calculated from the centroids of the native assembly components) is shown for 10 Å (A), 15 Å (B), and 20 Å (C) resolution maps.

Data points for the experimental cases PDB: 2P4N (resolution = 9.0 Å, shown as filled triangle) and PDB: 4A6J (resolution = 7.2 Å, shown as filled square) have

been added to (A). The data points for the experimental cases PDB: 4BIJ (resolution = 16.0 Å) and PDB: 1GRU (resolution = 23.5 Å), both shown as filled triangles,

have been added to (B) and (C), respectively. The best-fitting regression line (linear fit) along with the Pearson’s correlation coefficient (r) are indicated on the plots.

The gray data points are values based on the number of components in the assembly using a gray-scale gradient (shown at the bottom of the figure). See also

Figure S1.
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PDB: 2GC7, the identified HS assemblies also had correct topol-

ogy (Table S4A). The BP assembly was found within the top five

ranks in nine of the ten cases.

In general, given a better guess for the initial feature points,

the method is able to efficiently sample and rank the near-native

topologies at 10 and 20 Å resolutions, and is not significantly

affected by the difference in resolutions. For the ten cases

considered in the benchmark, the average translation and rota-

tion components of the APS for 10 Å resolution was 0.1 Å and

15.4�, respectively. The average translation and rotation compo-

nents for 20 Å resolution was 0.2 Å and 24.8�, respectively. The
results did, however, show more accurate predictions for

higher-resolution maps in terms of the orientation of the compo-

nents (especially in large assemblies containing globular com-

ponents). For example, in the case of PDB: 2GC7 at 20 Å

resolution, a near-native topology was obtained for the BP as-

sembly. However, the CPS score shows a large rotation of

chains C (170.0�), F (167.7�), and G (164.8�) with respect to their

position in native assembly (Table S4B) compared with the re-

sults obtained using 10 Å resolution (6.2�, 13.7�, and 13.0�,
respectively; Table S3B).

GA Convergence and Computation Time
The convergence of the GA is observed by plotting the value of

the fitness function of the fittest member (assembly configura-

tion) in the population at each of the 100 generations, along

with the variation in the population (Figure 6). On average, the

GA converged within 68, 83, and 82 generations at 10, 15, and

20 Å resolution, respectively (including the experimental cases

in Figure 6A–C). The results suggest that at a higher resolution

(10 Å) the convergence is typically faster, most likely due to the

fact that the scoring function has more discriminatory power.

CPU times for the 20 GA runs on the experimental benchmark

and the simulated 20 Å resolution maps was recorded (Fig-

ure S2). For every generation, the fitness function value of all
the members in the population (of size 160) was calculated in

parallel using 40 processing units (four members per processor).

All the calculations were performed on 2.6-GHz AMD proces-

sors. We found a strong linear correlation (0.92) between the

number of voxels in a given density map and the processing

time. In addition, the running time will also scale with the number

of generations and population size used. In this study the number

of generations and the population size was fixed for the whole

benchmark. All other parameters do not affect the running

time. The minimum, maximum, and average processing time to

generate 20 GA predictions (including the 20-Å simulated and

experimental benchmark) was �4, 49, and 17 hr, respectively,

and on average, one GA prediction takes about 50 min to

complete.

DISCUSSION

To better interpret 3D EMmaps of large macromolecular assem-

blies, in particular at low to intermediate resolutions, we have

developed a method for simultaneous density fitting of multiple

assembly components. To address such a complex optimization

problem (with a search space that exponentially increases in

relation to the number of components), only a handful of ap-

proaches have so far been developed with the EM density being

the only experimental information used (Kawabata, 2008; Lasker

et al., 2009, 2010; Zhang et al., 2010; Rusu and Birmanns, 2010;

Esquivel-Rodriguez and Kihara, 2012). Our method relies on a

GA to efficiently identify optimal solutions to the problem and,

to our knowledge, is the firstmethod to apply themutual informa-

tion as the goodness-of-fit score within the context of assembly

fitting. Based on the benchmark, we have tested and identified

optimum values for the GA parameters including the size of the

population, number of generations, and crossover and mutation

rates. Given these parameters, we demonstrated that the use of

a simple clash penalty score in a weighted combination with the
Structure 23, 1–12, December 1, 2015 ª2015 The Authors 9
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Figure 5. Effect of Feature-Point Set Gener-

ation by Different Methods on Prediction

Accuracy

(A) The BP assembly is shown for the experimental

case, PDB: 1GRU using VQ (left) and GMFIT (right)

feature-point set generated from the density map

at 23.5 Å resolution (EMD-1046). The BP assembly

obtained using GMFIT feature points is also the

highest-scoring assembly. The native fit (associ-

ated with the map) is colored in gray and the

components of the predicted assemblies are

colored uniquely. The values of the average Ca

RMSD from the native assembly and the TS are

shown at the bottom of the respective predictions.

