
Undefined 0 (2015) 1–0 1
IOS Press

Flexible Query Processing for SPARQL
Editor(s): Christina Unger, Universität Bielefeld, Germany; Axel-Cyrille Ngonga Ngomo, Universität Leipzig, Germany;
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Abstract. Flexible querying techniques can enhance users’ access to complex, heterogeneous datasets in settings
such as Linked Data, where the user may not always know how a query should be formulated in order to retrieve
the desired answers. This paper presents query processing algorithms for a fragment of SPARQL 1.1 incorporating
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1. Introduction

Flexible querying techniques have the poten-
tial to enhance users’ access to complex, hetero-
geneous datasets. In particular, users querying
Linked Data may lack full knowledge of the struc-
ture of the data, its irregularities, and the URIs
used within it. Moreover, the schemas and URIs
used can also evolve over time. This makes it dif-
ficult for users to formulate queries that precisely
express their information retrieval requirements.
Hence, providing users with flexible querying ca-
pabilities is desirable.

SPARQL is the predominant language for query-
ing RDF data and, in the latest extension of
SPARQL 1.1, it supports property path queries
(i.e. regular path queries) over the RDF graph.
However, it does not support notions of query ap-
proximation and relaxation (apart from the OP-
TIONAL operator).

Example 1. Suppose a user wishes to find events
that took place in London on 15th September 1940
and poses the following query on the YAGO knowl-
edge base1, which is derived from multiple sources
such as Wikipedia, WordNet and GeoNames:

(x, on, “15/09/1940”) AND (x, in, “London”)

(The above is not a complete SPARQL query, but
is sufficient to illustrate the problem we address.)
This query returns no results because there are no
property edges named “on” or “in” in YAGO.

Approximating “on” by “happenedOnDate” and
“in” by “happenedIn” (which do appear in YAGO)
gives the following query:

(x, happenedOnDate, “15/09/1940”) AND
(x, happenedIn, “London”)

1http://www.mpi-inf.mpg.de/yago-naga/yago/
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This still returns no answers, since “happened-
In” does not connect event instances directly to
literals such as “London”. However, relaxing now
(x, happenedIn, “London”) to (x, type,Event),
using knowledge encoded in YAGO that the do-
main of “happenedIn” is Event, will return all
events that occurred on 15th September 1940, in-
cluding those occurring in London. In this partic-
ular instance only one answer is returned which
is the event “Battle of Britain”, but other events
could in principle have been returned. So the query
exhibits better recall than the original query, but
possibly low precision.

Alternatively, instead of relaxing the second
triple above, another approximation step can be
applied to it, inserting the property “label” that
connects URIs to their labels and yielding the fol-
lowing query:

(x, happenedOnDate, “15/09/1940”) AND
(x, happenedIn/label, “London”)

This query now returns the only event that oc-
curred on 15th September 1940 in London, that
is “Battle of Britain”. It exhibits both better recall
than the original query and also high precision.

Example 2. Suppose the user wishes to find the
geographic coordinates of the “Battle of Waterloo”
event by posing the query

(〈Battle of Waterloo〉,
happenedIn/(hasLongitude|hasLatitude), x).

in which angle brackets delimit a URI. We see
that this query uses the property paths exten-
sion of SPARQL, specifically the concatenation (/)
and disjunction (|) operators. In the query, the
property “happenedIn” is concatenated with either
“hasLongitude” or “hasLatitude”, thereby finding
a connection between the event and its location (in
our case Waterloo), and from the location to both
its coordinates.

This query does not return any answers from
YAGO since YAGO does not store the geographic
coordinates of Waterloo. However, by applying an
approximation step, we can insert “isLocatedIn”
after “happenedIn” which connects the URI repre-
senting Waterloo with the URI representing Bel-
gium. The resulting query is

Battle of Waterloo, happenedIn/isLocatedIn/
(hasLongitude|hasLatitude), x.

This query returns 16 answers that may be rele-
vant to the user, since YAGO does store the geo-
graphic coordinates of some (unspecified) locations
in Belgium, increasing recall but with possibly low
precision.

Moreover, YAGO does in fact store directly the
coordinates of the “Battle of Waterloo” event, so
if we apply an approximation step that deletes
the property “happenedIn”, instead of adding “is-
LocatedIn”, the resulting query

(〈Battle of Waterloo〉,
(hasLongitude|hasLatitude), x)

returns the desired answers, showing both high pre-
cision and high recall

In this paper we describe an extension of a frag-
ment of SPARQL 1.1 with query approximation
and query relaxation operations that automati-
cally generate rewritten queries such as those il-
lustrated in the above examples, calling the ex-
tended language SPARQLAR. We first presented
SPARQLAR in [5], focussing on its syntax, se-
mantics and complexity of query answering. We
showed that the introduction of the query ap-
proximation and query relaxation operators does
not increase the theoretical complexity of the lan-
guage, and we provided complexity bounds for sev-
eral language fragments. In this paper, we review
and extend these results to a larger SPARQL lan-
guage fragment. We also explore in more detail the
theoretical and performance aspects of our query
processing algorithms for SPARQLAR, examining
their correctness and termination properties, and
presenting the results of a performance study over
the YAGO dataset.

The rest of the paper is structured as fol-
lows. Section 2 describes related work on flex-
ible querying for the Semantic Web, and on
query approximation and relaxation more gener-
ally. Section 3 presents the theoretical founda-
tion of our approach, summarising the syntax, se-
mantics and complexity of SPARQLAR. Section 4
presents in detail our query processing approach
for SPARQLAR, which is based on query rewrit-
ing. We present our query processing algorithms,
and formally show the soundness and complete-
ness of our query rewriting algorithm, as well as
its termination. We include a discussion in Sec-
tion 4.4 on how users may be helped in formulating
queries and interpreting results in a system which
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includes query approximation and relaxation. Sec-
tion 5 presents and discusses the results of a per-
formance study over the YAGO dataset. Finally,
Section 6 gives our concluding remarks and direc-
tions for further work.

2. Related work

There have been several previous proposals for
applying flexible querying to the Semantic Web,
mainly employing similarity measures to retrieve
additional answers of possible relevance. For ex-
ample, in [10] matching functions are used for con-
stants such as strings and numbers, while in [14]
an extension of SPARQL is developed called iS-
PARQL which uses three different matching func-
tions to compute string similarity. In [7], the struc-
ture of the RDF data is exploited and a similarity
measurement technique is proposed which matches
paths in the RDF graph with respect to the query.
Ontology-driven similarity measures are proposed
in [12,11,20] which use the RDFS ontology to re-
trieve extra answers and assign a score to them.

In [8] methods for relaxing SPARQL-like triple
pattern queries automatically are presented. Query
relaxations are produced by means of statistical
language models for structured RDF data and
queries. The query processing algorithms merge
the results of different relaxations into a unified
results list.

Recently, a fuzzy approach has been proposed
to extend the XPath query language with the
aim of providing mechanisms to assign priorities
to queries and to rank query answers [2]. These
techniques are based on fuzzy extensions of the
Boolean operators.

Flexible querying approaches for SQL have been
discussed in [21] where the authors describe a sys-
tem that enables a user to issue an SQL aggrega-
tion query, see results as they are produced, and
adjust the processing as the query runs. This ap-
proach allows users to write flexible queries con-
taining linguistic terms, observe the progress of
their aggregation queries, and control execution on
the fly.

An approximation technique for conjunctive
queries on probabilistic databases has been investi-
gated in [9]. The authors use propositional formu-
las for approximating the queries. Formulas and
queries are connected in the following way: given

an input database where every tuple is annotated
by a distinct variable, each tuple t in the query
answer is annotated by a formula over the input
tuples that contributed to t.

Another flexible querying technique for rela-
tional databases is described in [4]. The authors
present an extension to SQL (Soft-SQL) which
permits so-called soft conditions. Such conditions
tolerate degrees of under-satisfaction of a query by
exploiting the flexibility offered by fuzzy set the-
ory.

In [18] the authors show how a conjunctive reg-
ular path query language can be effectively ex-
tended with approximation and relaxation tech-
niques, using similar notions of approximation and
relaxation as we use here. Finally, in [23] the au-
thors describe and provide technical details of the
implementation of a flexible querying evaluator
for conjunctive regular path queries, extending the
work in [18].

In contrast to all the above work, our focus
is on the SPARQL 1.1 language. In [5] we ex-
tended, for the first time, a fragment of this lan-
guage with query approximation and query relax-
ation operators, terming the extended language
SPARQLAR. Here, we add the UNION operator
to SPARQLAR and derive additional complexity
results. Moreover, we present in detail our query
processing algorithms for SPARQLAR. Our query
processing approach is based on query rewrit-
ing, whereby we incrementally generate a set of
SPARQL 1.1 queries from the original SPARQLAR

query, evaluate these queries using existing tech-
nologies, and return answers ranked according to
their “distance” from the original query. We ex-
amine the correctness and termination properties
of our query rewriting algorithm and we present
the results of a performance study on the YAGO
dataset.

3. Theoretical Foundation

In this section we give definitions of the syntax
and semantics of SPARQLAR summarising and ex-
tending the syntax and semantics from [5], and
also the complexity results from that paper. We
begin with some necessary definitions.

Definition 1 (Sets, triples and variables). We as-
sume pairwise disjoint infinite sets U and L of
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URIs and literals, respectively. An RDF triple is
a tuple 〈s, p, o〉 ∈ U × U × (U ∪ L), where s is
the subject, p the predicate and o the object of the
triple. We assume also an infinite set V of vari-
ables that is disjoint from U and L. We abbreviate
any union of the sets U , L and V by concatenating
their names; for instance, UL = U ∪ L.

Note that in the above definition we modify the
definition of triples from [16] by omitting blank
nodes, since their use is discouraged for Linked
Data because they represent a resource without
specifying its name and are identified by an ID
which may not be unique in the dataset [3].

Definition 2 (RDF-Graph). An RDF-Graph G is
a directed graph (N,D,E) where: N is a finite set
of nodes such that N ⊂ UL; D is a finite set of
predicates such that D ⊂ U ; E is a finite set of la-
belled, weighted edges of the form 〈〈s, p, o〉, c〉 such
that the edge source (subject) s ∈ N ∩ U , the edge
target (object) o ∈ N , the edge label p ∈ D and the
edge weight c is a non-negative number.

Note that, in the above definition, we modify
the definition of an RDF-Graph from [16] to add
weights to the edges, which are needed to for-
malise our flexible querying semantics. Initially,
these weights are all 0.

We next define the ontology of an RDF dataset,
using a fragment of the RDF-Schema (RDFS) vo-
cabulary.

Definition 3 (Ontology). An ontology K is a di-
rected graph (NK , EK) where each node in NK
represents either a class or a property, and each
edge in EK is labelled with a symbol from the
set {sc, sp, dom, range}. These edge labels encom-
pass a fragment of the RDFS vocabulary, namely
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain
and rdfs:range, respectively.

In an RDF-graph G = (N,D,E), we assume
that each node in N represents an instance or a
class and each edge in E a property (even though,
more generally, RDF does not distinguish between
instances, classes and properties; in fact, in RDF
it is possible to use a property as a node of the
graph). The predicate type representing the RDF
vocabulary rdf:type, can be used in E to connect
an instance of a class to a node representing that
class. In an ontology K = (NK , EK), each node in
NK represents a class (a “class node”) or a prop-

erty (a “property node”). The intersection of N
and NK is contained in the set of class nodes of
NK . D is contained in the set of property nodes
of NK .

Definition 4 (Triple pattern). A triple pattern is a
tuple 〈x, z, y〉 ∈ UV × UV × UV L. Given a triple
pattern 〈x, z, y〉, var(〈x, z, y〉) is the set of vari-
ables occurring in it.

Note that again we modify the definition from
[16] to exclude blank nodes.

Definition 5 (Mapping). A mapping µ from ULV
to UL is a partial function µ : ULV → UL. We
assume that µ(x) = x for all x ∈ UL, i.e. µ maps
URIs and literals to themselves. The set var(µ)
is the subset of V on which µ is defined. Given a
triple pattern 〈x, z, y〉 and a mapping µ such that
var(〈x, z, y〉) ⊆ var(µ), µ(〈x, z, y〉) is the triple
obtained by replacing the variables in 〈x, z, y〉 by
their image according to µ.

3.1. Syntax of SPARQLAR queries

Definition 6 (Regular expression pattern). A reg-
ular expression pattern P ∈ RegEx(U) is defined
as follows:

P := ε | | p | (P1|P2) | (P1/P2) | P ∗

where P1, P2 ∈ RegEx(U) are also regular ex-
pression patterns, ε represents the empty pattern,
p ∈ U and is a symbol that denotes the disjunc-
tion of all URIs in U .

This definition of regular expression patterns is
the same as that in [6]. Our query pattern syn-
tax is also based on that of [6], but includes also
our query approximation and relaxation operators
APPROX and RELAX.

Definition 7 (Query Pattern). A SPARQLAR

query pattern Q is defined as follows:

Q := UV ×UV ×UV L | UV ×RegEx(U)×UV L |
Q1 AND Q2 | Q1 UNION Q2 | Q FILTER R |

RELAX(UV ×RegEx(U)× UV L) |
APPROX(UV ×RegEx(U)× UV L)

where R is a SPARQL built-in condition and Q1,
Q2 are also query patterns. We denote by var(Q)
the set of all variables occurring in a query pattern
Q.
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(In the W3C SPARQL syntax, a dot (.) is used
for conjunction but, for greater clarity, we use
AND instead. Note also that ε and cannot be
specified in property paths in SPARQL 1.1.)

A SPARQLAR query has the form SELECT−→w
WHERE Q, with −→w ⊆ var(Q). We may omit here
the keyword WHERE for simplicity. Given Q′ =
SELECT−→wQ, the head of Q′, head(Q′), is −→w if
−→w 6= ∅ and var(Q) otherwise.

3.2. Semantics of SPARQLAR queries

We extend the semantics of SPARQL with reg-
ular expression query patterns given in [6] in or-
der to handle the weight/cost of edges in an RDF-
Graph and the cost of applying the approximation
and relaxation operators. These costs are used to
rank the answers. In particular, when we introduce
the APPROX and RELAX operators below these
costs determine the ranking of answers returned
to the user, with exact answers (of cost 0) being
returned first, followed by answers with increasing
costs.

