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Abstract—In the 3D facial animation and synthesis community,
input faces are usually required to be labeled by a set of
landmarks for parameterization. Because of the variations in
pose, expression and resolution, automatic 3D face landmark
localization remains a challenge. In this paper, a novel landmark
localization approach is presented. The approach is based on
Local Coordinate Coding (LCC) and consists of two stages. In
the first stage, we perform nose detection, relying on the fact that
the nose shape is usually invariant under the variations in the
pose, expression and resolution. Then, we use the Iterative Closest
Points (ICP) algorithm to find a 3D affine transformation that
aligns the input face to a reference face. In the second stage, we
perform re-sampling to build correspondences between the input
3D face and the training faces. Then, an LCC-based localization
algorithm is proposed to obtain the positions of the landmarks
in the input face. Experimental results show that the proposed
method is comparable to state of the art methods in terms of its
robustness, flexibility and accuracy.

Index Terms—Landmark, 3D Affine Transformation, Face
Alignment, Face Re-sampling, Iterative Closest Points, Local
Coordinate Coding.

I. INTRODUCTION

THREE-dimensional (3D) faces have been widely used in
many applications in computer vision, computer graphics

and virtual reality. With the development of scanning tech-
nology, large numbers of 3D coordinates can be obtained
by 3D scanning devices, such as laser scanners, structured
light scanners and other devices, in a very short time. Due
to the limitation of the scanning devices, the 3D face data,
which are usually in the form of point clouds, are acquired
from different distances, orientations and expressions, which
leads to enormous variations in the pose, face deformation,
resolution, and even facial area. To build correspondences
between the 3D faces that have different resolutions, poses,
expressions and facial areas, many computer graphics and
computer vision applications require corresponding landmarks
for 3D face parameterization, which is the basis of further

Manuscript received January 18, 2013; revised August 5, 2014; accepted
September 24, 2014. This work was supported in part by the National Natural
Science Foundation of China under Grant 61170142, by the the Program of
International S&T Cooperation (2013DFG12840), National High Technology
Research and Development Program of China (2013AA040601), and by
Australian Research Council Projects DP-140102164 and FT-130101457.

M. Song S. Sun, and C. Chen are with the College of Computer Science,
Zhejiang University, Hangzhou 310027, China.

D. Tao is with the Centre for Quantum Computation & Intelligent Systems
and the Faculty of Engineering and Information Technology, University of
Technology, Sydney, 235 Jones Street, Ultimo, NSW 2007, Australia (email:
dacheng.tao@uts.edu.au).

S. J. Maybank is with the Department of Computer Science and Information
Systems, Birkbeck College, University of London

manipulation such as expressive analogy and animation. The
landmarks are a set of 3D locations in a 3D face that
are positioned to describe and parameterize the shape and
semantics of the 3D faces.

Many 3D face applications [30], [44] locate the landmarks
manually by using interactive tools, which is straightforward
yet time consuming. Fortunately, a variety of methods for 3D
face landmark localization have been proposed in recent years.
These methods are divided into two groups: feature detection-
based methods and statistical point distribution model (PDM)-
based methods.

A. Feature Detection-based Approach

In the feature detection-based methods, the landmarks are
defined by significant features, such as nose tip, nose wing, eye
corners and mouth corners. These features are easily modeled
by local descriptors. Lu et al. [1] proposed an algorithm to
detect the nose tip on a rotated 3D face and to correct the facial
pose by angle space quantization. However, this algorithm is
based on the hypothesis that the nose tip on a frontal face
is the closest point to the scanner. However, this hypothesis
is not tenable in many cases. In addition, this method is
computationally expensive when the angle space quantization
is fine grained. Similar methods have been proposed by Perakis
et al. [3] to automatically detect the nose. In [3], the face pose
is aligned by Procrustes analysis in which the candidate nose
points are extracted based on the curvature information, and
the mean shape is used to compute the rigid transformation.
The candidate points that have a minimum Procrustes distance
are regarded as nose points.

Many curvature-based methods have also been proposed
to detect the nose tip [5]–[7]. The shape index [8] is used
by Colbry et al. in which a statistical model is used to
identify the nose position. Lin [6] uses principle curvatures
and combines 2D and 3D data to describe the face. A search
is conducted along the normal directions from the boundaries
of the eyes to find the nose tip. Segundo et al. [7] proposed a
method to detect the nose tip by combining traditional image
segmentation techniques and an adapted method for 2D facial
feature extraction with the curvature information. All of these
nose detection methods produce good results for frontal faces
but have limited capabilities for faces that are in arbitrary
poses.

Mian et al. [9] proposed a coarse-to-fine approach for
detecting the nose tip by horizontally slicing the 3D face at
multiple steps. A candidate point is selected on each slice.
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Only the points that correspond to the nose ridge should form
a line in the x-y plane. However, this approach requires a near-
frontal face. Dibeklioğlu et al. [11] introduced a statistical
method and a heuristic method for nose tip detection. The
statistical method is based on an analysis of local features
using the depth map and the gradient information of the
depth map. The heuristic method locates the nose tip utilizing
curvature values to address the pose variations. However, the
statistical method cannot handle 3D faces that have pose
variations, and the heuristic method is inaccurate on the 3D
faces that have a yaw rotation that is greater than 45 degrees.
Romero-Huertas et al. [12] used a graph model to locate the
inner eye corners and the nose tip simultaneously. A graph
matching algorithm is based on a distance-to-local plane node
property and a Euclidean distance arc property. The feature
combination that has the minimum Mahalanobis distance is
selected. However, this method is sensitive to changes in the
scale and radius of the distance-to-local plane.

Creusot et al. presented a multimodal feature point localiza-
tion approach [14]. In [14], multiple local surface descriptors
are used to extract interesting points of specific salient shapes
first. Then, a model-fitting operation is exploited to select the
facial feature points from the extracted interesting points. In
the meantime, Fanelli et al. [15] developed a random forest-
based facial feature detection system, in which a set of fixed-
sized patches were extracted to vote for each of the salient
feature points, e.g., eye corners, mouth corners and chin tip.
The random forest-based facial feature point detection system
can robustly and accurately locate the feature points on the
3D face sequence in real time.

It is noticeable that all of the above-mentioned methods
align the face by relying on one vertex or a few reliable
vertices, such as the nose tip and the eye corners. However,
it is known that in many applications (e.g., face animation,
parameterization, synthesis), the landmarks are required to
be located at the forehead, cheeks, side of the face and
other specific positions. It remains challenging to find reliable
landmarks in those areas of the face that do not appear to have
any significant features.