(B) The first column shows the feature points (as

spheres) obtained using the centroids of the indi-

vidual components of the assembly PDB: 1SGF

(black), VQ (blue), and GMFIT (red) for the simu-

lated maps at resolution 10, 15, and 20 Å. The

native assemblies corresponding to the simulated

maps are shown as cartoons and colored in gray.

The second column shows the BP assembly by the

GA for the simulatedmaps at resolution 10, 15, and

20 Å using the VQ-based feature points. The third

column shows the BP (in this case, the BP as-

sembly is the HS assemblies) predicted by the GA

for the simulated maps at resolution 10, 15, and

20 Å using the centroid-based feature points. The

native assembly corresponding to the simulated

maps is colored gray and the components of the

predicted assemblies are colored uniquely. The

values of the average Ca RMSD from the native

assembly and the TS are shown at the bottom of

the respective predictions.
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goodness-of-fit score was sufficient to guide the sampling and

identify correct native topology. However, the method is, in prin-

ciple, flexible, and the user can modify the various parameters to

suite a specific case. In general, larger complexes (number of

components >8) may require bigger population sizes (>160)

and generations (>100). We also showed that predicted assem-

blies with an approximate RMSD <5 Å from the corresponding

native assembly can be further improved with Flex-EM refine-

ment. Naturally, the method has been more successful with a

lower number of components (three or four), but it has been

shown to identify correct configuration fits even with assem-

blies containing as many as eight components using a 20 Å

resolution map.

The potential energy landscape underlining the assembly-

fitting problem is very complex. To efficiently sample the huge

configurational space, we designed the method to focus the

search around the density feature points derived from the map.

Hence, the quality of the density feature points is crucial for the

success of the method. In this study we used a VQ technique

to derive density feature points from the map. Our method was

found to depend strongly on the density feature points used as
10 Structure 23, 1–12, December 1, 2015 ª2015 The Authors
input. However, generating feature points

that accurately represent the native cen-

troids of the assembly components can

be very challenging when proteins have

an elongated or narrow shape or are

closely packed in the assembly (e.g. in
the case of PDB: 1SGF). This issue has been observed in the

problem of density map segmentation (Pintilie et al., 2010). As

a proof of principle, we have shown that the accuracy of the

GA prediction tends to improve by using better approximations

for the feature points (here obtained using GMM). The limitation

of the method in identifying very accurate initial feature points

could be made less critical by, for example, running multiple

independent GA predictions using different feature-point sets

(obtained by different techniques) as well as crosstalk between

independent GA runs (to better explore the search space). These

variable feature points may help the GA to sample the new re-

gions of the conformational space and thus improve the likeli-

hood of obtaining native-like assembly fits. In fact, assuming

the native centroids of the assembly components as the starting

points, the method was able to find the native topologies for all

the simulated benchmarks at 10 and 20 Å resolution, with

RMSD of the BP assemblies less than �5 Å in more than 80%

of the cases.

Since the GA is non-deterministic, it is impossible to predict

the running time necessary to definitely produce a perfect solu-

tion. However, a trade-off can be achieved between a quicker
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Figure 6. Fitness Value Profile

The value of the fitness function for the fittest member in the population during theGA generations is shown for 10 Å (A), 15 Å (B), and 20 Å (C) resolutionmaps. The

fitness profile of the experimental cases PDB: 2P4N (resolution = 9.0 Å) and PDB: 4A6J (resolution = 7.2 Å) has been added to (A). The fitness profiles of the

experimental case PDB: 4BIJ (resolution = 16.0 Å) and PDB: 1GRU (resolution = 23.5 Å) have been added to (B) and (C), respectively. The profile for each case is

colored uniquely. The length of the error bar shown in each profile equals the SD of the fitness values of the population in any given generation. The fitness values

shown are normalized between 0 and 1 and the number of generations runs from 1 to 100. See also Figure S2.
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run time for less accurate results and a longer run time for more

accurate results by adjusting the population size and the number

of generations. A lower value for the population size and the

number of generations will produce quicker and less accurate

results. To further optimize the position and orientation of the

components, we used Flex-EM real-space refinement. The re-

finement showed improvement for most of the fits predicted,

with average CaRMSD less than or equal to�5 Å from the native

assembly, but failed to improve fits that were correctly placed

(based on TS) but oriented significantly differently from the native

(e.g. the case of PDB: 1MDA at 10 Å resolution). In the future, the

method will incorporate component flexibility to better interpret

the conformational difference between the complex map and

the individual components of the assembly as well as partial

fitting (if not all components are known). Additional improve-

ments could potentially be achieved by adding spatial restraints

from other experimental data (Amir et al., 2015; Russel et al.,

2012; van Zundert et al., 2015).