We extend the notion of SPARQL query evalua-
tion from returning a set of mappings to returning
a set of pairs of the form 〈µ, c〉, where µ is a map-
ping and c is a non-negative integer that indicates
the cost of the answers arising from this mapping.

Two mappings µ1 and µ2 are said to be compat-
ible if ∀x ∈ var(µ1)∩var(µ2), µ1(x) = µ2(x). The
union of two mappings µ = µ1 ∪ µ2 can be com-
puted only if µ1 and µ2 are compatible. The result-
ing µ is a mapping such that var(µ) = var(µ1) ∪
var(µ2) and: for each x in var(µ1) ∩ var(µ2), we
have µ(x) = µ1(x) = µ2(x); for each x in var(µ1)
but not in var(µ2), we have µ(x) = µ1(x); and
for each x in var(µ2) but not in var(µ1), we have
µ(x) = µ2(x).

We finally define the union and join of two sets
of query evaluation results, M1 and M2:

M1 ∪M2 = {〈µ, c〉 | 〈µ, c1〉 ∈ M1 or 〈µ, c2〉 ∈
M2 with c = c1 if @c2.〈µ, c2〉 ∈ M2, c = c2
if @c1.〈µ, c1〉 ∈ M1, and c = min(c1, c2)
otherwise}.
M1 onM2 = {〈µ1∪µ2, c1 + c2〉 | 〈µ1, c1〉 ∈M1

and 〈µ2, c2〉 ∈M2 with µ1 and µ2 compatible
mappings}.

3.2.1. Exact Semantics
The semantics of a triple pattern t that may

include a regular expression pattern as its second

component, with respect to a graph G, denoted
[[t]]G, is defined recursively as follows:

[[〈x, ε, y〉]]G = {〈µ, 0〉 | var(µ) = var(〈x, ε, y〉)

∧ ∃c ∈ N . µ(x) = µ(y) = c}

[[〈x, z, y〉]]G = {〈µ, c〉 | var(µ) =

var(〈x, z, y〉) ∧ 〈µ(〈x, z, y〉), c〉 ∈ E}

[[〈x, P1|P2, y〉]]G = [[〈x, P1, y〉]]G ∪ [[〈x, P2, y〉]]G
[[〈x, P1/P2, y〉]]G = [[〈x, P1, z〉]]G on

[[〈z, P2, y〉]]G
[[〈x, P ∗, y〉]]G = [[〈x, ε, y〉]]G ∪ [[〈x, P, y〉]]G∪⋃

n≥1

{〈µ, c〉 | 〈µ, c〉 ∈ [[〈x, P, z1〉]]G

on [[〈z1, P, z2〉]]G on · · · on [[〈zn, P, y〉]]G}

where P , P1, P2 are regular expression patterns,
x, y, z are in ULV , and z, z1, . . . , zn are fresh vari-
ables.

A mapping satisfies a condition R, denoted µ |=
R, as follows:

R is x = a: µ |= R if x ∈ var(µ), a ∈ LU and
µ(x) = a;
R is x = y: µ |= R if x, y ∈ var(µ) and µ(x) =
µ(y);
R is isURI(x): µ |= R if x ∈ var(µ) and
µ(x) ∈ U ;
R is isLiteral(x): µ |= R if x ∈ var(µ) and
µ(x) ∈ L;
R is R1 ∧R2: µ |= R if µ |= R1 and µ |= R2;
R is R1 ∨R2: µ |= R if µ |= R1 or µ |= R2;
R is ¬R1: µ |= R if it is not the case that
µ |= R1;

The overall semantics of queries (excluding AP-
PROX and RELAX) is as follows, where Q, Q1,
Q2 are query patterns and the projection opera-
tor π−→w selects only the subsets of the mappings
relating to the variables in −→w :

[[Q1 AND Q2]]G = [[Q1]]G on [[Q2]]G

[[Q1 UNION Q2]]G = [[Q1]]G ∪ [[Q2]]G

[[Q FILTER R]]G = {〈µ, c〉 ∈ [[Q]]G | µ |= R}

[[SELECT−→wQ]]G = π−→w ([[Q]]G)
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We will omit the SELECT keyword from a query
Q if −→w = vars(Q).

3.2.2. Query Relaxation
Our relaxation operator is based on that in [18]

and relies on a fragment of the RDFS entailment
rules known as ρDF [15]. An RDFS graph K1 en-
tails an RDFS graph K2, denoted K1 |=RDFS K2,
if K2 can be derived by applying the rules in Fig-
ure 1 iteratively to K1. For the fragment of RDFS
that we consider, K1 |=RDFS K2 if and only if
K2 ⊆ cl(K1), with cl(K1) being the closure of the
RDFS Graph K1 under these rules. Notice that if
K1 is finite then also cl(K1) is finite.

Applying a rule means adding a triple that is de-
ducible by the rule to G or K. Specifically, if there
are two triples t, t′ that match the antecedent of
a rule, then it is possible to insert the triple im-
plied by the consequent of the rule. For example,
the triple pattern 〈x, startsExistingOnDate, y〉
can be deduced from 〈x,wasBornOnDate, y〉 and
〈wasBornOnDate, sp, startsExistingOnDate〉by
applying rule 2.

In order to apply relaxation to queries, the ex-
tended reduction of an ontology K is required [13].
Given an ontology K, its extended reduction
extRed(K) is computed as follows: (i) compute
cl(K); (ii) apply the rules of Figure 2 in reverse
until no more rules can be applied (after applying
this step the ontology generated is unique); (iii)
apply rules 1 and 3 of Figure 1 in reverse until no
more rules can be applied2.

Applying a rule in reverse means removing a
triple deducible by the rule from G or K. Specif-
ically, if there are two triples t and t′ that match
the antecedent of a rule then it is possible to re-
move a triple that can be derived from t and t′ by
that rule.

Henceforth, we assume that K = extRed(K),
which allows direct relaxations to be applied to
queries (see below), corresponding to the ‘smallest’
relaxation steps. This is necessary for associating
an unambiguous cost to queries, so that query an-

2In order to generate a unique extended reduction we al-

ter step (iii) of the procedure in [13] as follows: for every
pair of triples (a, sp, b), (b, sp, c) (or (a, sc, b), (b, sc, c) re-
spectively) in K, apply rule 1 (rule 3) of Figure 1 in reverse
unless there exists a URI d such that (c, sp, d) and (a, sp, d)

((c, sc, d) and (a, sc, d)) are also contained in K. We thank
one of the reviewers for pointing out that, without such an
extra condition, the extended reduction may not be unique.

swers can then be returned to users incrementally
in order of increasing cost.

If we did not use the extended reduction of
the ontology K, then the relaxation steps ap-
plied would not necessarily be the “smallest”.
For example, consider the following ontology
K = {(b, dom, c), (a, sp, b), (a, dom, c)}, where
K 6= extRed(K). If we relax the triple pattern
(x, a, y) with respect to K, then as a first step we
could apply rule 5 to generate (x, type, c). How-
ever, the same triple pattern can be generated with
2 steps of relaxation by applying rule 1 first and
then rule 5 of Figure 1.

As a further condition, we require that the on-
tology K is acyclic in order for relaxed queries to
have unambiguous costs (a detailed analysis can
be found in [13]).

Example 3. Given the following cyclic ontology
K = (〈a, sp, b〉, 〈b, sp, a〉, 〈a, dom, c〉, 〈b, dom, c〉)
then cl(K) = K ∪ (〈a, sp, a〉, 〈b, sp, b〉). By apply-
ing steps (ii) and (iii) above we could generate
two possible ontologies K ′ = (〈a, sp, b〉, 〈b, sp, a〉,
〈b, dom, c〉) and K ′′ = (〈a, sp, b〉, 〈b, sp, a〉,
〈a, dom, c〉) that are extended reductions of K.

Consider now the query Q = RELAX(x, a, y)
which can be relaxed to (x, b, y) with K ′. Applying
a second step of relaxation we obtain (x, type, c).
If instead we used ontology K ′′, a first step of re-
laxation would immediately generate (x, type, c).
Therefore, having non-acyclic ontologies might
generate the same triple pattern at two different
relaxation distances from the original triple pat-
tern, depending on the reduced ontology.

Following the terminology of [13], a triple pat-
tern 〈x, p, y〉 directly relaxes to a triple pattern
〈x′, p′, y′〉 with respect to an ontology K =
extRed(K), denoted 〈x, p, y〉 ≺i 〈x′, p′, y′〉, if
vars(〈x, p, y〉) = vars(〈x′, p′, y′〉) and 〈x′, p′, y′〉
is derived from 〈x, p, y〉 by applying rule i from
Figure 1.

A triple pattern 〈x, p, y〉 relaxes to a triple pat-
tern 〈x′, p′, y′〉, denoted 〈x, p, y〉 ≤K 〈x′, p′, y′〉, if
starting from 〈x, p, y〉 there is a sequence of direct
relaxations that derives 〈x′, p′, y′〉. The relaxation
cost of deriving 〈x, p, y〉 from 〈x′, p′, y′〉, denoted
rcost(〈x, p, y〉, 〈x′, p′, y′〉), is the minimum cost of
applying such a sequence of direct relaxations.

The semantics of the RELAX operator in
SPARQLAR are as follows:

[[RELAX(x, p, y)]]G,K = [[〈x, p, y〉]]G∪
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Subproperty (1)
(a, sp, b)(b, sp, c)

(a, sp, c)
(2)

(a, sp, b)(x, a, y)

(x, b, y)

Subclass (3)
(a, sc, b)(b, sc, c)

(a, sc, c)
(4)

(a, sc, b)(x, type, a)

(x, type, b)

Typing (5)
(a, dom, c)(x, a, y)

(x, type, c)
(6)

(a, range, d)(x, a, y)

(y, type, d)

Fig. 1. RDFS entailment rules

(e1)
(b, dom, c)(a, sp, b)

(a, dom, c)
(e2)

(b, range, c)(a, sp, b)

(a, range, c)

(e3)
(a, dom, b)(b, sc, c)

(a, dom, c)
(e4)

(a, range, b)(b, sc, c)

(a, range, c)

Fig. 2. Additional rules for extended reduction of an RDFS ontology

{〈µ, c+ rcost(〈x, p, y〉, 〈x′, p′, y′〉)〉 |

〈x, p, y〉 ≤K 〈x′, p′, y′〉∧

〈µ, c〉 ∈ [[〈x′, p′, y′〉]]G}

[[RELAX(x, P1|P2, y)]]G,K =

[[RELAX(x, P1, y)]]G,K∪

[[RELAX(x, P2, y)]]G,K

[[RELAX(x, P1/P2, y)]]G,K =

[[RELAX(x, P1, z)]]G,K on

[[RELAX(z, P2, y)]]G,K

[[RELAX(x, P ∗, y)]]G,K = [[〈x, ε, y〉]]G∪

[[RELAX(x, P, y)]]G,K ∪
⋃
n≥1

{〈µ, c〉 |

〈µ, c〉 ∈ [[RELAX(x, P, z1)]]G,K on

on [[RELAX(z1, P, z2)]]G,K

on · · · on [[RELAX(zn, P, y)]]G,K}

where P , P1, P2 are regular expression patterns,
x, x′, y, y′ are in ULV , p, p′ are in U , and z, z1,
. . ., zn are fresh variables.

Example 4. Consider the following portion K =
(NK , EK) of the YAGO ontology, where NK is

{hasFamilyName, hasGivenName, label, actedIn,
Actor, English politicians, politician},

and EK is

{(hasFamilyName, sp, label),
(hasGivenName, sp, label),

(actedIn, domain, actor),
(English politicians, sc, politician)}

Suppose the user is looking for the family names
of all the actors who played in the film “Tea with
Mussolini” and poses this query:

SELECT * WHERE {

?x actedIn <Tea_with_Mussolini> .

?x hasFamilyName ?z }

The above query returns 4 answers. However,
some actors have only a single name (for exam-
ple Cher), or have their full name recorded us-
ing the “label” property directly. By applying re-
laxation to the second triple pattern using rule
(2), we can replace the predicate hasFamilyName
by “label”. This causes the relaxed query to re-
turn also the given names of actors in that film
recorded through the property “hasGivenName”
(hence returning Cher), as well as actors’ full
names recorded through the property “label”: a to-
tal of 255 results.

As another example, suppose the user poses the
following query:

SELECT * WHERE {

?x type <English_politicians> .

?x wasBornIn/isLocatedIn* <England>}

which returns every English politician born in Eng-
land. By applying relaxation to the first triple pat-
tern using rule (4), it is possible to replace the
class English politicians by politicians. This re-
laxed query will return every politician who was
born in England, giving possibly additional an-
swers of relevance to the user.
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3.2.3. Query Approximation
For query approximation, we apply edit oper-

ations which transform a regular expression pat-
tern P into a new expression pattern P ′. Specif-
ically, we apply the edit operations deletion, in-
sertion and substitution, defined as follows (other
possible edit operations are transposition and in-
version, which we leave as future work):

A/p/B  (A/ε/B) deletion

A/p/B  (A/ /B) substitution

A/p/B  (A/ /p/B) left insertion

A/p/B  (A/p/ /B) right insertion

Here, A and B denote any regular expression and
the symbol represents every URI from U — so
the edit operations allow us to insert any URI and
substitute a URI by any other. The application of
an edit operation op has a non-negative cost cop
associated with it.

These rules can be applied to a URI p in order to
approximate it to a regular expression P . We write
p  ∗ P if a sequence of edit operations can be
applied to p to derive P . The edit cost of deriving
P from p, denoted ecost(p, P ), is the minimum
cost of applying such a sequence of edit operations.