B. Statistical Point Distribution Model-based Approach

In 1995, Cootes and Taylor [13] proposed an Active Shape
Model (ASM) to locate objects in images. Then, an Active
Appearance Model (AAM) [17]–[23] was developed for face
landmark detection. Recently, AAM has been extended to 3D
face modeling [24]–[26]. Although these algorithms can detect
a set of landmarks by fitting an AAM to an image, 2D image
or 3D texture information is required. These algorithms are
not suitable if the data consist of only a 3D point cloud or a
triangulated face mesh.

Nair et al. [4] presented a 3D face landmark localization
method that was based on a point distribution model (PDM).
The PDM is a statistical model that describes the relative
positions of the landmarks. The learned PDM is used to
fit the 3D face using a transformation between the model
points and the candidate vertices on the mesh. The landmarks
defined in the PDM include not only the eye and mouth

corners and the nose and chin tips but also the eyebrows.
However, the PDM is sensitive to variations in expression and
to incomplete coverage of the 3D face. Afterward, Perakis et
al. [10] introduced a 3D facial landmark localization method
that was robust to yaw and expression changes. In [10], the
shape index and spin image are used as features for detecting
candidate landmarks e.g., eye corners, mouth corners, and
nose tip. Then, a pre-trained PDM is explored to filter the
landmarks.

To overcome the limitation of [15], Fanelli et al. further
built a random forest based AAM (RF-AMM) [16] to locate
more landmarks robustly, in which the random forest based
pose estimation [15] is used to accomplish the initialization.
RF-AAM achieves real-time performance and high accuracy
against variations in expression and head pose. However, it is
noticeable that both the random forest in [15] and the RF-
AAM in [16] require that the testing data have a similar
resolution to the training data.

In this paper, we propose a new framework for 3D face
landmark localization that is based on local coordinate coding,
which enables us to locate landmarks robustly under variations
in pose, expression and resolution and even in cases when the
3D face is not completely covered by the data. Our approach
consists of two stages. In the first stage, 3D face alignment
is performed based on nose detection. Our nose detection is
different from all of the methods mentioned above in that
the whole nose region is detected including the bridge and
the sides of the nose. After nose detection, we apply an
affine transform to obtain a coarse alignment between the 3D
face and a reference 3D face. Then, an ICP algorithm [2]
is employed to refine the alignment. In the second stage,
we first perform 3D face re-sampling to build the training
database for LCC-based [27] landmark localization. Then, a
coupled dictionary is learned based on the training database
and the corresponding landmarks. Afterwards, given a new
3D face, a set of landmarks are synthesized based on the
coupled dictionary. Finally, the landmarks are located under
the guidance of synthesized landmarks that are based on the
coupled dictionary.

The remainder of this paper is organized as follows. Sec-
tion II describes the 3D face alignment that is based on
nose detection. Section III describes the 3D face landmark
localization that is based on LCC. Section IV presents the ex-
perimental results. Finally, Section V summarizes our method
and proposes future directions for further research.

II. STAGE ONE: COARSE ALIGNMENT

In this section, we describe in detail our proposed 3D face
alignment method, which is based on nose detection. The 3D
face alignment is accomplished through an ICP algorithm that
is based on the detected nose. There are three advantages to
base the 3D face alignment on the nose. First, the nose is at
the center of the face, and thus, it is likely to be included in
the scanned data. If the nose is omitted from the scanned data,
then the data are unlikely to be useful for applications such as
computer animation, games and movie production. Second,
it is obvious that the nose is the most distinctive feature
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Fig. 1. (a) 3D Face with normals. (b) Front view of the nose with normals.
(c) Section view of the nose with normals.

of the face, and it is easy to detect. Third, the nose is the
most stable feature of the face; in particular, the shape of the
nose is invariant under variations in the pose, resolution and
expression. It might be argued that the forehead is also stable;
however, the forehead lacks distinctive features. In addition,
the area of the forehead that is included in a scan varies from
one scan to another.

A. Nose Detection

The proposed approach detects the nose region by parti-
tioning the input 3D face into several patches, in such a way
that the vertices in the same patch have similar geometric
properties. Because of to the distinct shape of the nose, the
vertices on the nose will be assigned to one of two patches
on either side of the nose. A spin-image-based descriptor is
used to represent each patch in the face, and a trained SVM
detector is then used to select the two patches on either side
of the nose. In this way, the whole nose is obtained.

1) Preliminary: The input to our method is an arbitrary-
pose 3D face that is described by a set of 3D vertices and
triangles. However, these vertices and triangles alone are not
sufficient for nose detection: the vertex normals are necessary.
A vertex normal is a surface normal vector that is located at
a 3D vertex that is included in the data. Several algorithms
for computing vertex normals have been proposed in recent
decades [38]. In this paper, the vertex normal is calculated by
a very simple algorithm, which is defined as follows:

np =
1

m

m∑
i=1

Ni (1)

where the summation is over all of the facets that are incident
to the vertex p, and Ni is the normal vector to the plane that
contains the i-th triangular facet.

Fig. 1.(a) shows a 3D face that has all of the vertex
normals, and (b) and (c) are a front view and section view,
respectively, of the nose with vertex normals. As Fig. 1 shows,
the vertex normals on the same side of the nose share similar
directions, while the vertex normals on different sides of the
nose are nearly symmetric and have different directions. This
circumstance is a very distinguishing characteristic that is used
by us to differentiate the vertices on the nose from the vertices
on other parts of the 3D face.

2) Face Partitioning: Next, we explain in detail how to
partition a 3D face into several patches based on the vertex
normals. This partitioning is performed in two steps: clustering
and graph-based partitioning.

Step 1. Clustering. When considering that each vertex
normal is computed using the data in a local neighborhood that
is independent of the face pose, we perform clustering that is
based on the directions of the vertex normals. We use k-means
clustering [39] to obtain a cluster set C = {c1, c2, c3, · · · , ck}.
Figs. 2.(a), 3.(a) and 4.(a) show our results on different 3D
face databases. The k value of the k-means clustering is set
to 15 empirically.

From the figures, we observe that the vertices on a given
side of the nose are assigned to the same cluster, as we would
expect. This result is crucial because the nose is detected by
finding the specific clusters on its two sides. However, note that
some vertices from other regions of the face (e.g., a cheek) are
assigned to the same cluster as the nose vertices. In addition,
there are many small clusters that have only a few vertices.
These problems make it difficult to detect the nose. For better
detection, a graph-based partitioning algorithm is used to edit
the clusters that are obtained using the k-means algorithm.

Algorithm 1 Graph-based Partitioning Algorithm
Input: Face mesh F =< V,E >,

Cluster set C = {c1, c2, c3, · · · , ck},
Edge weight list W = {w1, w2, w3, · · · , wm},
Minimum patch size threshold λ.