EXPERIMENTAL PROCEDURES

Refinement Using Flex-EM

To explore the possibility of further improving the results we added a refine-

ment step, which was applied only to the ‘‘best solutions.’’ From the prediction

of 20 independent GA solutions we define two best solutions, namely, the

best-predicted assembly (BP, the assembly with the lowest Ca RMSD from

the native) and the highest-scoring assembly (HS, the assembly with the high-

est fitness score). The BP and HS assemblies are subjected to a refinement

using Flex-EM (Topf et al., 2008). Each component in the assembly was

considered as a rigid body during the refinement. The number of MD cycles

was kept to five for the simulated benchmark. For the experimental bench-

mark, the number of Flex-EM refinement cycles was ten, because the number

of residues in those assemblies was approximately 2-fold larger than the simu-

lated benchmark.

Measures of Model Accuracy

The accuracy of the predictions was reported using the following three

metrics.

Topology Score

The Topology Score (TS) indicates the fraction of components that are posi-

tioned correctly. We first define a sphere around each component in the native

assembly. The center of the sphere is set to the center of mass (COM) of the
component. The radius of the sphere is set to the radius of gyration of the

component. We then consider a predicted component to be placed correctly

if its COM falls within its corresponding sphere of the native component.

Placement Scores

The accuracy of the position and rotation of each predicted component was

also calculated using the Component Placement Score (CPS, originally

called OS score) that describes the translation (in Angstroms) and the rota-

tion angle (in degrees) needed to superpose the predicted component onto

the corresponding native component (Lasker et al., 2009; Topf et al., 2008).

The Assembly Placement Score (APS) was defined as the average of all of

the CPS scores in the predicted assembly (Lasker et al., 2009).

RMSD

We calculated the average of the individual root-mean-square deviation

(RMSD) of the Ca atom positions of each component in the predicted assem-

bly from the corresponding Ca atom positions in the native component. For as-

semblies with two or more identical components, we identified the correspon-

dence between the predicted and the native component that gave the

minimum average Ca RMSD.
SUPPLEMENTAL INFORMATION

Supplemental Information includes two figures and four tables and can be

found with this article online at http://dx.doi.org/10.1016/j.str.2015.10.013.

AUTHOR CONTRIBUTIONS

Conceptualization: A.P.P., D.V., F.A., and M.T. Methodology: A.P.P., D.V.,

F.A., and M.T. Investigation: A.P.P. and M.T. Writing, original draft: A.P.P.

and M.T. Writing, review and editing: A.P.P., D.V., F.A., and M.T. Funding

acquisition: F.A. and M.T.

ACKNOWLEDGMENTS

We thank Dr. David Houldershaw for computer support. We thank Drs. Shihua

Zhang, Zachary Frazier, Irene Farabella, Agnel-Praveen Joseph, and the EM

group at Birkbeck for helpful discussions. The work was supported by the

MRC [G0600084, MR/N009614/1] (M.T.), Leverhulme Trust [RPG-2012-519]

(M.T.); BBSRC [BB/K01692X/1] (M.T.); the Arnold and Mabel Beckman foun-

dation (F.A.); PEW charitable trust (F.A.) and NIH [R01GM096089] (F.A.).

Received: June 12, 2015

Revised: September 24, 2015

Accepted: October 1, 2015

Published: November 19, 2015
Structure 23, 1–12, December 1, 2015 ª2015 The Authors 11

http://dx.doi.org/10.1016/j.str.2015.10.013


Please cite this article in press as: Pandurangan et al., g-TEMPy: Simultaneous Fitting of Components in 3D-EM Maps of Their Assembly Using a
Genetic Algorithm, Structure (2015), http://dx.doi.org/10.1016/j.str.2015.10.013
REFERENCES

Amir, N., Cohen, D., and Wolfson, H.J. (2015). DockStar: a novel ILP-based

integrative method for structural modeling of multimolecular protein com-

plexes. Bioinformatics 31, 2801–2807.