The semantics of the APPROX operator in
SPARQLAR are as follows:

[[APPROX(x, p, y)]]G = [[〈x, p, y〉]]G∪⋃
{〈µ, c+ ecost(p, P )〉 |

p ∗ P ∧ 〈µ, c〉 ∈ [[〈x, P, y〉]]G}

[[APPROX(x, P1|P2, y)]]G =

[[APPROX(x, P1, y)]]G ∪

[[APPROX(x, P2, y)]]G

[[APPROX(x, P1/P2, y)]]G =

[[APPROX(x, P1, z)]]G on

[[APPROX(z, P2, y)]]G

[[APPROX(x, P ∗, y)]]G = [[〈x, ε, y〉]]G∪

[[APPROX(x, P, y)]]G ∪
⋃
n≥1

{〈µ, c〉 |

〈µ, c〉 ∈ [[APPROX(x, P, z1)]]G on

[[APPROX(z1, P, z2)]]G on · · · on

[[APPROX on (zn, P, y)]]G}

where P , P1, P2 are regular expression patterns,
x, y are in ULV , p, p′ are in U , and z, z1, . . ., zn
are fresh variables.

Example 5. Suppose that the user is looking for all
discoveries made between 1700 and 1800 AD, and
queries the YAGO dataset as follows:

SELECT ?p ?z ?y WHERE{

?p discovered ?x . ?x discoveredOnDate ?y .

?x label ?z .

FILTER(?y >= 1700/1/1 and ?y <= 1800/1/1)}

Approximating the third triple pattern, it is pos-
sible to substitute the predicate “label” by “ ”.
The query will then return more information con-
cerning that discovery, such as its preferred name
(hasPreferredName) and the Wikipedia abstract
(hasWikipediaAbstract), improving recall and
maintaining good precision.

As another example, consider the following
query, which is intended to return every German
politician:

SELECT * WHERE{

?x isPoliticianOf ?y .

?x wasBornIn/isLocatedIn* <Germany>}

This query returns no answers since the predi-
cate “isPoliticianOf” only connects persons to
states of the United States in YAGO. If the first
triple pattern is approximated by substituting the
predicate “isPoliticianOf” with “ ”, then the
query will return the expected results, matching
the correct predicate to retrieve the desired an-
swers, which is “holdsPoliticalPosition”. It will
also retrieve all the other persons that are born in
Germany (thus showing improved recall, but lower
precision).

Observation 1. By the semantics of RELAX and
APPROX, we observe that given a triple pattern
〈x, P, y〉, [[〈x, P, y〉]]G,K ⊆ [[APPROX(x, P, y)]]G
and [[〈x, P, y〉]]G,K ⊆ [[RELAX(x, P, y)]]G,K for
every graph G and ontology K.

3.3. Complexity of query answering

We now study the combined, data and query
complexity of SPARQLAR, extending the com-
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plexity results from [16,17,22] for simple SPARQL
queries, from [1] for SPARQL with regular expres-
sion patterns to include our new flexible query con-
structs, and from [5] to include now UNION in
SPARQLAR.

The complexity of query evaluation is based
on the following decision problem, which we de-
note EVALUATION: Given as input a graph G =
(N,D,E), an ontology K, a query Q and a pair
〈µ, cost〉, is it the case that 〈µ, cost〉 ∈ [[Q]]G,K?
Considering data complexity, the decision prob-
lem becomes the following: Given as input a graph
G, ontology K and a pair 〈µ, cost〉, is it the case
that 〈µ, cost〉 ∈ [[Q]]G,K , with Q a fixed query?
Finally, the decision problem for query complexity
is the following: Given as input an ontology K, a
query Q and a pair 〈µ, cost〉, is it the case that
〈µ, cost〉 ∈ [[Q]]G,K , with G a fixed graph?

We have the following results, the proofs of
which are given in the Appendix.

Theorem 1. EVALUATION can be solved in time
O(|E| · |Q|) for queries not containing regular ex-
pression patterns, and constructed using only the
AND and FILTER operators.

Theorem 2. EVALUATION can be solved in time
O(|E| · |Q|2) for queries that may contain regular
expression patterns and that are constructed using
only the AND and FILTER operators.

Theorem 3. EVALUATION is NP-complete for
queries that may contain regular expression pat-
terns and that are constructed using only the AND
and SELECT operators.

Lemma 1. EVALUATION of [[APPROX(x, P, y)]]G,K
and [[RELAX(x, P, y)]]G,K can be accomplished in
polynomial time.

Theorem 4. EVALUATION is NP-complete for
queries that may contain regular expression pat-
terns and that are constructed using the oper-
ators AND, FILTER, RELAX, APPROX and
SELECT.

Theorem 5. EVALUATION is PTIME in data
complexity for queries that may contain regular ex-
pression patterns and that are constructed using
the operators AND, FILTER, RELAX, APPROX
and SELECT.

The complexity study of SPARQLAR in [5] is
summarised in the first six lines of Table 1, where

the combined, data and query complexity are
shown for specific language fragments and combi-
nations of operators.

The results for query complexity follow from
Lemma 1 and Theorems 1, 2 and 3.

We next show three new complexity results
which extend those of [5], summarised in the last
two lines of Table 1:

Theorem 6. EVALUATION is in NP for queries
containing AND, UNION, FILTER, APPROX,
RELAX and regular expression patterns.

Theorem 7. EVALUATION is NP-complete for
queries that may contain regular expression pat-
terns and that are constructed using the operators
AND, UNION, FILTER, RELAX, APPROX and
SELECT.

Theorem 8. EVALUATION is PTIME in data
complexity for queries that may contain SELECT
and regular expression patterns, and that are
constructed using the operators AND, UNION,
FILTER, RELAX and APPROX.

The results for query complexity follow from
Lemma 1 and Theorems 6 and 7.

We conclude our complexity study confirming
that adding the UNION operator to SPARQLAR

does not increase the overall complexity. EVAL-
UATION is NP-complete for queries that con-
tain regular expression patterns and that are
constructed using the operators AND, UNION,
FILTER, RELAX, APPROX and SELECT.

3.4. OPTIONAL operator

The OPTIONAL operator can be added to a
SPARQL query in order to retrieve information
only when it is available. In other words, it allows
optional matching of query patterns. If in query Q
the OPTIONAL operator is applied to query pat-
tern Q′′, that is Q = Q′ OPTIONAL {Q′′}, then
[[Q]]G will return all the mappings in [[Q′]]G on
[[Q′′]] plus all the mappings in [[Q′]] that are not
compatible with any mappings in [[Q′′]].

It is possible to add the OPTIONAL opera-
tor to SPARQLAR, allowing APPROX and RE-
LAX to be applied to triple patterns occurring
within an OPTIONAL clause, with the same se-
mantics as specified earlier. However, the complex-
ity of SPARQL with the OPTIONAL clause is
PSPACE-complete [16]. Therefore, by our earlier
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Table 1

Complexity of various SPARQLAR fragments.

Operators Data Complexity Query Complexity
Combined

Complexity

AND, FILTER O(|E|) O(|Q|) O(|E| · |Q|)
AND, FILTER, RegEx O(|E|) O(|Q|2) O(|E| · |Q|2)

RELAX, APPROX O(|E|) P-Time P-Time

RELAX, APPROX,

AND, FILTER, RegEx
O(|E|) P-Time P-Time

AND, SELECT P-Time NP-Complete NP-Complete

RELAX, APPROX,
AND, FILTER,

RegEx, SELECT

P-Time NP-Complete NP-Complete

RELAX, APPROX,
AND, UNION,

FILTER, RegEx,

O(|E|) NP NP

RELAX, APPROX,
AND, UNION,

FILTER, RegEx,

SELECT

P-Time NP-Complete NP-Complete

results, the complexity of SPARQLAR would also
increase similarly.

4. Query Processing

We evaluate SPARQLAR queries by making use
of a query rewriting algorithm, following a simi-
lar approach to [11,12,20]. In particular, given a
query Q which may contain the APPROX and/or
RELAX operators, we incrementally build a set
of queries {Q0, Q1, . . . } that do not contain these
operators such that

⋃
i[[Qi]]G,K = [[Q]]G,K .

We present the algorithm in Section 4.1, proving
its correctness in Section 4.2 and termination in
Section 4.3. Some practical issues relating to how
users might benefit from a flexible querying system
such as this are discussed in Section 4.4.

4.1. Query Rewriting

Our query rewriting algorithm (Algorithm 2 be-
low) starts by considering the query Q0 which re-
turns the exact answers to the query Q, i.e. ignor-
ing the APPROX and RELAX operators. To keep
track of which triple patterns need to be relaxed or
approximated, we label such triple patterns with
A for approximation and R for relaxation.

The function toCQS (“to conjunctive query
set”) takes as input a query Q, and returns a set
of pairs 〈Qi, 0〉 such that

⋃
i[[Qi]]G = [[Q]]G and

no Qi contains the UNION operator. The function
toCQS exploits the following equality:

[[(Q1 UNION Q2) AND Q3]]G =

([[Q1]]G ∪ [[Q2]]G) on [[Q3]]G =

([[Q1]]G on [[Q3]]G) ∪ ([[Q2]]G on [[Q3]]G) =

([[Q1 AND Q3]]G) ∪ ([[Q2 AND Q3]]G)

We assign to the variable oldGeneration the set
of queries returned by toCQS(Q0). For each query
Q′ in the set oldGeneration, each triple pattern
〈xi, Pi, yi〉 in Q′ labelled with A (R), and each URI
p that appears in Pi, we apply one step of approx-
imation (relaxation) to p, and we assign the cost
of applying that approximation (relaxation) to the
resulting query. The applyApprox and applyRelax
functions invoked by Algorithm 2 are shown as Al-
gorithms 3 and 5, respectively. From each query
constructed in this way, we next generate a new set
of queries by applying a second step of approxima-
tion or relaxation. We continue to generate queries
iteratively in this way. The cost of each query gen-
erated is the summed cost of the sequence of ap-
proximations or relaxations that have generated
it. If the same query is generated more than once,
only the one with the lowest cost is retained. More-
over, the set of queries generated is kept sorted by
increasing cost. For practical reasons, we limit the
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number of queries generated by bounding the cost
of queries up to a maximum value c.

In Algorithm 2, the addTo operator accepts two
arguments: the first is a collection C of query/cost
pairs, while the second is a single query/cost pair
〈Q, c〉. The operator adds 〈Q, c〉 to C. If C already
contains a pair 〈Q, c′〉 such that c′ ≥ c, then 〈Q, c′〉
is replaced by 〈Q, c〉 in C.

To compute the query answers (Algorithm 1) we
apply an evaluation function, eval, to each query
generated by the rewriting algorithm (in order of
increasing cost of the queries) and to each mapping
returned by eval we assign the cost of the query. If
we generate a particular mapping more than once,
only the one with the lowest cost is retained. In
Algorithm 1, rewrite is the query rewriting algo-
rithm (Algorithm 2) and the set of mappings M
is maintained in order of increasing cost.

The applyApprox and applyRelax functions,
respectively, invoke the functions approxRegex
and replaceTriplePattern, shown as Algorithms 4
and 6. In Algorithm 6, z, z1 and z2 are fresh
new variables. The relaxTriplePattern function
might generate regular expressions containing a
URI type−, which are matched to edges in E by
reversing the subject and the object and using the
property label type. The predicate type− is gener-
ated when we apply rule 6 of Figure 1 to a triple
pattern. Given a triple pattern 〈x, a, y〉 where x
is a constant and is y a variable, and an ontology
statement 〈a, range, d〉, we can deduce the triple
pattern 〈y, type, d〉. If instead the predicate a ap-
pears in a triple pattern containing a regular ex-
pression such as 〈x, a/b, z〉 (which is equivalent to
〈x, a, y〉 AND 〈y, b, z〉), then we cannot simply re-
place it with 〈y, type, d〉 as the regular expression
would be broken apart and two triple patterns
would result. By using 〈d, type−, y〉, we correctly
construct the triple pattern 〈d, type−/b, z〉.

In the following example, we illustrate how the
rewriting algorithm works by showing the queries
it generates, starting from a SPARQLAR query.

Example 6. Consider the following ontology K
(satisfying K = extRed(K)), which is a fragment
of the YAGO knowledge base:

K =({happenedIn, placedIn,Event},

{〈happenedIn, sp, placedIn〉,

〈happenedIn, dom,Event〉})

Suppose a user wishes to find every event which
took place in London on 15th September 1940 and
poses the following query Q:

APPROX(x, happenedOnDate, “15/09/1940”)
AND RELAX(x, happenedIn, “London”).

As pointed out in Example 1, without applying AP-
PROX or RELAX this query does not return any
answers when evaluated on the YAGO endpoint
(because “happenedIn” connects to URIs represent-
ing places and “London” is a literal, not a URI).
After the first step of approximation and relax-
ation, the following queries are generated:

Q1 = (x, ε, “15/09/1940”)A AND
(x, happenedIn, “London”)R

Q2 =
(x, happenedOnDate/ , “15/09/1940”)A AND

(x, happenedIn, “London”)R
Q3 =

(x, /happenedOnDate, “15/09/1940”)A AND
(x, happenedIn, “London”)R
Q4 = (x, , “12/12/12”)A AND

(x, happenedIn, “London”)R
Q5 =

(x, happenedOnDate, “15/09/1940”)A AND
(x, placedIn, “London”)R

Q6 =
(x, happenedOnDate, “15/09/1940”)A AND

(x, type,Event)R

Each of these also returns empty results, with the
exception of query Q6 which returns every event
occurring on 15/09/1940 (YAGO contains only
one such event, namely “Battle of Britain”).