Output: Patch set P = {p1, p2, p3, · · · , pn}
1. begin
2. P = {}
3. for i = 1→ k do begin
4. Divide ci into patches based on the connectivity and obtain
5. the patch set Pi P = Pi ∪ P
6. end for
7. for t = 1→ m do begin
8. Get the edge eij = (vi, vj) according to the weight wt

9. Find patch pi and patch pj , where vi ∈ pi and vj ∈ pj
10. if pi ̸= pj and min

(
size(pi), size(pj )

)
< λ

11. Merge pi with pj and update P
12. else
13. Continue
14. end if
15. end for
16. return P = {p1, p2, p3, · · · , pn}
17. end

Step 2. Graph-based Partitioning. The graph-based par-
titioning algorithm merges small clusters. Let F = (V,E)
denote a 3D face mesh that has a set of vertices V and a
set of undirected edges E. Each edge eij ∈ E is a pair
of adjacent vertices (vi, vj) that has a corresponding weight
w(eij), where vi, vj ∈ V . The edge weight is a measure of the
distance between two adjacent vertices. The weight of an edge
that connects two adjacent vertices from the same cluster is
zero. For an edge eij that connects two adjacent vertices from
different clusters, the weight is calculated as follows:

w(eij) = e− cos θ (2)

where θ is the angle between the normal vectors vi and vj . A
larger angle yields a larger value for the weight. Considering
we have

cos θ =
ni · nj

|ni||nj |
(3)

where ni and nj are unit normal vectors of vi and vj , and
|ni||nj | = 1, the weight function can be rewritten as
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(a)

(b)

Fig. 2. Results of the face partitioning on the BU-3DFE database. (a) Results of k-means clustering, in which every color represents a cluster. (b) Results
of the Graph-based Partitioning Algorithm, in which every color represents a patch.

(a)

(b)

Fig. 3. Results of the face partitioning on the GavabDB database. (a) Results of the k-means clustering, in which every color represents a cluster. (b) Results
of the Graph-based Partitioning Algorithm, in which every color represents a patch.

w(eij) = e
−

|ni||nj |
ni·nj = e−ni·nj (4)

The edges that have zero weight are deleted and the
remaining weights are sorted ascendingly into a list W =
{w1, w2, w3, · · · , wm} according to the edge weight values.

As mentioned above, vertices from different parts of the
3D face can be included in the same cluster, which will
cause difficulties in nose detection. To solve this problem,
we separate the vertices within each cluster by accounting
for the spatial connectivity. Every cluster is divided into a
number of small patches, such that the vertices in each patch
form a connected sub-graph of the original triangulation. Let
the set of patches be P = {p1, p2, p3, · · · , pn}. We define
the size of a patch as the number of vertices in the patch.
Patches that are too small are removed by iterative merging.

A minimum patch size threshold λ is used to filter out the
small patches. During the iterative process, every small patch
that has a size below λ is merged with the nearest adjacent
patch. Additionally the nearest adjacent patch is identified as
the patch that is connected to the small patch by the edge
that has the smallest weight. The merging process terminates
when the size of each patch is larger than λ. Empirically, the
vertices of the nose make up approximately 6% of the total
vertices of the 3D face; hence, in practice, λ is set to 0.03N
in our approach, where N is the total number of vertices in
the 3D face. The final result is that the face is covered by a
few large patches and each side of the nose corresponds to
an individual patch. The graph-based partitioning algorithm is
described in Algorithm 1.

Figs. 2.(b), 3.(b) and 4.(b) show the results of the
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(a)

(b)

Fig. 4. Results of the face partitioning on the FRGC 2.0 database. (a) Results of k-means clustering, in which every color represents a cluster. (b) Results
of the Graph-based Partitioning Algorithm, in which every color represents a patch.

Graph-based Partitioning Algorithm. In each figure, each color
represents a patch, and as observed, the 3D faces are covered
by a relatively small number of large patches, and the nose
region is partitioned into two patches, one on each side of the
nose. Using the partitioning result, we can easily detect the
nose by selecting the two patches and combining them.

3) Feature Descriptor: To select the nose patches, we must
find a descriptor that can differentiate the nose patches from
other patches. Because of the distinctive shape of the nose,
spin images [40] that are calculated at each inner vertex are
utilized to describe a patch.

A spin image is a local shape descriptor that is initially
introduced by Johnson and is used for surface matching. It is
very similar to a space histogram and describes the relative
distance between an oriented point and other points.

We use the mean of the spin images (MSI) to represent a
patch. The MSI in a patch is defined as follows:

MSIPr =
1

|Pr|
∑

pi∈Pr

Spi (5)

where |Pr| is the number of vertices in the patch Pr, and Spi

is the spin image at vertex pi. Because MSI accounts for all of
the vertices in the patch, it offers an advantage for overcoming
problems that are caused by noise, local deformation and
resolution. In addition, MSI is robust to the pose variations
because the spin images are object-centered representations.
Fig. 5 shows examples of the MSIs of different patches. Fig.
5 (a) and (b) are spin images for the two sizes of the nose;
(c) is for the left cheek; and (d) is for the right jaw.

4) Feature Detector: To detect the two nose patches, we
must determine whether a patch is a part of the nose. This
determination is a binary classification problem, and many
methods have been proposed to address this issue. In our
approach, we use a detector that is based on the popular
SVM classifier [41]. The detector is generated by supervised

(a) (b)

(c) (d)

Fig. 5. MSI of different patches.

training that utilizes the MSIs for different patches. We label
the patches manually for training the SVM classifier.

Our detector is applicable to a wide range of different 3D
faces because the MSIs of the nose patches are similar for
all of the 3D faces. Based on the output of the detector, only
two patches are selected. The two selected patches are merged
to obtain the nose region. Experimental results for the nose
detection are given in Section IV.

B. Coarse Alignment

Once the location of the nose in the point cloud is known,
alignment of the input face is possible. However, because our
nose detection algorithm focuses on the whole nose region
and the number of selected vertices for each input face is
different, the 3D vertices in the nose region are unordered. It
is difficult to obtain an accurate alignment using these vertices.
In other words, only a coarse alignment is achieved for a 3D
face alignment that is based on the nose.

As Fig. 6(b) shows, given an upright frontal 3D reference
face, the test face and reference face can be related to each
other by a 3D affine transformation [43].
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vr = t+R(α1, α2, α3) · s · vt (6)

where vt and vr denote the corresponding vertices on the test
face and reference face; t denotes the translation vector; α1,
α2, α3 denote the three rotation parameters; R denotes the
total rotation matrix; and s denotes the scale factor.