Arunachalam, J., Kanagasabai, V., and Gautham, N. (2006). Protein structure

prediction using mutually orthogonal Latin squares and a genetic algorithm.

Biochem. Biophys. Res. Commun. 342, 424–433.

Birmanns, S., Rusu, M., and Wriggers, W. (2011). Using sculptor and situs for

simultaneous assembly of atomic components into low-resolution shapes.

J. Struct. Biol. 173, 428–435.

Chacon, P., Diaz, J.F., Moran, F., and Andreu, J.M. (2000). Reconstruction of

protein formwith X-ray solution scattering and a genetic algorithm. J.Mol. Biol.

299, 1289–1302.

Cheng, Y. (2015). Single-particle cryo-EM at crystallographic resolution. Cell

161, 450–457.

Contreras-Moreira, B., Fitzjohn, P.W., Offman, M., Smith, G.R., and Bates,

P.A. (2003). Novel use of a genetic algorithm for protein structure prediction:

searching template and sequence alignment space. Proteins 53 (Suppl 6 ),

424–429.

Elmlund, D., and Elmlund, H. (2015). Cryogenic electron microscopy and sin-

gle-particle analysis. Annu. Rev. Biochem. 84, 499–517.

Esquivel-Rodriguez, J., and Kihara, D. (2012). Fitting multimeric protein com-

plexes into electron microscopy maps using 3D Zernike descriptors. J. Phys.

Chem. B 116, 6854–6861.

Esquivel-Rodriguez, J., and Kihara, D. (2013). Computational methods for con-

structing protein structure models from 3D electron microscopy maps.

J. Struct. Biol. 184, 93–102.

Farabella, I., Vasishtan, D., Joseph, A.P., Pandurangan, A.P., Shahota, H., and

Topf, M. (2015). TEMPy: a python library for assessment of 2D electron micro-

scopy density fits. J. Appl. Crystallogr. 48, 1314–1323.

Gardiner, E.J., Willett, P., and Artymiuk, P.J. (2003). GAPDOCK: a genetic al-

gorithm approach to protein docking in CAPRI round 1. Proteins 52, 10–14.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and

Machine Learning (Addison-Wesley).

Huttenlocher,D.P.,Klanderman,G.A., andRucklidge,W.J. (1993).Comparing im-

ages using the Hausdorff distance. IEEE Trans. Pattern Anal Mach Intell. 15, 14.

John, B., and Sali, A. (2003). Comparative protein structure modeling by iter-

ative alignment, model building and model assessment. Nucleic Acids Res.

31, 3982–3992.

Kawabata, T. (2008). Multiple subunit fitting into a low-resolution density map

of a macromolecular complex using a gaussian mixture model. Biophys. J. 95,

4643–4658.

Lander, G.C., Saibil, H.R., and Nogales, E. (2012). Go hybrid: EM, crystallog-

raphy, and beyond. Curr. Opin. Struct. Biol. 22, 627–635.

Lasker, K., Topf, M., Sali, A., and Wolfson, H.J. (2009). Inferential optimization

for simultaneous fitting of multiple components into a CryoEMmap of their as-

sembly. J. Mol. Biol. 388, 180–194.
12 Structure 23, 1–12, December 1, 2015 ª2015 The Authors
Lasker, K., Sali, A., andWolfson, H.J. (2010). Determining macromolecular as-

sembly structures by molecular docking and fitting into an electron density

map. Proteins 78, 3205–3211.

Lawson, C.L., Baker, M.L., Best, C., Bi, C., Dougherty,M., Feng, P., vanGinkel,

G., Devkota, B., Lagerstedt, I., Ludtke, S.J., et al. (2011). EMDataBank.org: uni-

fied data resource for CryoEM. Nucleic Acids Res. 39, D456–D464.

Mitchell, M. (1996). An Introduction to Genetic Algorithms (MIT Press).

Pintilie, G.D., Zhang, J., Goddard, T.D., Chiu, W., and Gossard, D.C. (2010).

Quantitative analysis of cryo-EM density map segmentation by watershed

and scale-space filtering, and fitting of structures by alignment to regions.

J. Struct. Biol. 170, 427–438.

Roseman, A.M. (2000). Docking structures of domains into maps from cryo-

electron microscopy using local correlation. Acta Crystallogr. D Biol.

Crystallogr. 56, 1332–1340.