4.2. Correctness of the Rewriting Algorithm

We now discuss the soundness, completeness
and termination of the rewriting algorithm. As we
stated earlier, this takes as input a cost that lim-
its the number of queries generated. Therefore the
classic definitions of soundness and completeness
need to be modified. To handle this, we use an op-
erator CostProj(M, c) to select mappings with a
cost less than or equal to a given value c from a
set M of pairs of the form 〈µ, cost〉. We denote by
rew(Q)c the set of queries generated by the rewrit-
ing algorithm from an initial query Q which have
cost less than or equal to c.
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Algorithm 1: Flexible Query Evaluation

input : Query Q; approx/relax max cost c; Graph G; Ontology K.
output: List M of mapping/cost pairs, sorted by cost.
M := ∅;
foreach 〈Q′, cost〉 ∈ rewrite(Q,c,K) do

foreach 〈µ, 0〉 ∈ eval(Q′,G) do
M := M ∪ {〈µ, cost〉}

return M;

Algorithm 2: Rewriting algorithm

input : Query QAR; approx/relax max cost c; Ontology K.
output: List of query/cost pairs, sorted by cost.
Q0 := remove APPROX and RELAX operators, and label triple patterns of QAR;
queries:=toCQS(Q0);
oldGeneration := toCQS(Q0);
while oldGeneration 6= ∅ do

newGeneration := ∅;
foreach 〈Q, cost〉 ∈ oldGeneration do

foreach labelled triple pattern 〈x, P, y〉 in Q do
rew := ∅;
if 〈x, P, y〉 is labelled with A then

rew := applyApprox(Q,〈x, P, y〉);
else if 〈x, P, y〉 is labelled with R then

rew := applyRelax(Q,〈x, P, y〉,K);

foreach 〈Q′, cost′〉 ∈ rew do
if cost+ cost′ ≤ c then

newGeneration := addTo(newGeneration,〈Q′, cost+ cost′〉) ;
queries:=addTo(queries, 〈Q′, cost+ cost′〉 ) ; /* The elements of queries are

also kept sorted by increasing cost. */

oldGeneration := newGeneration;

return queries;

Algorithm 3: applyApprox

input : Query Q; triple pattern 〈x, P, y〉A.
output: Set S of query/cost pairs.
S := ∅;
foreach 〈P ′, cost〉 ∈ approxRegex(P ) do

Q′ := replace 〈x, P, y〉A by 〈x, P ′, y〉A in Q;
S := S ∪ {〈Q′, cost〉};

return S;
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Algorithm 4: approxRegex

input : Regular Expression P .
output: Set T of RegEx/cost pairs.
T := ∅;
if P = p where p is a URI then

T := T ∪ {〈ε, costd〉};
T := T ∪ {〈 , costs〉};
T := T ∪ {〈 /p, costi〉};
T := T ∪ {〈p/ , costi〉};

else if P = P1/P2 then
foreach 〈P ′, cost〉 ∈ approxRegex(P1) do

T := T ∪ {〈P ′/P2, cost〉};
foreach 〈P ′, cost〉 ∈ approxRegex(P2) do

T := T ∪ {〈P1/P
′, cost〉};

else if P = P1|P2 then
foreach 〈P ′, cost〉 ∈ approxRegex(P1) do

T := T ∪ {〈P ′, cost〉};
foreach 〈P ′, cost〉 ∈ approxRegex(P2) do

T := T ∪ {〈P ′, cost〉};

else if P = P ∗1 then
foreach 〈P ′, cost〉 ∈ approxRegex(P1) do

T := T ∪ {〈(P ∗1 )/P ′/(P ∗1 ), cost〉};

return T;

Algorithm 5: applyRelax

input : Query Q; triple pattern 〈x, P, y〉R of Q; Ontology K.
output: Set S of query/cost pairs.
S := ∅;
foreach 〈〈x′, P ′, y′〉R, cost〉 ∈ relaxTriplePattern(〈x, P, y〉,K) do

Q′ := replace 〈x, P, y〉R by 〈x′, P ′, y′〉R in Q;
S := S ∪ {〈Q′, cost〉};

return S;

Definition 8 (Containment). Given a graph G, an
ontology K, and queries Q and Q′, [[Q]]G,K ⊆
[[Q′]]G,K if for each pair 〈µ, c〉 ∈ [[Q]]G,K there
exists a pair 〈µ, c〉 ∈ [[Q′]]G,K .

Definition 9 (Soundness). The rewriting of Q,
rew(Q)c, is sound if the following holds:⋃
Q′∈rew(Q)c

[[Q′]]G,K ⊆ CostProj([[Q]]G,K , c) for
every graph G and ontology K.

Definition 10 (Completeness). The rewriting of
Q, rew(Q)c, is complete if the following holds:

CostProj([[Q]]G,K , c) ⊆
⋃
Q′∈rew(Q)c

[[Q′]]G,K for
every graph G and ontology K.

To show the soundness and completeness of the
query rewriting algorithm, we will require the fol-
lowing lemmas and corollary.

Lemma 2. Given four sets of evaluation results
M1, M2, M ′1 and M ′2 such that M1 ⊆ M ′1 and
M2 ⊆M ′2, it holds that:

M1 ∪M2 ⊆M ′1 ∪M ′2 (1)
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Algorithm 6: relaxTriplePattern

input : Triple pattern 〈x, P, y〉; Ontology K.
output: Set T of triple pattern/cost pairs.
T := ∅;
if P = p where p is a URI then

foreach p′ such that ∃(p, sp, p′) ∈ EK do
T := T ∪ {〈〈x, p′, y〉, cost2〉};

foreach b such that ∃(a, sc, b) ∈ EK and p = type and y = a do
T := T ∪ {〈〈x, type, b〉, cost4〉};

foreach b such that ∃(a, sc, b) ∈ EK and p = type− and x = a do
T := T ∪ {〈〈b, type−, y〉, cost4〉};

foreach a such that ∃(p, dom, a) ∈ EK and y is a URI or a Literal do
T := T ∪ {〈〈x, type, a〉, cost5〉};

foreach a such that ∃(p, range, a) ∈ EK and x is a URI do
T := T ∪ {〈〈a, type−, y〉, cost6〉};

else if P = P1/P2 then
foreach 〈〈x′, P ′, z〉, cost〉 ∈ relaxTriplePattern(〈x, P1, z〉) do

T := T ∪ {〈〈x′, P ′/P2, y〉, cost〉};
foreach 〈〈z, P ′, y′〉, cost〉 ∈ relaxTriplePattern(〈z, P2, y〉) do

T := T ∪ {〈〈x, P1/P
′, y′〉, cost〉};

else if P = P1|P2 then
foreach 〈〈x′, P ′, y′〉, cost〉 ∈ relaxTriplePattern(〈x, P1, y〉) do

T := T ∪ {〈〈x′, P ′, y′〉, cost〉};
foreach 〈〈x′, P ′, y′〉, cost〉 ∈ relaxTriplePattern(〈x, P2, y〉) do

T := T ∪ {〈〈x′, P ′, y′〉, cost〉};

else if P = P ∗1 then
foreach 〈〈z1, P

′, z2〉, cost〉 ∈ relaxTriplePattern((〈z1, P1, z2〉) do
T := T ∪ {〈〈x, P ∗1 /P ′/P ∗1 , y〉, cost〉};

foreach 〈〈x′, P ′, z〉, cost〉 ∈ relaxTriplePattern((〈x, P1, z〉) do
T := T ∪ {〈〈x′, P ′/P ∗1 , y〉, cost〉};

foreach 〈〈z, P ′, y′〉, cost〉 ∈ relaxTriplePattern((〈z, P1, y〉) do
T := T ∪ {〈〈x, P ∗1 /P ′, y′〉, cost〉};

return T;

M1 onM2 ⊆M ′1 onM ′2 (2)

The following result follows from Lemma 2:

Corollary 1. Given four sets of evaluation results
M1, M2, M ′1 and M ′2 such that M1 = M ′1 and
M2 = M ′2, it holds that:

M1 ∪M2 = M ′1 ∪M ′2 (3)

M1 onM2 = M ′1 onM ′2 (4)

Lemma 3. Given queries Q1 and Q2, graph G and
ontology K the following equations hold:

CostProj([[Q1]]G,K on [[Q2]]G,K , c) =

CostProj(CostProj([[Q1]]G,K , c) on

CostProj([[Q2]]G,K , c), c)
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CostProj([[Q1]]G,K ∪ [[Q2]]G,K , c) =

CostProj([[Q1]]G,K , c)∪

CostProj([[Q2]]G,K , c)

Theorem 9. The Rewriting Algorithm is sound and
complete.

4.3. Termination of the Rewriting Algorithm

We are able to show that the rewriting algo-
rithm terminates after a finite number of steps:

Theorem 10. Given a query Q, ontology K and
maximum query cost c, the Rewriting Algorithm
terminates after at most dc/c′e iterations, where c′

is the lowest cost of an edit or relaxation operation,
assuming that c′ > 0.

4.4. Practical Considerations

In the previous sections we have concentrated
on theoretical aspects of SPARQLAR. In practice
SPARQLAR would be used as part of a framework
allowing users to search RDF data in a flexible
way. A front-end could allow users to pose queries
using keywords or natural language. Such user
queries could then be translated into SPARQL (cf.
[19]).

Suppose a user poses the following question to
the system: “What event happened in London on
15/09/1940?”. This question could be translated
to the query ((x, happenedOnDate, “15/09/1940”)
AND (x, happenedIn, “London”)) from Exam-

ple 6. The system could automatically apply AP-
PROX to the first triple pattern and RELAX to
the second triple pattern (as shown in the ex-
ample) by determining that happenedIn appears
in the given ontology, whereas happenedOnDate
does not. As we saw earlier, applying approxima-
tion and relaxation to this query produces the an-
swer that the user is looking for.

Applying the APPROX operator without an up-
per bound on cost will eventually return every con-
nected node of the RDF graph. This negatively
affects the precision of answers but ensures 100%
recall. When applying the substitution operation
of APPROX to a triple pattern, we do not specify
the predicate that needs to be replaced, but in-
stead insert the wildcard ( ) that allows the inser-
tion/replacement of any predicate. Of course, this

is a drawback in terms of the precision of answers
retrieved. However, for each predicate in a query,
it is possible to specify a set of predicates that
are semantically similar to it in order to increase
the precision of the retrieved answers. A similar-
ity matching algorithm, based either on syntactic
or semantic similarity, could be used to compare
the predicates of the RDF dataset. The semantic
similarity could exploit dictionaries such as Word-
Net3. Moreover, we could assign different costs for
substitution by different (sets of) predicates, de-
pending on how similar they are to the original
predicate. This would allow for a finer ranking of
the answers.

Similarly, it is possible to add a finer ranking
of the answers arising from the RELAX operator.
When we relax a triple pattern to derive a direct
relaxation, we make use of a triple from the on-
tology K. Instead of assigning a cost to each rule
of Figure 1, we could assign a cost to each triple
in K, reflecting domain experts’ views of the se-
mantic closeness of concepts. Therefore, the direct
relaxation would have a cost depending on which
triple in K is used.

Finally, in order to help users interpret answers
to their queries, the system could provide informa-
tion about which rewritten query returned which
answers. Showing only queries to users might not
be particularly helpful, especially if the original
query was simply in the form of keywords. Instead,
showing the sequence of steps by which the origi-
nal terms used by the user were approximated or
relaxed could help them decide whether the an-
swers returned were meaningful or not.

5. Experimental Results

We have implemented the query evaluation al-
gorithms described above in Java, using Jena for
SPARQL query evaluation. Figure 3 illustrates the
system architecture, which consists of three lay-
ers: the GUI layer, the System layer, and the Data
layer. The GUI layer supports user interaction
with the system, allowing queries to be submitted,
costs of the edit and relaxation operators to be
set, data sets and ontologies to be selected, and
query answers to be incrementally displayed to

3https://wordnet.princeton.edu/
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the user. The System layer comprises three com-
ponents: the Utilities, containing classes providing
the core logic of the system; the Domain Classes,
providing classes relating to the construction of
SPARQLAR queries; and the Query Evaluator in
which query rewriting, optimisation and evalua-
tion are undertaken. The Data layer connects the
system to the selected RDF dataset and ontology
using the JENA API; RDF datasets are stored as
a TDB database4 and RDF schemas can be stored
in multiple RDF formats (e.g. Turtle, N-Triple,
RDF/XML).

User queries are submitted to the GUI, which
invokes a method of the SPARQLAR Parser to
parse the query string and construct an object of
the class SPARQLAR Query. The GUI also invokes
the Data/Ontology Loader which creates an object
of the class Data/Ontology Wrapper, and the Ap-
prox/Relax Constructor which creates objects of
the classes Approx and Relax. Once these objects
have been initialised, they are passed to the Query
Evaluator by invoking the Rewriting Algorithm.
This generates the set of SPARQL queries to be
executed over the RDF dataset. The set of queries
is passed to the Evaluator, which interacts with the
Optimiser and the Cache to improve query perfor-
mance — we discuss the Optimiser and the Cache
in Section 5.2. The Evaluator uses the Jena Wrap-
per to invoke Jena library methods for executing
SPARQL queries over the RDF dataset. The Jena
Wrapper also gathers the query answers and passes
them to the Answer Wrapper. Finally, the answers
are displayed by the Answers Window, in ranked
order.

We have conducted empirical trials over the
YAGO dataset and the Lehigh University Bench-
mark (LUBM)5. Our empirical results using the
LUBM are described in [5], where we ran a small
set of queries comprising 1 to 4 triple patterns
on increasing sizes of datasets, with and with-
out the APPROX/RELAX operators. In all cases,
the approxed/relaxed versions of the queries re-
turned more answers than the exact query. Re-
sponse times were good for most of the queries.

For the rest of this section, we focus on our em-
pirical trials over the YAGO dataset, firstly with-
out any optimisations, and then in Section 5.2
with an optimised query evaluator. YAGO con-

4https://jena.apache.org/documentation/tdb/.
5http://swat.cse.lehigh.edu/projects/lubm/
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Fig. 3. SPARQLAR system architecture

tains over 120 million triples (4.83 GB in Tur-
tle format) which we downloaded and stored in a
TDB database. The size of the TDB database is
9.70 GB, and the nodes of the YAGO graph are
stored in a 1.1 GB file.

We ran our experiments on a Windows PC with
a 2.4Ghz i5 dual-core processor and 8 GB of RAM.
We executed 10 queries over the database, com-
prising increasing numbers of triple patterns (1 up
to 10), listed below. The aim of this performance
study was to further gauge the practical feasibil-
ity of our techniques and to discover major perfor-
mance bottlenecks requiring further investigation.
A more comprehensive and detailed performance
study is planned for future work.

Q1 = SELECT ?a WHERE

{ RELAX(?a rdf:type <location>)}

Q2 = SELECT ?n WHERE

{ ?a rdfs:label ?n .

RELAX(?a <happenedIn> <Berlin>)}

Q3 = SELECT ?n ?d WHERE

{ ?a rdfs:label ?n .

RELAX(?a <happenedIn> <Berlin>) .

?a <happenedOnDate> ?d}

Q4 = SELECT ?n ?m WHERE

{ ?a rdfs:label ?n .

?a <livesIn> ?b .

?a <actedIn> ?m .