The rotation matrix is an orthogonal matrix that is the
product of three individual rotation matrices:

R(α1, α2, α3) = R1(α1) ·R2(α2) ·R3(α3)

where α1, α2 and α3 are the rotation angles that are along
the x, y and z axes, respectively. As described in [43], three
control vectors are needed to obtain the rotation matrix in (6).
In our approach, the rotation matrix is computed based on the
detected nose. Given the two patches on either side of the
nose, we first extract the average normals for each patch as
follows

nPr =
1

|Pr|
∑

vi∈Pr

ni (7)

where ni is a unit normal vector at the vertex vi and |Pr| is
the number of vertices in patch Pr.

Afterwards, we can obtain the third vector from the cross
product of the two normal vectors. Given three mutually
orthogonal vectors for the test face and reference face, the
rotation matrix can be obtained.

The translation vector t can be obtained by computing the
distance between the center of the bounding boxes for each
nose. The scale factor s is estimated using the ratio of the
sizes of the two bounding boxes.

Fig. 6 describes the work flow of our 3D face coarse
alignment process.

C. Fine Alignment

Because only the nose vertices are involved in the coarse
alignment, the normal vectors that are used to define the 3D
affine coordinate transformation cannot exactly represent the
orientation of the face. The coarse alignment is not sufficiently
accurate to build the correspondences between the features of
the test face and reference face. In our approach, an Iterative
Closest Point (ICP) algorithm [2] is used to further refine
the alignment. Because the expression of the test face is
unknown, it is desirable to have a reference 3D face set F
that consists of different expressions of a subject to perform
the fine alignment.

The Iterative Closest Point (ICP) algorithm [2] has been
proven to be valid for matching different 3D faces [45]. In our
approach, the ICP algorithm is used to improve the alignment.
The ICP algorithm is an iterative procedure for aligning
two free-form shapes by minimizing the mean square error
between the points in the test face ft and the closest points
in the reference face fm

r ∈ F . The algorithm terminates when
the iteration exceeds a preset threshold. In our approach, the
preset iteration number is set to 30 empirically. The algorithm
outputs the affine transformation, including the rotation matrix
R, translation vector t and scale parameter S. Only the face

fm
r that has the smallest error in F is chosen as the final

reference face. After employing the ICP algorithm, the affine
transformation parameters are applied to ft to align it as
closely as possible with the reference face fm

r .
In the fine alignment, given a 3D face ft that has an

unknown expression, the ICP algorithm helps us to find the
most suitable face fm

r in the reference 3D face set F and align
ft to fm

r in an iterative way.
Please note that F is only a fraction of the training database,

which is composed of 25 expressive faces from one subject in
the training database. In the training database, all of the 3D
faces are pre-aligned well for the purpose of sharing the same
number of vertices and the same topology.

III. STAGE TWO: LANDMARK LOCALIZATION BASED ON
LOCAL COORDINATE CODING

The key aim of LCC-based landmark localization is to
obtain the 3D coordinate of the landmarks of the input 3D
face. In our approach, we first perform re-sampling to establish
the dense vertex-wise correspondences between the input face
and training database. Then, based on the 3D faces in the
training database and their corresponding landmarks, we learn
a coupled dictionary to model the relationship between the
point cloud and the landmarks based on Local Coordinate
Coding (LCC) [27]. Afterward, given the test 3D face, we
can synthesize the 3D coordinate of the landmarks based on
the learned coupled dictionary. Finally, the landmarks on the
given test 3D face can be located under the guidance of the
synthesized landmark coordinates.

A. Face Re-sampling

After alignment, the input 3D face is re-sampled by using
the reference 3D face. The re-sampling involves the projection
of each face onto a cylinder [30]. Fig. 7 illustrates the pipeline
of the two-step re-sampling algorithm.

1) Cylindrical projection: After face alignment, the input
face ft and reference face fm

r are projected onto a
cylinder. For a vertex p = [xo, yo, zo]

T , its cylindrical
coordinates after projection are (uo, vo), where uo =
arccos(xo/r), and r =

√
x2
o + z2o , v0 = y0.

2) Mesh image and re-sampling: To build the correspon-
dence between the input face ft and its reference face
fm
r , each vertex in ft must be matched to a correspond-

ing vertex in the reference face. To achieve this dense
vertex-wise correspondence, we perform interpolation
of the cylindrically projected ft to obtain a high-
resolution mesh image. Based on the cylindrical coor-
dinates, the reference face can perform re-sampling on
the mesh image. Finally, the re-sampled test 3D face is
obtained, which has dense vertex-wise correspondence
with the training face.

Because all of the training faces are well aligned in advance,
the correspondence between the given test face and the refer-
ence face can also be applied to the other faces in the training
database.
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(a) (b) (c)

Fig. 6. Process of coarse alignment. (a) The reference face and input face. (b) 3D affine transformation. (c) Results of the coarse alignment.

Reference Mesh Image

Mesh ImageInput Faces

Correspondence

Fig. 7. Pipeline of 3D face re-sampling.

B. Coupled Dictionary Learning for Local Coordinate Coding

It is known that the landmarks occupy the important lo-
cations in the 3D face in such a way that they cover and
describe the shape of the 3D face. In our coupled dictionary
learning for local coordinate coding (LCC), we assume the 3D
faces and their corresponding landmark sets from manifolds
have similar local geometries in two different spaces [28],
[29], [32]. Hence, we concatenate each training 3D face and
its corresponding landmark set together as a sample. Given
a sample x = {xf , xl}, we define xf as the training 3D
face, which contains N vertices, and xl as its corresponding
landmark set, which contains L vertices. Each vertex is defined
with the 3D coordinate vi = (lxi , l

y
i , l

z
i ). Thus, each input face

is converted into a 3N × 1 vector, and the landmark set is a
3L×1 vector for L landmarks. The LCC finds the best coding
α(x) ∈ RM for x, which minimizes the reconstruction error
and the violation of the locality constraint. This concept can
be formulated as follows:

min
D∈C,α

1

2
||x−Dα||2 + µ

∑
j

|αj |∥dj − x∥2 (8)

where C = {D|∥di∥ ≤ 1, i = 1, . . . ,M} is the convex feasible
set of D. D = [d1, d2, · · · , dM ] ∈ R3(N+L)×M is a set of

bases or a dictionary. Here, di = df (i), dl(i), and df (i), dl(i)
are 3D face and landmark sets, respectively. It is important to
constrain the columns of D because we can fix Dα and the
scale of D to make

∑
j |αj |∥dj − x∥2 arbitrarily small. The

first term of the objective function measures the reconstruction
error, and the second term preserves the locality of the coding.