Russel, D., Lasker, K., Webb, B., Velazquez-Muriel, J., Tjioe, E., Schneidman-

Duhovny, D., Peterson, B., and Sali, A. (2012). Putting the pieces together:

integrative modeling platform software for structure determination of macro-

molecular assemblies. PLoS Biol. 10, e1001244.

Rusu, M., and Birmanns, S. (2010). Evolutionary tabu search strategies for the

simultaneous registration of multiple atomic structures in cryo-EM reconstruc-

tions. J. Struct. Biol. 170, 164–171.

Shoemake, K. (1992). Uniform random rotations. In Graphics Gems III, D. Kirk,

ed. (Academic Press), pp. 124–132.

Thalassinos, K., Pandurangan, A.P., Xu, M., Alber, F., and Topf, M. (2013).

Conformational states of macromolecular assemblies explored by integrative

structure calculation. Structure 21, 1500–1508.

Topf, M., Lasker, K., Webb, B., Wolfson, H., Chiu, W., and Sali, A. (2008).

Protein structure fitting and refinement guided by cryo-EM density. Structure

16, 295–307.

van Zundert, G.C., Melquiond, A.S., and Bonvin, A.M. (2015). Integrative

modeling of biomolecular complexes: HADDOCKingwith cryo-electronmicro-

scopy data. Structure 23, 949–960.

Vasishtan, D., and Topf, M. (2011). Scoring functions for cryoEMdensity fitting.

J. Struct. Biol. 174, 333–343.

Villa, E., and Lasker, K. (2014). Finding the right fit: chiseling structures out of

cryo-electron microscopy maps. Curr. Opin. Struct. Biol. 25, 118–125.

Wriggers, W., Milligan, R.A., andMcCammon, J.A. (1999). Situs: a package for

docking crystal structures into low-resolution maps from electronmicroscopy.

J. Struct. Biol. 125, 185–195.

Zeev-Ben-Mordehai, T., Vasishtan, D., Siebert, C.A., Whittle, C., and

Grunewald, K. (2014). Extracellular vesicles: a platform for the structure deter-

mination of membrane proteins by cryo-EM. Structure 22, 1687–1692.

Zhang, S., Vasishtan, D., Xu, M., Topf, M., and Alber, F. (2010). A fast mathe-

matical programming procedure for simultaneous fitting of assembly compo-

nents into cryoEM density maps. Bioinformatics 26, i261–268.

http://refhub.elsevier.com/S0969-2126(15)00452-9/sref1
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref1
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref1
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref2
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref2
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref2
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref3
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref3
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref3
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref4
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref4
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref4
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref5
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref5
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref6
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref6
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref6
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref6
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref6
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref7
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref7
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref8
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref8
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref8
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref9
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref9
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref9
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref10
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref10
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref10
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref11
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref11
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref12
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref12
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref13
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref13
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref14
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref14
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref14
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref15
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref15
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref15
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref16
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref16
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref17
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref17
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref17
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref18
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref18
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref18
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref19
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref19
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref19
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref20
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref21
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref21
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref21
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref21
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref22
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref22
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref22
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref23
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref23
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref23
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref23
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref24
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref24
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref24
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref25
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref25
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref26
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref26
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref26
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref27
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref27
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref27
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref28
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref28
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref28
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref29
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref29
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref30
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref30
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref31
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref31
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref31
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref32
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref32
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref32
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref33
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref33
http://refhub.elsevier.com/S0969-2126(15)00452-9/sref33

	STFODE3308_proof.pdf
	γ-TEMPy: Simultaneous Fitting of Components in 3D-EM Maps of Their Assembly Using a Genetic Algorithm
	Introduction
	Results
	Theory
	Sampling Using GA
	Genotype Encoding
	Generation of Initial Population
	Generation of New Population
	Selection Scheme and Termination

	Fitness Function
	Benchmark
	Prediction Accuracy: Simulated Benchmark
	10 Å Resolution
	15 Å Resolution
	20 Å Resolution

	Prediction Accuracy: Experimental Benchmark
	Effects of VQ Feature Points on Prediction Accuracy
	Effect of Resolution on Prediction Accuracy
	GA Convergence and Computation Time

	Discussion
	Experimental Procedures
	Refinement Using Flex-EM
	Measures of Model Accuracy
	Topology Score
	Placement Scores
	RMSD


	Supplemental Information
	Author Contributions
	Acknowledgments
	References