RELAX(?m <isLocatedIn> ?b)}

Q5 = SELECT ?n1 ?n2 WHERE
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{ ?a rdfs:label ?n1 .

?b rdfs:label ?n2 .

RELAX(?a <isMarriedTo> ?b).

APPROX(?a <livesIn>/<isLocatedIn>* ?p).

APPROX(?b <livesIn>/<isLocatedIn>* ?p)}

Q6 = SELECT ?n WHERE

{ APPROX(?a <actedIn>/<isLocatedIn>

<Australia>) .

?a rdfs:label ?n .

RELAX(?a rdf:type <actor>) .

?city <isLocatedIn> <China> .

?a <wasBornIn> ?city .

APPROX(?a <directed>/<isLocatedIn>

United_States>)}

Q7 = SELECT ?n1 ?n2 WHERE

{ APPROX(?a rdf:type <event>) .

RELAX(?a <happenedIn> ?b ).

?p <wasBornIn> ?b .

?p <wasBornOnDate> ?d .

RELAX(?a <happenedOnDate> ?d) .

?a rdfs:label ?n1 .

?p rdfs:label ?n2}

Q8 = SELECT ?c ?n ?p ?l ?d WHERE

{ ?a <hasFamilyName> ?n .

?a rdfs:label ?c .

?a <hasWonPrize> ?p .

?a <wasBornIn> ?l .

RELAX(?a <wasBornOnDate> ?d) .

APPROX(?a rdf:type <scientist>) .

?a <isMarriedTo> ?b1 .

?a <isMarriedTo> ?b2}

Filter (?b1!=?b2)

Q9 = SELECT ?c ?n ?p ?l ?d WHERE

{ ?a <hasFamilyName> ?n .

?a rdfs:label ?c .

?a <hasWonPrize> ?p .

?a <wasBornIn> ?l .

?a <wasBornOnDate> ?d .

RELAX(?a rdf:type <scientist>) .

?a <isMarriedTo> ?b .

?b <wasBornOnDate> ?d .

RELAX(?l <isLocatedIn>* <Germany>)}

Q10 = SELECT ?n ?n1 ?n2 WHERE

{ ?a rdfs:label ?n .

RELAX(?a rdf:type <actor> ).

APPROX(?a <wasBornIn> ?city) .

?a <actedIn> ?m1 .

?m1 <isLocatedIn> <Australia> .

?a <directed> ?m2 .

?m2 <isLocatedIn> <Australia>.

APPROX(?city <isLocatedIn>

<United_States>) .

?m1 rdfs:label ?n1 .

?m2 rdfs:label ?n2}

The reader will notice that we used the AP-
PROX operator only on triple patterns contain-
ing a regular expression in which either the sub-
ject or object is a constant. This is due to the fact
that if we apply APPROX to simple triple pat-
terns of the form (?x, p, ?y), the rewriting algo-
rithm will generate the following two triple pat-
terns: (?x, , ?y) which returns every triple in the
database, and (?x, ε, ?y) which returns every node
in the database.

For each query Q1 to Q10, we ran both the ex-
act form of the query (without any APPROX or
RELAX operators) and the version of the query as
specified above. For the latter queries, we set the
cost of applying each edit operation of approxima-
tion and each RDFS entailment rule of Figure 1 to
one, and requested answers of maximum cost two.
We ran each query 6 times, ignored the first timing
as a Jena cache warm-up, and took the mean of the
other 5 timings. We restart our system each time
we run a query; this avoids the possibility that the
warm-up caching of a previous query enhances the
execution performance of other queries.

The numbers of answers returned by each
query, for both the exact form and the AP-
PROX/RELAX (A/R) form, are shown in Ta-
bles 2 and 3, along with the number of rewrit-
ten queries in each case (# of queries). Tables 4
and 5 list the execution times for the exact queries,
the A/R queries and the A/R queries with a sim-
ple caching optimisation implemented (optimised
A/R). We discuss the results without this optimi-
sation in the next subsection, and the results with
this optimisation applied in Section 5.2.

5.1. Initial results

Query Q1 returns every location stored in
YAGO. The rewriting algorithm generates only
the following additional query

SELECT ?a WHERE

{?a rdf:type <Resource>}
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which returns only 3 answers. Increasing the max-
imum cost does not result in the rewriting algo-
rithm generating any more queries, and no other
answers would be returned at higher cost.

Query Q2 returns every event that happened in
Berlin. When the second triple pattern is relaxed
the rewriting algorithm generates a query that re-
turns every event in YAGO. This explains the long
execution time of the relaxed version of Q2 com-
pared to its exact form.

Query Q3 returns every event that happened in
Berlin along with its date, while query Q4 returns
every actor who acted in movies located in the
same city where the actor lived. Queries Q3 and
Q4 return additional answers in their relaxed form
compared to their exact form. Both queries exhibit
reasonable performance.

Query Q5 returns all married couples who live in
the same city. The long execution time of the exact
form of this query is due to the presence of Kleene-
closure in two of the query conjuncts. Moreover,
the rewriting algorithm generates 95 queries which
are time-consuming to evaluate due to the pres-
ence of not only of the Kleene-closure but also the
wild-card symbol “ ”. We were not able to com-
plete the execution of query Q5 with approxima-
tion and relaxation. It might be possible to over-
come this problem by replacing “ ” with a selected
disjunction of predicates. Such predicates would
be chosen using knowledge of the graph structure.
For example, when we approximate the triple pat-
tern 〈?a, livesIn/isLocatedIn∗, ?p〉 in query Q5,
we generate 〈?a, livesIn/ /isLocatedIn∗, ?p〉 us-
ing the insertion edit operator and, during query
evaluation, the symbol is replaced with a dis-
junction of all the predicates in YAGO. We could
instead replace with a disjunction of the pred-
icates that are known to connect livesIn and
isLocatedIn, i.e. the predicates p such that there
is a path livesIn/p/isLocatedIn in YAGO. This
type of optimisation is currently being investi-
gated.

Query Q6 returns every Chinese actor who
played in American films and directed Australian
films. The A/R version of the query takes many
hours to evaluate (the rewriting algorithm gen-
erates 154 queries) due to the symbol we use
for the insertion and substitution approximation
operations. Applying the optimisation technique
described in Section 5.2 below decreases the ex-
ecution time dramatically and returns results in

a more reasonable time. Similarly to query Q5, it

would also be possible to replace the symbol with

a selected disjunction of predicates, making the

query more likely to return answers more quickly

still.

Query Q7 returns every event and person such

that the person was born in the same place and on

the same day that the event occurred. When the

rewriting algorithm is applied to Q7, it generates

many queries that contain no answers or that con-

tain answers already computed. The first version

of caching that we have implemented (described

in Section 5.2) is not sophisticated enough to help

with the A/R version of Q7, for the reason ex-

plained in Section 5.2 and further work is required

here.

Query Q8 returns every scientist who has mar-

ried twice and has won a prize. The rewriting al-

gorithm generates 17 queries from Q8. The long

execution time of the A/R form of Q8 is due to

use of the “ ” symbol. The running time of the

query is improved significantly by the optimisation

described in Section 5.2.

Query Q9 returns every scientist who was born

in Germany, has won a prize, and was married to

someone with the same date of birth. This query

returns no answers. The execution of the A/R form

of the query takes many hours, due to the Kleene-

closure. However, the running time of the query is

again dramatically improved by the optimisation

described in Section 5.2.

Finally, query Q10 returns every actor who di-

rected and acted in Australian movies and was

born in the United States. The exact form of this

query returns no answers. The rewriting algorithm

generates 47 queries and the A/R form of the

query takes a very long time to evaluate. Once

again, the optimisation described in Section 5.2

gives a significant reduction in the running time.

5.2. Optimised evaluation

In Tables 4 and 5 we also show the query exe-

cution times for the A/R forms of all the queries

using an optimised query evaluator. The optimi-

sation is based on a caching technique, in which

we pre-compute some of the answers in advance.

The Optimiser module stores the cached answers
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Table 2

Numbers of answers (Exact and A/R) and numbers of rewritten queries (A/R).

Q1 Q2 Q3 Q4 Q5

Exact 6491 116 106 8546 585150

A/R 6494 60614 6867 8586 N/A

# of
queries

2 5 5 2 95

Table 3

Numbers of answers (Exact and A/R) and numbers of rewritten queries (A/R).

Q6 Q7 Q8 Q9 Q10

Exact 28 5 1540 0 0

A/R 14431 N/A 22540 0 0

# of

queries
154 36 17 29 47

Table 4

Query execution time (in seconds).

Q1 Q2 Q3 Q4 Q5

Exact 0.321 0.008 0.009 1.512 7670

A/R 0.340 66.32 0.81 1.571 N/A

optimised
A/R

0.440 60.4 2.31 1.01 N/A

Table 5

Query execution time (in seconds).

Q6 Q7 Q8 Q9 Q10

Exact 0.123 5 0.173 1.23 323.100

A/R N/A N/A 272.875 N/A N/A

optimised

A/R
60.23 N/A 12.475 0.08 100.4

in memory using the Java class HashSet6 which
enables answers to be retrieved efficiently. Algo-
rithm 7 shows the optimised evaluation. We leave
it as future work to investigate other join strate-
gies, such as sort-merge join or sideways informa-
tion passing.

In Algorithm 7, we start by splitting a query into
two parts: the triple patterns which do not have
APPROX or RELAX applied to them (which we
call the exact part) and those which have (which
we call the A/R part). We first evaluate the exact
part of the query and store the results. We then
apply the rewriting algorithm to the A/R part.
Each triple pattern of the latter is evaluated in-

6Java documentation: https://docs.oracle.com/

javase/6/docs/api/java/util/HashSet.html

dividually; all possible pairs of triple patterns are

also evaluated. The answers to each are stored in

cache, a data structure that contains these par-

tial evaluation results. To avoid memory overflow,

we place an upper limit on the size of cache. We

then compute the answers of the A/R part with

the newEval function which exploits the answers

already computed and stored in cache. In other

words, if part of the query has been already com-

puted, it retrieves the answers and joins them with

the part of the query that has not been executed.

Finally, we join the answers of the exact part of

the query with those of the A/R part.

For query Q1 the optimised evaluation slightly

worsens the computation time. This is due to the

extra time spent by the evaluation algorithm in

undertaking the caching. In fact, in general for
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Algorithm 7: Flexible Query Evaluation – Optimised

input : Query Q; approx/relax max cost c; Graph G; Ontology K.
output: List M of mapping/cost pairs, sorted by cost.
π−→w := head of Q;
QE := sub query of Q with only the triples that are not approxed nor relaxed.;
Ms := eval(QE ,G);
if Ms is empty then

return ∅
cache := ∅ ; /* set of pairs of query/evaluation results */

QAR := sub-query of Q comprising only the approxed and relaxed triples;
M := ∅;
foreach 〈Q′, cost〉 ∈ rewrite(QAR,c,K) do

if cache is not full then
foreach pair t, t′ ∈ Q′ do

cache := cache ∪ 〈t, eval(t, G)〉 ;
cache := cache ∪ 〈t AND t′, eval(t AND t′, G)〉

foreach 〈µ, 0〉 ∈ newEval(Q′, preEval,G) do
M := M ∪ {〈µ, cost〉};

return π−→w (M onMs);

single-conjunct queries the optimisation does not
speed up the computation7.

For queries Q2 and Q4 the optimised evaluation
decreases the execution time somewhat. For query
Q2, since the number of answers is rather large, it
is hard to compute all these answers in a shorter
amount of time even with the optimised evalua-
tion.

The optimised evaluation of query Q3 performs
worse than the simple evaluation. The main reason
is that the exact sub-query returns a large num-
ber of answers, namely, every event along with its
label and date. These answers are stored in the
cache and then retrieved for the final join with the
relaxed triple pattern.

Queries Q6 and Q8 can now be computed in a
reasonable amount of time. Q9 can also be com-
puted with the optimised algorithm. The time
taken is less than 0.1 seconds due to the fact that
its exact part returns no answers, making the com-
putation of the rest of the query redundant.

Query Q10 can now be computed and, in fact,
the optimised algorithm managed to run the A/R
form of the query faster than its exact form. It is
possible that the Jena SPARQL evaluator does not

7In the final version of the system, the optimisation mod-

ule would be disabled for single-conjunct queries.

perform optimally for this particular query, but
splitting the query into multiple parts and join-
ing the results separately, as we do in our opti-
misation technique, improves the evaluation time
considerably.

We are still unable to execute the A/R forms of
queries Q5 and Q7. For query Q5, the long eval-
uation time is due to the presence of the Kleene-
closure and the wild-card symbol “ ”. On the other
hand query Q7 cannot be computed because of the
join structure of the exact part of the query, which
is the following:

?p <wasBornIn> ?b .

?p <wasBornOnDate> ?d .

?p rdfs:label ?n2.

?a rdfs:label ?n1 .

We can see that the variable ?p appears in the
first three triple patterns, while the variables of
the last triple pattern do not appear anywhere else
in the query. Therefore, Jena has to compute a
Cartesian product between the 2954875 answers
retrieved for the last triple pattern and the 500000
answers retrieved for the first three triple patterns.
More sophisticated optimisation techniques need
to be investigated to improve the performance of
these queries.
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The overall results show that the evaluation of
SPARQLAR queries through a query rewriting ap-
proach is promising. The difference between the
execution time of the exact form and the A/R form
of the queries is acceptable for queries with fewer
than 5 conjuncts. For most of the other queries,
the simple optimisation technique described above
also brings down the running times of the A/R
forms to more reasonable levels. Clearly, for more
complex queries, more sophisticated optimisation
techniques need to be investigated and developed.

6. Conclusions

In this paper we have presented query process-
ing algorithms for an extended fragment of the
SPARQL 1.1 language, incorporating approxima-
tion and relaxation operators. Our query process-
ing approach is based on query rewriting whereby,
given a query Q containing the APPROX and/or
RELAX operators, we incrementally generate a
set of queries {Q0, Q1, . . .} that do not contain
these operators such that

⋃
i[[Qi]]G,K = [[Q]]G,K ,

and we return results according to their “distance”
from the exact form of Q.

We have formally shown the soundness, com-
pleteness and termination of our query rewriting
algorithm. Our empirical studies show promising
query processing performance, but also that fur-
ther optimisations are required.