Given a set of samples {x1, x2, · · · , xn} ∈ R3(N +L), the
bases or dictionary D = [d1 · · · dM ] ∈ Rh×M can be learned
by linearly approximating these samples as (8). For dictionary
learning, we can minimize the summed objective function of
all data samples over D and α simultaneously [33], [34], i.e.,

min
D∈C,αi

∑
i

(
1

2
||xi −Dαi||2 + µ

∑
j

|αj
i |∥dj − xi∥2

)
(9)

where xi is the i-th sample and αi is its corresponding coding
coefficient.

However, the above objective function is not jointly convex
over D and α, which makes it difficult to solve. Nevertheless,
it is convex over D with fixed α and vice versa. Therefore,
we can optimize over D while keeping the value of αi fixed,
and then, we can optimize over αi while keeping the value
of D fixed. This alternating set of optimizations is performed
until convergence.

For a fixed dictionary D and a sample x, optimizing over
α can be transformed into optimizing the following equation
over β:

min
β

1

2
||x−DΛ−1β||2 + µ∥β∥1 (10)

where Λ is a diagonal matrix whose diagonal elements are
Λjj = ||dj − x||2 and β = Λα, and ||β||1 =

∑
j |βj | denotes

the l1-norm. In addition, we assume that dj ̸= x; thus, Λ−1

exists. After solving β, we can obtain α = Λ−1β. Here, α is
an m× 1 vector that has k non-zero elements, and k ≪ m.
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Fig. 8. Procedure for landmark localization.

For a fixed α, optimizing over D is a constrained quadratic
programming problem. By expanding the squares in Eq. (9)
and dropping the terms that do not have D, we can obtain

D=argmin
D∈C

∑
i

(
1

2
||xi −Dαi||2 + µ

∑
j

|αj
i |∥dj − xi∥2

)
=argmin

D∈C

1

2
tr
[
DTD

(∑
i

αiαi
T + 2µΣi

)]
− tr

[
DT ·(∑

i

xiαi
T + 2µxiᾱ

T
i

)]
(11)

where ᾱi is the component-wise absolute value of αi, i.e.,
ᾱj
i = |αj

i |, and Σi is a diagonal matrix that is constructed
from αi.

Define two matrices, A =
∑

i αiαi
T + 2µΣi and B =∑

i xiαi
T + 2µxiᾱ

T
i . Then, the optimal D can be found by

performing a block-coordinate descent. In iteration k of the
dictionary update, we update the j-th column dkj when the
other columns are fixed. Denote aj and b − j as the j-th
columns of the matrices A and B, ajj as the (j, j)-th element
of A, and the dictionary Dk at iteration k. The updating rule
is as follows

dk+1
j = Π

(
dkj − 1

ajj

(
Dkaj − bj

))
(12)

where Π(·) is the projection operator onto the feasible set of
D.

The detail of the coupled dictionary learning algorithm is
given in Algorithm 2.

C. Landmark Localization

In contrast to the previous feature detection-based method
and the statistical PDM-based method, in our approach, we
synthesize the landmarks first instead of detecting or fitting

Algorithm 2 Coupled Dictionary Learning
Input: Training database {x1, x2, · · · , xn},

Initial dictionary D0, µ.
Output: Learned dictionary Dn

Initialize: A0 ← 0, B0 ← 0
1. for t← 1 to n do
2. Draw a sample xt from the training database.
3. Local coordinate coding: compute using Eq. (10)

αt = argminα
1
2
∥xt−Dt−1α∥2+µ

∑
j |αj |∥ (Dt−1)j − xt∥2

4. Update At ← At−1 + αtαT
t + 2µΣt.

5. Update Bt ← Bt−1 + xtαT
t + 2µxtᾱT

t .
7. Update dictionary using Eq. (12)

dtj = Π
(
dt−1
j − 1

ajj

(
Dt−1aj − bj

))
.

8. end for
9. return Dn

them through some local feature descriptor or statistical point
distribution model. This concept enables us to perform the
landmark localization robustly over the whole face and to
adapt to changes in the extent to which the 3D data cover
the face.

As Fig. 8 shows, some sample faces and their corresponding
landmarks are selected as the training data to learn the two
dictionaries for the LCC.

Given that the coupled dictionary is learned, let xf be an
input 3D face, let Df be the 3D face dictionary, and let α be
the coefficients of Df . The approximation to xf can then be
formulated as follows:

x
′

f =
∑

Dfα (13)

It is obvious that the LCC solution has only a few significant
values in α because of the locality constraint that we demon-
strated in Eq. (8). Hence, the above process can be transformed
into the problem of selecting the local bases for a given 3D
face xf to form a local coordinate system.
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minc
∑

x ∥xf −Dfα∥2

s.t. 1Tα = 1 (14)

As discussed in Section III-B, we assume that the 3D faces
and their corresponding landmark sets form manifolds that
have similar local geometries in two different spaces [32].
Hence, we can approximate the corresponding landmark set
xl by using the same coefficients for x

′

f . By replacing the 3D
face dictionary Df with the landmark dictionary Dl, we can
obtain the corresponding synthesized landmark set x

′

l:

x
′

l =
∑

Dlα (15)

Considering that x
′

l is synthesized based on dictionary Dl,
it is clear that x

′

l is not exactly equal to the landmark set xl,
even though it is very close to it. It is desirable to employ
vertices that are in the 3D face instead of synthesized vertices
to be the landmarks. Thus, in our approach, we further find
the vertices that are closest to the synthesized landmarks to
be our localization result. Given x

′

l = {v′

i}1≤i≤L and xl =
{vi}1≤i≤L,

vi = min
vj

∥v
′

i − vj∥2 (16)

where vj ∈ xf

Finally through the above steps, each input 3D face is
marked with the corresponding landmarks.

IV. EXPERIMENTAL RESULTS

A. Database

In this section, we test our method on the BU-3DFE
database [35], GavabDB database [36] and FRGC 2.0 database
[37]. The experimental results are demonstrated in the follow-
ing subsections.

The BU-3DFE database contains 100 subjects (56% female,
44% male), who range in age from 18 to 70 years and who
have a variety of ethnic/racial ancestries. There are 25 instant
3D expression models for each subject, which results in a total
of 2,500 3D facial expression models. In addition, the BU-
3DFE database provides 83 landmarks for each 3D face, which
help us to train and test our proposed landmark localization
method.

The GavabDB database contains 549 3D images of facial
surfaces. The meshes in the database correspond to 61 different
individuals with different poses and facial expressions.