An advantage of adopting a query rewriting ap-
proach is that existing techniques for SPARQL
query optimisation and evaluation can be reused
to evaluate the queries generated by our rewrit-
ing algorithm. Our ongoing work involves inves-
tigating optimisations to the rewriting algorithm
itself, since it can generate a large number of
queries. Specifically, we are studying the query
containment problem for SPARQLAR and how
query costs impact on this. Following this inves-
tigation, we plan to implement optimisations for
the rewriting algorithm. For example, for a query
Q = Q1 AND Q2 it is possible to decrease the
number of queries generated by the rewriting al-
gorithm if we know that [[Q1]]G,K ⊆ [[Q2]]G,K , in
which case [[Q]]G,K = [[Q1]]G,K .

Another area of ongoing work involves the con-
struction of synopses (or data guides) of RDF-
datasets in order to speed up query evaluation.
In our context, such a synopsis is a graph S con-

structed from an RDF-datasetG that will have the
following property: if we consider G and S as au-
tomata, then L(G) ⊆ L(S). Hence, given a query
Q, if eval(Q,S) = ∅ then eval(Q,G) = ∅. Since
the synopsis S will be considerably smaller than
G, we can evaluate Q over S for each query Q gen-
erated by the rewriting algorithm; if eval(Q,S) re-
turns no answer, then we do not need to execute Q
over G. Moreover, the synopsis S can be exploited
in order to remove the symbol that is generated
when we apply APPROX to a triple pattern of a
query. Given a triple pattern 〈x, P, y〉 from query
Q, we compute A = MP ∩S, where MP is the au-
tomaton that recognises L(P ). Subsequently, we
replace 〈x, P, y〉 with 〈x, PA, y〉 in Q, where PA is
a property path that does not contain the symbol

such that L(PA) = L(A).
Another direction of research is the extension

of our approximation and relaxation operators,
query evaluation and query optimisation tech-
niques to flexible federated query processing for
SPARQL 1.1. Finally, also planned is a detailed
comparison of the query rewriting approach to
query approximation and relaxation presented
here with the “native” implementation of similar
operators described in [23].

Acknowledgements. Andrea Cal̀ı acknowledges
partial support by the EPSRC project “Logic-
based Integration and Querying of Unindexed
Data” (EP/E010865/1).

References

[1] F. Alkhateeb, J.-F. Baget, and J. Euzenat. Extending
SPARQL with regular expression patterns (for query-
ing RDF). Web Semant., 7(2):57–73, Apr. 2009.
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Appendix

Proof of Theorem 1.
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Proof. We give an algorithm for the EVALUA-
TION problem that runs in polynomial time:
First, for each i such that the triple pattern
〈x, z, y〉i is in Q, we verify that 〈µ(〈x, z, y〉i), costi〉
∈ E for some costi. If this is not the case, or if∑
i costi 6= cost we return False. Otherwise we

check if µ satisfies the FILTER condition and re-
turn True or False accordingly. It is evident that
the algorithm runs in polynomial time since veri-
fying that 〈µ(〈x, z, y〉i), costi〉 ∈ E can be done in
time |E|.

Proof of Theorem 2.

Proof. To show this, we start by building an NFA
MP = (S, T ) that recognises L(P ), the language
denoted by the regular expression P , where S is
the set of states (including s0 and sf representing
the initial and final states respectively) and T is
the set of transitions, each of cost 0. We then con-
struct the weighted product automaton, H, of G
and MP as follows:

– The states of H are the Cartesian product of
the set of nodes N of G and the set of states
S of MP .

– For each transition 〈〈s, p, s′〉, 0〉 in MP and
each edge 〈〈a, p, b〉, cost〉 in E, there is a tran-
sition 〈〈s, a〉, 〈s′, b〉, cost〉 in H.

Then we check if there exists a path from
〈s0, µ(x)〉 to 〈sf , µ(y)〉 in H. In case there is more
than one path, we select one with the minimum
cost using Dijkstra’s algorithm. Knowing that the
number of nodes in H is equal to |N | · |S|, the
number of edges is at most |E| · |T |, and that
|T | ≤ |S|2, the evaluation can be performed in
time O(|E| · |S|2 + |N | · |S| · log(|N | · |S|)).

Proof of Theorem 3

Proof. We first show that the evaluation prob-
lem is in NP. Given a pair 〈µ, cost〉 and a query
SELECT−→wQ where Q does not include FIL-
TER, we have to check whether 〈µ, cost〉 is in
[[SELECT−→wQ]]G. We can guess a new mapping
µ′ such that π−→w (〈µ′, cost〉) = 〈µ, cost〉 and conse-
quently check that 〈µ′, cost〉 ∈ [[Q]]G (which can
be done in polynomial time as we have seen in
Theorem 2). The number of guesses is bounded by
the number of variables in Q and values from G
to which they can be mapped.

For NP-hardness we first define the problem of
graph 3-colourability, which is known to be NP-
complete: given a graph Γ = (NΓ, EΓ) and three
colours r, g, b, is it possible to assign a colour
to each node in NΓ such that no pair of nodes
connected by an edge in EΓ are of the same colour?

We next define the following RDF graph G =
(N,D,E):

N ={r, g, b, a} D = {a, p}

E ={〈〈r, p, g〉, 0〉,

〈〈r, p, b〉, 0〉, 〈〈g, p, b〉, 0〉, 〈〈g, p, r〉, 0〉,

〈〈b, p, r〉, 0〉, 〈〈b, p, g〉, 0〉, 〈〈a, a, a〉, 0〉}

Now we construct the following query Q such that
there is a variable xi corresponding to each node
ni of Γ and there is a triple pattern of the form
〈xi, p, xj〉 in Q if and only if there is an edge
(ni, nj) in Γ:

Q = SELECTx((xi, p, xj) AND . . . AND

(x′i, p, x
′
j) AND (a, a, x))

It is easy to verify that the graph Γ is colourable if
and only if 〈µ, 0〉 ∈ [[Q]]G with µ = {x→ a}.

Proof of Lemma 1

Premise. Given a pair 〈µ, cost〉 we have to verify in
polynomial time that 〈µ, cost〉 ∈ [[APPROX(x, P,
y)]]G or 〈µ, cost〉 ∈ [[RELAX(x, P, y)]]G. We start
by building an NFA MP = (S, T ) as described
earlier.

Approximation. An approximate automaton AP =
(S, T ′) is constructed starting from MP and
adding the following additional transitions (simi-
larly to the construction in [18]):

– For each state s ∈ S there is a transition
〈〈s, , s〉, α〉, where α is the cost of insertion.

– For each transition 〈〈s, p, s′〉, 0〉 in MP , where
p ∈ D, there is a transition 〈〈s, ε, s′〉, β〉,
where β is the cost of deletion.

– For each transition 〈〈s, p, s′〉, 0〉 in MP , where
p ∈ D, there is a transition 〈〈s, , s′〉, γ〉, where
γ is the cost of substitution.

We then form the weighted product automaton,
H, of G and AP as follows:
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– The states of H will be the Cartesian product
of the set of nodes N of G and the set of states
S of AP .

– For each transition 〈〈s, p, s′〉, cost1〉 in AP and
each edge 〈〈a, p, b〉, cost2〉 in E, there is a tran-
sition 〈〈s, a〉, 〈s′, b〉, cost1 + cost2〉 in H.

– For each transition 〈〈s, ε, s′〉, cost〉 in AP and
each node a ∈ N , there is a transition
〈〈s, a〉, 〈s′, a〉, cost〉 in H.

– For each transition 〈〈s, , s′〉, cost1〉 in AP and
each edge 〈〈a, p, b〉, cost2〉 in E, there is a tran-
sition 〈〈s, a〉, 〈s′, b〉, cost1 + cost2〉 in H.

Finally we check if there exists a path from
〈s0, µ(x)〉 to 〈sf , µ(y)〉 in H. Again, if there exists
more than one path we select one with minimum
cost using Dijkstra’s Algorithm. Knowing that the
number of nodes in H is |N |·|S| and that the num-
ber of edges in H is at most (|E|+ |N |) · |S|2, the
evaluation can therefore be computed in O((|E|+
|N |) · |S|2 + |N | · |S| · log(|N | · |S|)).

Relaxation. Given an ontology K = extRed(K)
we build the relaxed automaton RP = (S′, T ′, S0,
Sf ) starting from MP (similarly to the construc-
tion in [18]). S0 and Sf represent the sets of initial
and final states, and S′ contains every state in S
plus the states in S0 and Sf . Initially S0 and Sf
contain s0 and sf respectively. Each initial and fi-
nal state in S0 and Sf is labelled with either a con-
stant or the symbol ∗; in particular, s0 is labelled
with x if x is a constant or ∗ if it is a variable and
similarly sf is labelled with y if y is a constant or ∗
if it is a variable. An incoming (outgoing) clone of
a state s is a new state s′ such that s′ is an initial
or final state if s is, s′ has the same set of incoming
(outgoing) transitions as s, and has no outgoing
(incoming) transitions. Initially T ′ contains all the
transitions in T . We recursively add states to S0

and Sf , and transitions to T ′ as follows until we
reach a fixpoint:

– For each transition 〈〈s, p, s′〉, cost〉 ∈ T ′ and
〈p, sp, p′〉 ∈ K add the transition 〈〈s, p′, s′〉,
cost+α〉 to T ′, where α is the cost of applying
rule 2.

– For each transition 〈〈s, type, s′〉, cost〉 ∈ T ′,
s′ ∈ Sf and 〈c, sc, c′〉 ∈ K such that s′ is
annotated with c add an outgoing clone s′′

of s′ annotated with c′ to Sf and add the
transition 〈〈s, type, s′′〉, cost+β〉 to T ′, where
β is the cost of applying rule 4.

– For each transition 〈〈s, type−, s′〉, cost〉 ∈ T ′,
s ∈ S0 and 〈c, sc, c′〉 ∈ K such that s is an-
notated with c add an incoming clone s′′ of s
annotated with c′ to S0 and add the transi-
tion 〈〈s′′, type−, s′〉, cost + β〉 to T ′, where β
is the cost of applying rule 4.

– For each 〈〈s, p, s′〉, cost〉 ∈ T ′, s′ ∈ Sf and
〈p, dom, c〉 such that s′ is annotated with a
constant, add an outgoing clone s′′ of s′ an-
notated with c to Sf , and add the transition
〈〈s, type, s′′〉, cost + γ〉 to T ′, where γ is the
cost of applying rule 5.

– For each 〈〈s, p, s′〉, cost〉 ∈ T ′, s ∈ S0 and
〈p, range, c〉 such that s is annotated with a
constant, add an incoming clone s′′ of s an-
notated with c to S0, and add the transition
〈〈s′′, type−, s′〉, cost+ δ〉 to T ′, where δ is the
cost of applying rule 6.

(We note that because queries and graphs do not
contain edges labelled sc or sp, rules 1 and 3 in
Figure 1 are inapplicable as far as query relaxation
is concerned.)

We then form the weighted product automaton,
H, of G and RP as follows:

– For each node a ∈ N of G and each state
s ∈ S′ of RP , then 〈s, a〉 is a state of H if s is
labelled with either ∗ or a, or is unlabelled.

– For each transition 〈〈s, p, s′〉, cost1〉 in RP and
each edge 〈〈a, p, b〉, cost2〉 in E such that 〈s, a〉
and 〈s′, b〉 are states of H, then there is a
transition 〈〈s, a〉, 〈s′, b〉, cost1 + cost2〉 in H.

– For each transition 〈〈s, type−, s′〉, cost1〉 in
RP and each edge 〈〈a, type, b〉, cost2〉 in E
such that 〈s, b〉 and 〈s′, a〉 are states of H,
then there is a transition 〈〈s, b〉, 〈s′, a〉, cost1+
cost2〉 in H.

Finally we check if there exists a path from
〈s, µ(x)〉 to 〈s′, µ(y)〉 in H, where s ∈ S0 and
s′ ∈ Sf . Again, if there exists more than one path
we select one with minimum cost using Dijkstra’s
Algorithm. Knowing that the number of nodes in
H is at most |N | · |S′| and the number of edges in
H is at most |E|·|S′|2, the evaluation can therefore
be computed in O(|E| · |S′|2 + |N | · |S′| · log(|N | ·
|S′|)).

Conclusion. We can conclude that both query ap-
proximation and query relaxation can be evalu-
ated in polynomial time. In particular, the evalu-
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ation can be done in O(|E|) time with respect to
the data and in polynomial time with respect to
the query.

Proof of Theorem 4.

Proof. Follows straightforwardly from Theorem 3
and Lemma 1.

Proof of Theorem 5.

Proof. In order to prove the theorem, we devise
an algorithm that runs in polynomial time with
respect to the size of the graph G. We start by
building a new mapping µ′ such that each variable
x ∈ var(µ′) appears in var(Q) but not in var(µ),
and to each we assign a different constant from
ND. We then verify in polynomial time that 〈µ∪
µ′, cost〉 is in [[Q]]G. The number of mappings we
can generate is O(|ND||var(Q)|). Since the query
is fixed we can therefore say that the evaluation
with respect to the data is in polynomial time.

Proof of Theorem 6

Proof. We give an NP algorithm, Evaluation-
Cost shown as Algorithm 8, for the EVALUA-
TION problem for a generic query Q containing
AND, UNION and regular expression patterns.
The EvaluationCost algorithm takes as input a
mapping µ, a graph G and a query Q and returns
a cost c. Given an evaluation 〈µ, c′〉, and a query
Q, then the EvaluationCost algorithm returns c
if {〈µ, c〉} ∈ [[Q]]G and NULL otherwise. Finally,
we need to check that c is equal to c′.

It is easy to see in the EvaluationCost algorithm
that the non-deterministic step occurs when the
condition Q = Q1 AND Q2 is satisfied, in which
case we need to guess a decomposition of the map-
ping µ into µ1 and µ2. The number of guesses
is bounded by the number of possible decomposi-
tions of µ (which is finite).

Proof of Theorem 7.