The FRGC 2.0 database is sponsored by several government
agencies and contains hundreds of frontal 2D face images and
3D face meshes. Different poses and expressions are observed
in the 3D faces.

Note that because the proposed method is based on nose
detection, we chose only the 3D faces that have noses in our
experiments.

B. Nose Detection

Before conducting the experiments, 50 faces from various
ancestries and with various expressions are selected for train-
ing an SVM model. Because the MSI of the nose patches
differs greatly from those of other patches, as Fig. 5 shows,
a simple linear kernel is used in the SVM classifier. After
detection, the detected noses are shown in red on the frontal
faces for better display.

For the nose detection on the BU-3DFE database, the testing
faces can be divided into two sets. Set 1 consists of faces
that have only yaw rotations, slight expression variations and
missing data. Set 2 consists of faces that have combinations
of yaw rotation, pitch rotation, roll rotation, and extreme
expression variations. Because the 3D faces in the BU-3DFE
database are frontal, we rotate these models for evaluation.

Some representative experimental results that are obtained
from Set 1 and Set 2 are shown in Fig. 9. Figs. 9 (a) and (b)
illustrate the nose detection results for Set 1. As the figure
shows, our approach correctly detects the noses of 3D faces
that have different yaw rotations and expressions, even when
there is a hole that is caused by missing data. Figs. 9 (c) and
(d) illustrate the nose detection results for Set 2. Faces from
Set 2 have combinations of yaw rotation, pitch rotation and
roll rotation along with extreme expression variations. As the
figure shows, our approach still correctly detects the noses of
the 3D faces.

To validate the proposed nose detection method, we exper-
iment further with the GavabDB and FRGC 2.0 databases.
These two databases consist of many originally non-frontal
faces. Collars, necks and missing data are challenges for
our proposed nose detection method. Some representative
experimental results are shown in Figs. 10 and 11.

C. Face Alignment

Nair et al. [4] also presented an ICP-based 3D face align-
ment approach, in which the curvature information is utilized
to find the facial features to make a coarse alignment before
performing the ICP-based fine alignment. To evaluate the
performance of our approach, we make a comparison between
the Nair et al. approach and our approach.

The alignment is successful when the average pixel-wise
error between the test face and reference face is less than 2
mm. The alignment rate is the ratio between the number of
successfully aligned faces and the total number of tested faces.
All of the methods have been programmed using Matlab 7.11
on a PC with an Intel(R) Core(TM)2 Duo CPU E5800 3.16
GHz and 4 GB RAM. Here, 1500 3D faces from different
databases are used for testing.

In the evaluation, 1500 faces are randomly selected from
the three databases for testing. Both neutral and expressive
3D faces are included. Each 3D face is rotated around the x-
axis, y-axis and z-axis. The angle of rotation around each axis
is generated randomly and ranges from −π to π. We divide the
testing faces into three groups according to their expressions:
neutral, mild and extreme.

We give the average accuracy in Table I. The alignment
error measures the average distance in millimeters between
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(a)

(b)

(c)

(d)

Fig. 9. (a) Examples of 3D faces in Set 1. (b) The nose detection results of Set 1. (c) Examples of 3D faces in Set 2. (d) The nose detection results of Set
2. Note that the nose detection results are shown by rotating the input faces into frontal views.

(a)

(b)

Fig. 10. (a) Examples of input 3D faces. (b) The nose detection results of the GavabDB database.

(a)

(b)

Fig. 11. (a) Examples of input 3D faces. (b) The nose detection results of the FRGC database.
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TABLE I
PERFORMANCE OF NOSE DETECTION BASED 3D FACE ALIGNMENT

Expression Neutral Mild Extreme
Samples 512 603 385

Error (mm) mean std. < 2 mm mean std. <2 mm mean std. <2 mm
Nair et al. [4] 2.07 1.74 77.4% 3.13 2.54 67.3% 5.15 3.75 50.9%

Ours 1.45 1.27 94.5% 1.97 1.51 93.7% 2.45 1.93 80.8%

TABLE II
ACCURACY COMPARISON ON THE ROTATED NEUTRAL 3D FACES (OC FOR OUTER CONTOUR, OUL FOR OUTER UPPER LIP, OLL FOR OUTER LOWER LIP,

ILL FOR INNER LOWER LIP, IUL FOR INNER UPPER LIP, LE FOR LEFT EYE, RE FOR RIGHT EYE, NE FOR NOSE, LEB FOR LEFT EYE-BROW, REB FOR
RIGHT EYE-BROW.)

Method RF-AAM [16] PDM [4] SS-PDM [10] Ours
Error <5 mm mean std. < 5 mm mean std. <5 mm mean std. <5 mm mean std.
OC 84.5% 3.38 3.35 33.0% 8.95 7.85 72.1% 4.21 2.36 91.2% 2.91 2.01

OUL 83.4% 3.50 2.51 35.0% 8.47 7.12 63.5% 5.12 3.32 88.7% 3.05 2.23
OLL 85.8% 3.22 2.31 26.1% 11.73 10.11 62.8% 5.21 3.23 85.3% 3.31 2.21
ILL 87.6% 3.12 2.15 25.6% 12.26 11.12 62.0% 5.32 3.31 89.2% 2.89 2.16
IUL 87.1% 3.14 2.13 29.4% 10.57 10.14 66.0% 4.75 3.01 88.9% 2.91 2.15
LE 86.6% 3.17 2.57 37.3% 7.75 6.75 74.5% 4.05 2.24 93.1% 2.59 2.31
RE 87.4% 3.13 2.55 37.8% 7.28 6.73 73.3% 4.12 2.57 93.0% 2.61 2.33
NE 78.8% 3.77 2.79 79.7% 3.75 2.23 88.4% 3.09 2.21 93.4% 2.55 2.22

LEB 77.6% 3.87 2.80 26.6% 11.63 10.73 66.5% 4.73 2.41 88.3% 2.99 2.84
REB 77.7% 3.86 2.83 26.6% 11.62 22.23 67.4% 4.53 2.34 89.2% 3.03 2.82

TABLE III
ACCURACY COMPARISON ON THE ROTATED MILD EXPRESSIVE 3D FACES.

Method RF-AAM [16] PDM [4] SS-PDM [10] Ours
Error <5 mm mean std. < 5 mm mean std. <5 mm mean std. <5 mm mean std.
OC 59.6% 5.48 4.43 20.6% 16.65 12.75 63.5% 5.11 4.76 71.5% 4.27 3.23

OUL 83.2% 3.51 3.33 26.0% 12.21 13.43 53.6% 5.82 4.32 88.7% 3.07 2.73
OLL 53.7% 5.78 4.50 21.4% 15.73 15.11 34.6% 7.21 5.23 81.2% 3.63 3.32
ILL 58.0% 5.52 4.73 21.9% 15.62 15.31 34.6% 7.22 5.31 71.3% 4.27 3.42
IUL 54.3% 5.74 4.73 28.0% 11.37 9.41 45.7% 6.15 5.01 86.6% 3.17 2.75
LE 82.7% 3.56 3.27 29.4% 10.57 9.46 63.2% 5.15 5.01 86.6% 3.17 2.75
RE 83.7% 3.47 3.15 29.9% 10.28 9.13 63.5% 5.12 2.57 92.3% 2.74 2.45
NE 65.0% 4.86 3.47 33.6% 8.75 7.23 69.4% 4.39 3.21 93.3% 2.56 2.41

LEB 62.3% 5.27 4.71 20.4% 16.73 13.23 45.0% 6.23 5.41 88.4% 3.10 2.98
REB 62.3% 5.26 4.73 20.8% 16.32 12.43 46.8% 6.08 2.34 88.9% 3.05 2.82

TABLE IV
ACCURACY COMPARISON ON THE ROTATED EXTREME EXPRESSIVE 3D FACES.

Method RF-AAM [16] PDM [4] SS-PDM [10] Ours
Error <5 mm mean std. < 5 mm mean std. <5 mm mean std. <5 mm mean std.
OC 47.8% 6.01 5.65 15.4% 20.73 17.75 47.2% 6.04 5.43 67.2% 4.55 4.02

OUL 82.2% 3.52 3.01 24.0% 13.78 13.43 43.7% 6.43 5.67 88.4% 3.10 3.27
OLL 39.1% 6.63 5.31 17.9% 18.33 17.11 35.5% 7.95 6.99 76.7% 3.90 3.83
ILL 45.6% 6.22 5.42 20.0% 17.64 16.23 35.8% 8.20 7.41 67.8% 4.51 3.66
IUL 35.3% 7.14 5.87 27.0% 11.57 10.22 38.8% 6.67 5.31 85.3% 3.25 2.99
LE 77.6% 3.68 2.99 25.1% 12.75 11.65 47.5% 6.01 4.74 92.2% 2.77 2.71
RE 80.0% 3.70 3.62 24.7% 12.98 11.31 46.7% 6.09 4.81 91.7% 2.81 2.83
NE 55.5% 5.68 4.85 24.2% 13.75 12.11 65.4% 4.80 4.11 93.3% 2.57 2.43

LEB 59.7% 5.47 5.16 19.7% 17.93 16.25 41.2% 6.54 4.81 86.4% 3.18 3.05
REB 52.9% 5.82 5.19 19.0% 18.04 17.03 45.9% 6.13 4.33 88.6% 3.07 2.93

the corresponding vertices in the test face and reference face.
Table I shows that our method outperforms Nair et al. method
in all of the expression groups. Nair et al. method uses
three thresholds to identify the salient high-curvature regions,
concave regions and convex regions, which are not robust if
there are large deformations in the 3D faces. In contrast, our
approach is more robust to the variations in the expressions
because the 3D shape of the nose is stable. Additionally, with
regard to the run time, Nair et al. method takes 44.178 seconds
to process one 3D face, while our method takes 9.71 seconds.

D. Landmark Localization
Comprehensive and quantitative evaluations have been

performed in our experiments. Comparisons between RF-

AAM [16], Nair et al. work (PDM for short) [4], Perakis
et al. work (SS-PDM for short) [10] and our approach are
performed on the tolerance to different rotations, expressions
and resolutions. To compare the accuracy of the landmark
locations comprehensively, we divide the 83 landmarks into
several groups: 15 for the outer contour (chin and cheeks),
seven for the outer upper lip (outer mouth corners and upper
outer lip), five for the outer lower lip, three for the inner lower
lip, five for the inner upper lip (inner mouth corners and inner
upper lip), eight for the left eye, eight for the right eye, 12
for the nose, 10 for the left eye brow and 10 for the right
eye brow. The Euclidean distance in millimeters between the
located landmark and the ground truth is used to measure the
error.
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TABLE V
ACCURACY COMPARISON ON THE BU-3DFE DATABASE FACES. EACH FACE CONTAINS APPROXIMATELY 35K VERTICES.

Method RF-AAM [16] PDM [4] SS-PDM [10] Ours
Error <5 mm mean std. < 5 mm mean std. <5 mm mean std. <5 mm mean std.
OC 64.8% 4.89 4.35 22.3% 15.45 13.75 63.5% 5.12 4.73 76.5% 3.91 3.02

OUL 83.2% 3.51 2.53 27.3% 11.47 10.12 53.6% 5.79 4.17 88.7% 3.07 2.57
OLL 62.8% 5.22 5.31 22.5% 15.23 10.11 38.0% 6.79 5.23 81.7% 3.61 3.23
ILL 64.6% 4.92 4.45 22.7% 15.16 10.22 37.3% 6.91 5.41 76.9% 3.89 3.66
IUL 61.8% 5.34 5.33 28.3% 11.17 9.34 52.5% 5.85 4.31 87.7% 3.11 2.75
LE 83.7% 3.47 2.57 29.8% 10.34 8.85 63.8% 5.07 2.74 92.5% 2.69 2.41
RE 84.0% 3.43 2.55 30.3% 10.18 8.63 63.5% 5.11 3.47 92.4% 2.72 2.43
NE 65.7% 4.77 3.79 34.1% 8.67 7.21 73.7% 4.09 2.41 93.3% 2.56 2.23

LEB 65.0% 4.87 3.81 22.3% 15.43 13.34 52.7% 5.83 3.42 88.4% 3.09 2.95
REB 64.0% 4.98 3.87 22.3% 15.32 12.23 56.8% 5.58 3.33 88.9% 3.05 2.93

TABLE VI
ACCURACY COMPARISON ON THE SUBSAMPLED BU-3DFE DATABASE FACES. EACH FACE CONTAINS APPROXIMATELY 8.7K VERTICES.