Proof. We first show that the evaluation prob-
lem is in NP. Given a pair 〈µ, cost〉 and a query
SELECT−→wQ, where Q contains AND, UNION
and SELECT, we have to check whether 〈µ, cost〉
is in [[SELECT−→wQ]]G. We can guess a new map-
ping µ′ such that π−→w (〈µ′, cost〉) = 〈µ, cost〉 and
consequently check that 〈µ′, cost〉 ∈ [[Q]]G (which

Algorithm 8: EvaluationCost

input : Query Q with no variables, a
mapping µ, a graph G

output: A cost value c, or NULL
if Q = t then

if there exists a cost such that
{〈µ, cost〉} ∈ [[t]]G, where t is a simple
triple pattern or an APPROX/RELAX
then

return cost;

else
return NULL

else if Q = Q1 AND Q2 then
Guess a decomposition µ = µ1 ∪ µ2;
if EvaluationCost(Q1,µ1,G) 6= NULL
and EvaluationCost(Q2,µ2,G) 6= NULL
then

return EvaluationCost(Q1,µ1,G) +
EvaluationCost(Q2,µ2,G);

else
return NULL

else if Q = Q1 UNION Q2 then
if EvaluationCost(Q1,µ,G) = NULL then

return EvaluationCost(Q2,µ,G);

else if EvaluationCost(Q2,µ,G) = NULL
then

return EvaluationCost(Q1,µ,G);

else if EvaluationCost(Q1,µ,G) ≤
EvaluationCost(Q2,µ,G) then

return EvaluationCost(Q1,µ,G);

else
return EvaluationCost(Q2,µ,G);

can be done in NP time as we have seen in Theo-
rem 6). The number of guesses is bounded by the
number of variables in Q and values from G to
which they can be mapped.

For NP-hardness, we reduce from the 3-SAT
problem, which is known to be NP-complete:
Given a Boolean formula φ = C1 ∧ · · · ∧ Cn as in-
put, where each clause Ci is a disjunct of exactly
three literals, is φ satisfiable? Each literal li1, li2
and li3 of Ci is either a variable vk or a negated
variable v̄k, with k ∈ {1, . . . ,m}.

We start by constructing the following graph:

G = ({a, 0, 1}, {f, t}, {〈〈a, f, 0〉, 0〉, 〈〈a, t, 1〉, 0〉})
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We then construct the query Q = SELECTz(T1

AND · · ·Tn AND 〈a, t, z〉), where each symbol
Ti = {Vi1 UNION Vi2 UNION Vi3} corresponds
to a clause Ci in φ, and each Vij either corresponds
to a triple of the form 〈a, t, xk〉 if lij is a variable
vk, or corresponds to a triple of the form 〈a, f, xk〉
if lij is a negated variable v̄k.

It can be verified that the formula φ is satisfiable
if and only if 〈µ, 0〉 ∈ [[Q]]G with µ = {z → 1}.

Proof of Theorem 8

Proof. In Theorem 6, the non-deterministic steps
(i.e. the decomposition of the mapping µ into µ1

and µ2 to verify that 〈µ, c〉 ∈ [[Q1 AND Q2]]G),
depend on the query Q which we assume is fixed.
To verify that an evaluation 〈µ, 0〉 is in [[t]]G, with
t a triple pattern of query Q, can be done in |E|
steps. Therefore, the evaluation can be computed
in O(|E| ∗ |µ||Q|) steps.

When we include the SELECT operator we
need to add a further non-deterministic step, that
is, generating a new mapping µ′ from µ such
that π−→w (〈µ′, c〉) = 〈µ, c〉. From the proof of The-
orem 5 we can see that this can be done in
O(|ND||var(Q)|). Since the query is fixed, we con-
clude that the data complexity is polynomial.

Proof of Lemma 2

Proof. (1) From the definition of union, it follows
that M ′1 ∪ M ′2 contains every mapping from M1

and M2, and therefore the statement holds.
(2) From the definition of join, M1 on M2 con-

tains a mapping µ1 ∪ µ2 for every pair of compat-
ible mappings 〈µ1, cost1〉 ∈ M1 and 〈µ2, cost2〉 ∈
M2. Since M ′1 and M ′2 also contain µ1 and µ2,
respectively, then M ′1 on M ′2 will also contain
µ1 ∪ µ2.

Proof of Lemma 3

Proof. Considering the right hand side (RHS)
of the first equation, we know that each pair
〈µ, cost〉 in the RHS has cost ≤ c and is equal
to 〈µ1, cost1〉 on 〈µ2, cost2〉, where cost1 ≤ c,
cost2 ≤ c, 〈µ1, cost1〉 ∈ [[Q1]]G,K and 〈µ2, cost2〉 ∈
[[Q2]]G,K . Therefore, the pair 〈µ, cost〉 must also
be contained in the left hand side (LHS) of
the equation. Conversely, for each pair 〈µ, cost〉
in the LHS, we know that cost ≤ c and that
there must exist a pair 〈µ1, cost1〉 ∈ [[Q1]]G,K

and a pair 〈µ2, cost2〉 ∈ [[Q2]]G,K such that
〈µ1, cost1〉 on 〈µ2, cost2〉 = 〈µ, cost〉. Moreover,
since cost = cost1 + cost2 we know that cost1 ≤ c
and cost2 ≤ c. Therefore, we can conclude that
〈µ, cost〉 must also be contained in the RHS of the
equation.

For the second equation it is easy to verify that
every pair 〈µ, cost〉 is in CostProj([[Q1]]G,K ∪
[[Q2]]G,K , c) if and only if it is contained either in
CostProj([[Q1]]G,K , c) or in CostProj([[Q2]]G,K ,
c), or in both.

Proof of Theorem 9.

Proof. For ease of reading, in this proof we will
replace the operators APPROX and RELAX with
A and R respectively and will denote with A/R(t)
that we are applying either APPROX or RELAX
to a triple pattern t. We divide the proof into three
parts: (1) The first part shows that for c ≥ 0
and relaxed or approximated triple patterns of
the form 〈x, p, y〉, the functions approxRegex and
relaxTriplePattern generate sound and complete
triple patterns. (2) The second part of the proof
shows that the algorithm is sound and complete for
approximated and relaxed triple patterns contain-
ing any regular expression. (3) Finally, we show
that the algorithm is sound and complete for gen-
eral queriesQ, i.e. we show that the following holds
for any query Q, graph G and ontology K:

CostProj([[Q]]G,K , c) ⊆
⋃
Q′∈rew(Q)c

[[Q′]]G,K ⊆
CostProj([[Q]]G,K , c)

(1) In this first part we show that for any triple
pattern 〈x, p, y〉 and cost c ≥ 0 the following holds:

CostProj([[A/R(x, p, y)]]G,K , c) =⋃
t′∈rew(A/R(x,p,y))c

[[t′]]G,K

We show this by induction on the cost c. For the
base case of c = 0 we need to show that:

CostProj([[A/R(x, p, y)]]G,K , 0) =⋃
t′∈rew(A/R(x,p,y))0

[[t′]]G,K
(5)

On the LHS, since the costs of applying AP-
PROX and RELAX have cost greater than zero,
the CostProj operator will only return the exact
answers of the query, in other words it will exclude
the answers generated by the APPROX and RE-
LAX operators. On the RHS, the rewriting algo-
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rithm will not return queries with associated cost
greater than 0 and therefore will just return the
original query unchanged. This, when evaluated,
will therefore also return the exact answers of the
query. So (5) holds.

When c is greater than 0 we consider two dif-
ferent cases, one for APPROX and the other for
RELAX:

(a) Approximation. For approximation, we show
the following by induction on the cost c:

CostProj([[A(x, p, y)]]G,K , c) =⋃
t′∈rew(A(x,p,y))c

[[t′]]G,K
(6)

The induction hypothesis is that (6) holds for
c = iα + jβ + kγ for all i, j, k ≥ 0, where α, β,
γ are the cost of the insertion, deletion and sub-
stitution edit operations, respectively. We have al-
ready shown the base case of i = j = k = 0. We
now show that (6) is true when one of, i, j or k is
incremented by 1.

Considering the RHS of equation (6), when we
apply one step of approximation to a triple pattern
the algorithm generates a set of triple patterns.
These triple patterns will be recursively rewrit-
ten by the algorithm. Therefore, by applying ev-
ery possible edit operation to the original triple
pattern, we have that:⋃

t′∈rew(A(x,p,y))c
[[t′]]G,K =

[[〈x, p, y〉]]G,K∪⋃
t′∈rew(A(x, /p,y))c−α

[[t′]]G,K∪⋃
t′∈rew(A(x,p/ ,y))c−α

[[t′]]G,K∪⋃
t′∈rew(A(x,ε,y))c−β

[[t′]]G,K∪⋃
t′∈rew(A(x, ,y))c−γ

[[t′]]G,K

Considering the LHS of equation (6), again by
the semantics of approximation, we have that:

CostProj([[A(x, p, y)]]G,K , c) =
[[〈x, p, y〉]]G,K∪
CostProj([[A(x, /p, y)]]G,K , c− α)∪
CostProj([[A(x, p/ , y)]]G,K , c− α)∪
CostProj([[A(x, ε, y)]]G,K , c− β)∪
CostProj([[A(x, , y)]]G,K , c− γ)

Combining the last two into a single equation,
we therefore need to show that:

[[〈x, p, y〉]]G,K∪⋃
t′∈rew(A(x, /p,y))c−α

[[t′]]G,K∪⋃
t′∈rew(A(x,p/ ,y))c−α

[[t′]]G,K∪⋃
t′∈rew(A(x,ε,y))c−β

[[t′]]G,K∪⋃
t′∈rew(A(x, ,y))c−γ

[[t′]]G,K
=

[[〈x, p, y〉]]G,K∪
CostProj([[A(x, /p, y)]]G,K , c− α)∪
CostProj([[A(x, p/ , y)]]G,K , c− α)∪
CostProj([[A(x, ε, y)]]G,K , c− β)∪
CostProj([[A(x, , y)]]G,K , c− γ)

Given Corollary 1, it is sufficient to show that
all the following equations hold:

[[〈x, p, y〉]]G,K = [[〈x, p, y〉]]G,K (7)

⋃
t′∈rew(A(x, /p,y))c−α

[[t′]]G,K =

CostProj([[A(x, /p, y)]]G,K , c− α)

(8)

⋃
t′∈rew(A(x,p/ ,y))c−α

[[t′]]G,K =

CostProj([[A(x, p/ , y)]]G,K , c− α)

(9)

⋃
t′∈rew(A(x,ε,y))c−β

[[t′]]G,K =

CostProj([[A(x, ε, y)]]G,K , c− β)

(10)

⋃
t′∈rew(A(x, ,y))c−γ

[[t′]]G,K =

CostProj([[A(x, , y)]]G,K , c− γ)

(11)

Equation (7) is trivially true. Equations (10)
and (11) hold since on the LHS, rew(A(x, ε, y))c
and rew(A(x, , y))c contain only (x, ε, y) and
(x, , y) respectively, for any c ≥ 0, and on the
RHS, by the semantics of approximation, we
know that [[A(x, ε, y)]]G,K = [[x, ε, y]]G,K and
[[A(x, , y)]]G,K = [[x, , y]]G,K .

For equation (8), considering the semantics of
approximation with concatenation of paths, the
LHS of the equation can be rewritten in the fol-
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lowing way since we know that we will not apply
any step of approximation to A(x, , z):

([[〈x, , z〉]]G,K) on (
⋃
t′∈rew(A(z,p,y))c−α

[[t′]]G,K)

Applying Lemma 3 we can rewrite the RHS of (8)
to:

CostProj(CostProj([[A(x, , z)]]G,K , c− α) on
CostProj([[A(z, p, y)]]G,K , c− α), c− α)

It is possible to drop the outer CostProj since
the query [[A(x, , z)]]G,K returns only mappings
with associated cost 0, obtaining:

CostProj([[A(x, , z)]]G,K , c− α) on
CostProj([[A(z, p, y)]]G,K , c− α)

Therefore we need to show that the following
holds:

([[〈x, , z〉]]G,K) on (
⋃
t′∈rew(A(z,p,y))c−α

[[t′]]G,K) =

CostProj([[A(x, , z)]]G,K , c− α) on
CostProj([[A(z, p, y)]]G,K , c− α)

Given Corollary 1 it is sufficient to show that:

[[〈x, , z〉]]G,K =

CostProj([[A(x, , z)]]G,K , c− α)
(12)

⋃
t′∈rew(A(z,p,y))c−α

[[t′]]G,K =

CostProj([[A(z, p, y)]]G,K , c− α)

(13)

Equation (12) holds by similar reasoning to equa-
tion (11). Equation (13) holds by the induction
hypothesis.

Equation (9) can be shown to hold by similar
reasoning to equation (8). We conclude that equa-
tion (6) holds for every c ≥ 0.

(b) Relaxation. For relaxation, we show the fol-
lowing by induction on the cost c:

CostProj([[R(x, p, y)]]G,K , c) =⋃
t′∈rew(R(x,p,y))c

[[t′]]G,K
(14)

The induction hypothesis is that (14) holds for
c = iα+jβ+kγ+lδ for all i, j, k, l ≥ 0, where α, β,

γ, δ are the costs of the four relaxation operations
arising from rules 2, 4, 5 and 6, respectively, of
Figure 1. We have already shown the base case
of i = j = k = l = 0. We now show that (14)
holds when one of, i, j, k or l is incremented by
1. Similarly to the reasoning for approximation in
part (a), we need to show that:

[[〈x, p, y〉]]G,K∪
CostProj([[R(x, p′, y)]]G,K , c− α)∪

CostProj([[R(x, type, a)]]G,K , c− β)∪
CostProj([[R(a, type−, x)]]G,K , c− β)∪
CostProj([[R(x, type, a)]]G,K , c− γ)∪
CostProj([[R(a, type−, x)]]G,K , c− δ)

=
[[〈x, p, y〉]]G,K∪⋃

t′∈rew(R(x,p′,y))c−α
[[t′]]G,K∪⋃

t′∈rew(R(x,type,a))c−β
[[t′]]G,K∪⋃

t′∈rew(R(a,type−,x))c−β
[[t′]]G,K∪⋃

t′∈rew(R(x,type,a))c−γ
[[t′]]G,K∪⋃

t′∈rew(R(a,type−,x))c−δ
[[t′]]G,K

Given Corollary 1 it is sufficient to show that
the following hold::

[[〈x, p, y〉]]G,K = [[〈x, p, y〉]]G,K (15)

CostProj([[R(x, p′, y)]]G,K , c− α) =⋃
t′∈rew(R(x,p′,y))c−α

[[t′]]G,K
(16)

CostProj([[R(x, type, a)]]G,K , c− β) =⋃
t′∈rew(R(x,type,a))c−β

[[t′]]G,K
(17)

CostProj([[R(a, type−, x)]]G,K , c− β) =⋃
t′∈rew(R(a,type−,x))c−β

[[t′]]G,K
(18)

CostProj([[R(x, type, a)]]G,K , c− γ) =⋃
t′∈rew(R(x,type,a))c−γ

[[t′]]G,K
(19)
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CostProj([[R(a, type−, x)]]G,K , c− δ) =⋃
t′∈rew(R(a,type−,x))c−δ

[[t′]]G,K
(20)

Equation (15) is trivially true. Equations (16-
20) can be rewritten as the general case of the in-
duction hypothesis for some c ≥ 0. Therefore equa-
tions (16-20) hold by the induction hypothesis. We
conclude that equation (13) holds for every c ≥ 0.

(2) Now we need to show that approxRegex and
relaxTriplePattern are sound and complete for
triple patterns containing any regular expression.
In part (1) we have demonstrated soundness and
completeness for triple patterns containing a single
predicate, p:

CostProj([[A/R(x, p, y)]]G,K , c) =⋃
t′∈rew(A/R(x,p,y))c

[[t′]]G,K

This is our base case. We now show soundness
and completeness by structural induction, consid-
ering the three different operators used to con-
struct a regular expression: concatenation, dis-
junction and Kleene-Closure.

(a) Concatenation. The induction hypothesis is
that the following equations hold for any regular
expressions P1 and P2:

CostProj([[A/R(x, P1, y)]]G,K , c) =⋃
t′∈rew(A/R(x,P1,y))c

[[t′]]G,K
(21)

CostProj([[A/R(x, P2, y)]]G,K , c) =⋃
t′∈rew(A/R(x,P2,y))c

[[t′]]G,K
(22)

We now show that the following holds:

CostProj([[A/R(x, P1/P2, y)]]G,K , c) =⋃
t′∈rew(A/R(x,P1/P2,y))c

[[t′]]G,K
(23)

When the approxRegex and relaxTriplePattern
functions are passed as input a triple pattern of
the form A/R(x, P1/P2, y), this is split into two
triple patterns: A/R(x, P1, z) and A/R(z, P2, y).
Both of these triple patterns are passed recursively

to the approxRegex and relaxTriplePattern func-
tions which return two sets of triple patterns that
will be joined with the AND operator. Therefore
the RHS of equation (23) can be written in the
following way:

CostProj(
⋃
t′∈rew(A/R(x,P1,z))c

[[t′]]G,K on⋃
t′∈rew(A/R(z,P2,y))c

[[t′]]G,K , c)

Given the semantics of approximation and re-
laxation with concatenation of paths, the LHS of
equation (23) can be written as follows:

CostProj([[A/R(x, P1, z)]]G,K on
[[A/R(z, P2, y)]]G,K , c)

which by Lemma 3 is equal to:

CostProj(CostProj([[A/R(x, P1, z)]]G,K , c) on
CostProj([[A/R(z, P2, y)]]G,K , c), c)

We therefore need to show that:

CostProj(CostProj([[A/R(x, P1, z)]]G,K , c) on
CostProj([[A/R(z, P2, y)]]G,K , c), c) =

CostProj(
⋃
t′∈rew(A/R(x,P1,z))c

[[t′]]G,K on⋃
t′∈rew(A/R(z,P2,y))c

[[t′]]G,K , c)

It is possible to drop the outer CostProj opera-
tors on both sides of the above equation. Applying
Corollary 1 it is sufficient to show that:

CostProj([[A/R(x, P1, z)]]G,K , c) =⋃
t′∈rew(A/R(x,P1,z))c

[[t′]]G,K
CostProj([[A/R(z, P2, y)]]G,K , c) =⋃

t′∈rew(A/R(z,P2,y))c
[[t′]]G,K

These equations hold by the induction hypoth-
esis. Therefore equation (23) holds.

(b) Disjunction. Similarly to concatenation, our
induction hypothesis is that equations (21) and
(22) hold for any regular expressions P1 and P2.
We now show that the following equation holds:

CostProj([[A/R(x, P1|P2, y)]]G,K , c) =⋃
t′∈rew(A/R(x,P1|P2,y))c

[[t′]]G,K
(24)

When the approxRegex and relaxTriplePattern
functions are passed as input a triple pattern of
the form A/R(x, P1|P2, y), this is split into two
triple patterns: A/R(x, P1, y) and A/R(x, P2, y).
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Both of these triple patterns are passed recursively
to the approxRegex and relaxTriplePattern func-
tions which will return two sets of triple patterns
that will be combined with the UNION operator.
Therefore the RHS of equation (24) can be written
as follows:⋃

t′∈rew(A/R(x,P1,y))c
[[t′]]G,K ∪⋃

t′∈rew(A/R(x,P2,y))c
[[t′]]G,K

Given the semantics of approximation and re-
laxation with disjunction of paths, we can write
the LHS of equation (24) as follows:

CostProj([[A/R(x, P1, y)]]G,K ∪
[[A/R(x, P2, y)]]G,K , c)

which by Lemma 3 is equal to:

CostProj([[A/R(x, P1, y)]]G,K , c) ∪
CostProj([[A/R(x, P2, y)]]G,K , c)

We therefore need to show that:

CostProj([[A/R(x, P1, y)]]G,K , c) ∪
CostProj([[A/R(x, P2, y)]]G,K , c) =⋃

t′∈rew(A/R(x,P1,y))c
[[t′]]G,K ∪⋃

t′∈rew(A/R(x,P2,y))c
[[t′]]G,K

By Corollary 1 it is sufficient to show that:

CostProj([[A/R(x, P1, y)]]G,K , c) =⋃
t′∈rew(A/R(x,P1,y))c

[[t′]]G,K
CostProj([[A/R(x, P2, y)]]G,K , c) =⋃

t′∈rew(A/R(x,P2,y))c
[[t′]]G,K

These equations hold by the induction hypothesis.
Therefore equation (24) holds.

(c) Kleene-Closure. Our induction hypothesis in
this case is that

CostProj([[A/R(x, Pn, y)]]G,K , c) =⋃
t′∈rew(A/R(x,Pn,y))c

[[t′]]G,K

for any regular expression P and any n ≥ 0, where
Pn denotes the regular expression P/P/ . . . /P in
which P appears n times. For the base case of
n = 0, where Pn = ε, the equation is trivially
true since rew(A(x, ε, y))c contains only the query
(x, ε, y). We now show that the following holds:

CostProj([[A/R(x, Pn+1, y)]]G,K , c) =⋃
t′∈rew(A/R(x,Pn+1,y))c

[[t′]]G,K
(25)

The approxRegex function rewrites an approxi-

mated triple pattern on the RHS of the equation

in the following way: A(x, P i/P/P j , y)) for arbi-

trarily chosen i, j satisfying i + j = n. It then

splits this into three triple patterns, A(x, P i, z1),

A(z1, P, z2) and A(z2, P
j , y). Therefore the RHS

of (25) becomes:

CostProj(
⋃

t′∈rew(A(x,P i,z1))c

[[t′]]G,K on

⋃
t′∈rew(A(z1,P,z2))c

[[t′]]G,K on

⋃
t′∈rew(A(z2,P j ,y))c

[[t′]]G,K , c)

(26)

We have added the CostProj operator in order

to follow the behaviour of the algorithm that ex-

cludes queries with associated cost greater than

c.

Knowing that L(P i/P/P j) = L(Pn+1) and by

the semantics of approximation with concatena-

tion of paths, we can write the LHS as:

CostProj([[A(x, P i, z1)]]G,K on
[[A(z1, P, z2)]]G,K on [[A(z2, P

j , y)]]G,K , c)

Applying Lemma 3, this can be rewritten as:

CostProj(CostProj([[A(x, P i, z1)]]G,K , c) on

CostProj([[A(z1, P, z2)]]G,K , c) on

CostProj([[A(z2, P
j , y)]]G,K , c), c)

(27)

Combining (26) and (27) and removing the

outer CostProj operator on both hand sides we

therefore need to show that:

CostProj([[A(x, P i, z1)]]G,K , c) on
CostProj([[A(z1, P, z2)]]G,K , c) on
CostProj([[A(z2, P

j , y)]]G,K , c) =⋃
t′∈rew(A(x,P i,z1))c

[[t′]]G,K on⋃
t′∈rew(A/R(z1,P,z2))c

[[t′]]G,K on⋃
t′∈rew(A/R(z2,P j ,y))c

[[t′]]G,K
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By Corollary 1 it is sufficient to show that:

CostProj([[A(x, P i, z1)]]G,K , c) =⋃
t′∈rew(A(x,P i,z1))c

[[t′]]G,K
(28)

CostProj([[A(z1, P, z2)]]G,K , c) =⋃
t′∈rew(A(z1,P,z2))c

[[t′]]G,K
(29)

CostProj([[A(z2, P
j , y)]]G,K , c) =⋃

t′∈rew(A(z2,P j ,y))c

[[t′]]G,K
(30)

Equations (28,29,30) hold by the induction hy-

pothesis since i and j are both less than n; there-

fore equation (25) holds.

The same reasoning applies for the relaxTriplePat-

tern function applied to a relaxed triple pattern

on the RHS of (25) with the difference that it

rewrites the triple pattern in 3 different ways:

R(x, P i/P/P j , y) (for arbitrarily chosen i, j satis-

fying i+j = n), R(x, P/Pn, y) and R(x, Pn/P, y).

It is possible to apply the same steps of the proof

as for approxRegex, noticing that L(P/Pn) =

L(Pn+1) and L(Pn/P ) = L(Pn+1).

(3) General queries. We now show that the al-

gorithm is sound and complete for any query that

may contain approximation and relaxation. As the

base case we have the case of a query comprising

a single triple pattern, which has been shown in

part (2) of the proof:

CostProj([[A/R(x, P, y)]]G,K , c) =⋃
t′∈rew(A/R(x,P,y))c

[[t′]]G,K

Consider now a query Q = t AND Q′ with t being

an arbitrary triple pattern of the query Q. The

induction hypothesis is that:

CostProj([[Q′]]G,K , c) =
⋃

Q′′∈rew(Q′)c

[[Q′′]]G,K

(31)

We now show that the following holds.

CostProj([[Q]]G,K , c) =
⋃

Q′′∈rew(Q)c

[[Q′′]]G,K

(32)

The LHS of equation (32) is equivalent to the fol-
lowing by the semantics of the AND operator:

CostProj([[t]]G,K on [[[Q′]]G,K , c)

Applying Lemma 3 we can rewrite this as fol-
lows:

CostProj(CostProj([[t]]G,K , c) on

CostProj([[Q′]]G,K , c), c)
(33)

For the RHS of equation (32) we have to con-
sider two different cases: either t is a simple triple
pattern or it contains the RELAX or APPROX
operators. If we consider the former case then we
rewrite the RHS of equation (32) to:

[[t]]G,K on
⋃

Q′′∈rew(Q′)c

[[Q′′]]G,K (34)

Combining (33) and (34) we need to show that:

CostProj(CostProj([[t]]G,K , c) on
CostProj([[Q′]]G,K , c), c) = [[t]]G,K on⋃

Q′′∈rew(Q′)c
[[Q′′]]G,K

We are able to drop the outer CostProj operator
and the CostProj applied to the triple pattern t
since [[t]]G,K returns mappings with cost 0. The
resulting equation is as follows:

[[t]]G,K on CostProj([[Q′]]G,K , c) = [[t]]G,K on⋃
Q′′∈rew(Q′)c

[[Q′′]]G,K

Applying Corollary 1 it is sufficient to show
that:

[[t]]G,K = [[t]]G,K (35)

CostProj([[Q′]]G,K , c) =
⋃

Q′′∈rew(Q′)c

[[Q′′]]G,K

(36)

Equation (35) is trivially true and equation (36)
holds by the induction hypothesis. Therefore equa-
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tion (32) holds in the case of t being a simple triple
pattern.

If t contains the APPROX or RELAX operators
then the RHS of (32) is:⋃

t′∈rew(t)c
[[t′]]G,K on

⋃
Q′′∈rew(Q′)c

[[Q′′]]G,K

Therefore, combining the latter with (33), we
have:

CostProj(CostProj([[t]]G,K , c) on
CostProj([[Q′]]G,K , c), c) =

CostProj((
⋃
t′∈rew(t)c

[[t′]]G,K) on
(
⋃
Q′′∈rew(Q′)c

[[Q′′]]G,K), c)

(We have added the CostProj operator on the
RHS of the equation in order to follow the be-
haviour of the algorithm that excludes queries
with associated cost greater than c). Removing the
CostProj from both hand sides of the equation and
applying Corollary 1, it is sufficient to show that:

CostProj([[t]]G,K , c) =
⋃

t′∈rew(t)c

[[t′]]G,K

(37)

CostProj([[Q′]]G,K , c) =
⋃

Q′′∈rew(Q′)c

[[Q′′]]G,K

(38)

Equation (37) holds since approxRegex and re-
laxTriplePattern are sound and complete as shown
in step (2) of the proof. Equation (38) holds by
the induction hypothesis. Therefore equation (32)
holds in the case of t containing the APPROX and
RELAX operators.

Proof of Theorem 10.

Proof. The algorithm terminates when the set
oldGeneration is empty. At the end of each
cycle, oldGeneration is assigned the value of
newGeneration. During each cycle, elements are
added to newGeneration only when new queries
are generated and have cost less than c or already
generated queries are generated again at a lesser
cost (also less than c).

On each cycle of the algorithm, each query gen-
erated by applyApprox or applyRelax has cost at
least c′ plus the cost of the query from which it is
generated. Since we start from query Q0 which has
cost 0, every query generated during the nth cycle
will have cost greater than or equal to n · c′. When
n · c′ > c the algorithm will not add any queries
to newGeneration. Therefore, the algorithm will
stop after at most dc/c′e iterations.