Method RF-AAM [16] PDM [4] SS-PDM [10] Ours
Error <5 mm mean std. < 5 mm mean std. <5 mm mean std. <5 mm mean std.
OC 58.3% 5.43 4.83 17.2% 18.54 20.62 42.3% 7.68 7.10 76.3% 3.94 3.05

OUL 74.9% 3.90 2.81 21.0% 13.76 15.18 35.7% 8.69 6.26 88.4% 3.10 2.60
OLL 56.5% 5.79 5.89 17.3% 18.28 15.17 25.3% 10.19 7.85 81.2% 3.64 3.25
ILL 58.1% 5.46 4.94 17.5% 18.19 15.33 24.9% 10.37 8.12 76.5% 3.92 3.22
IUL 55.6% 5.93 5.92 21.8% 13.4 14.01 35.0% 8.78 6.47 87.1% 3.14 2.74
LE 75.3% 3.85 2.85 22.9% 12.41 13.28 42.5% 7.61 4.11 92.5% 2.70 2.43
RE 75.6% 3.81 2.83 23.3% 12.22 12.95 42.3% 7.67 5.21 92.4% 2.71 2.41
NE 59.1% 5.29 4.21 26.2% 10.40 10.82 49.1% 6.14 3.62 93.2% 2.57 2.32

LEB 58.5% 5.41 4.23 17.2% 18.52 20.01 35.1% 8.75 5.13 87.6% 3.12 2.91
REB 57.6% 5.53 4.30 17.2% 18.38 18.35 37.9% 8.37 5.00 87.7% 3.10 2.95

TABLE VII
ACCURACY COMPARISON OF THE INTERPOLATED BU-3DFE DATABASE FACES. EACH FACE CONTAINS APPROXIMATELY 140K VERTICES.

Method RF-AAM [16] PDM [4] SS-PDM [10] Ours
Error <5 mm mean std. < 5 mm mean std. <5 mm mean std. <5 mm mean std.
OC 43.7% 7.26 7.45 22.4% 15.43 13.75 63.5% 5.10 4.53 76.4% 3.92 3.00

OUL 56.1% 5.21 2.78 27.0% 11.42 10.12 54.3% 5.72 4.10 88.5% 3.09 2.55
OLL 42.3% 7.75 5.84 22.7% 15.10 10.11 38.2% 6.75 5.14 81.7% 3.60 3.25
ILL 43.5% 7.30 5.79 22.7% 15.11 10.22 37.4% 6.87 5.25 77.7% 3.86 3.64
IUL 41.7% 7.92 6.40 28.3% 11.20 9.34 52.5% 5.85 4.22 87.7% 3.10 2.77
LE 54.2% 5.15 3.61 29.8% 10.31 8.85 64.0% 4.97 2.66 92.7% 2.67 2.45
RE 54.3% 5.09 3.65 30.6% 10.13 8.63 64.0% 5.00 3.40 92.4% 2.71 2.44
NE 42.5% 7.08 4.73 34.5% 8.54 7.21 76.9% 3.89 2.35 93.3% 2.57 2.21

LEB 42.1% 7.23 4.67 22.1% 15.36 13.34 55.5% 5.70 3.40 87.6% 3.11 2.90
REB 41.4% 7.39 4.78 22.2% 15.34 12.23 58.0% 5.54 3.28 88.9% 3.04 2.91

We use the BU-3DFE database to make the quantitative
evaluation because it contains 100 subjects while posing six
different expressions that have varying levels of intensity. Each
3D face contains approximately 35K vertices. More impor-
tantly, each 3D face in the BU-3DFE database is annotated
with the location of 83 landmarks, which can be used as the
ground truth for the quantitative evaluation. A total of 1250
3D faces and their corresponding landmarks from 50 subjects
in the BU-3DFE database are used as training data and the
others for testing. For our LCC-based landmark localization,
all of the training faces are preprocessed to have vertex-wise
correspondence. And the average interpupillary distance (IPD)
of the test faces is 68.9 mm. For the other existing methods,
the training settings are the same as those in [16], [4] and [10].
In addition, we train a random forest [15] for the initialization
of RF-AAM, as discussed in [16]. Apart from RF-AAM, the
other landmarking methods, Nair et al. and Perakis et al. are
trained according to [4] and [10], respectively.

To compare the tolerance to rotations and expressions, each
3D face of the testing data is rotated around the x-axis, y-
axis and z-axis. The angle of rotation around each axis is
generated randomly and ranges from −π to π. Additionally,

the testing data are divided into three groups in terms of
their expression intensity: neutral, mild and extreme. The
performance of RF-AMM, PDM, SS-PDM and our approach
are given in Tables II, III and IV. The experimental results
show that our approach outperforms the state of these art
methods by providing more stable and accurate locations when
there are different poses for the 3D face.

In addition to the above evaluation, we test the tolerance to
different resolutions. In addition to using the rotation operation
mentioned above, each 3D face is subsampled twice and
interpolated in a bilinear way. Note that all of the localizers
are trained only with the data that does not have any res-
olution changes to evaluate their tolerance to variations in
the resolution. Table V shows the average accuracy on the
rotated testing data without resolution changes, in which each
3D face contains approximately 35K vertices. Table VI shows
the average accuracy on the subsampled data in which each
3D face contains approximately 8.7K vertices. Additionally
Table VII shows the average accuracy on the interpolated data
in which each 3D face contains approximately 140K vertices.
The experimental results show that our method achieves high
accurate landmark localization which is robust to variations
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(a)

(b)

(c)

Fig. 12. Examples of our landmark localizing results on the (a) BU-3DFE, (b) GavabDB and (c) FRGC 2.0. databases

in pose, expression, resolution and face incompleteness. PDM
and SS-PDM produce similar results on high-resolution data
but are worse on low-resolution data. RF-AAM is sensitive
to the variations in the resolution because both the template
patch for the AAM training and the patch for the random
forest-based posed estimation are fixed in size.

Examples of our landmark localizing results on the BU-
3DFE database are given in Fig. 12(a). We also perform our
landmark localization on the Gavab and FRGC 2.0 databases.
The examples of the results are shown in Figs. 12(b) and (c).
Some of the examples show that our approach can produce
the landmarks robustly even in cases in which the 3D faces
are not completely covered by the data.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present a local coordinate coding-based
approach to automatically locate the landmarks of a 3D face
robustly and accurately. The proposed approach consists of
two stages: nose detection-based 3D face alignment and LCC-
based landmark localization. In the first stage, nose detection is
accomplished by partitioning the 3D face into several patches
and then selecting the nose patches using an SVM classifier.
Once the nose is detected, a coarse alignment is obtained
between the test face and reference face. This alignment
is followed by an ICP-based fine alignment. In the second
stage, we re-sample on a given 3D face to build a vertex-
wise correspondence with the reference face and to obtain a
training dictionary of the LCC-based landmark localization.
Then, an LCC-based coupled dictionary learning algorithm
for landmark localization is presented. Finally, the landmark

coordinates are obtained by finding the vertices that are closest
to the synthesized landmarks based on the LCC.

The experimental results show that our method achieves
high accurate landmark localization which is robust to vari-
ations in the pose, expression, resolution and face incomplete-
ness. In the future, we will expand our work to the area of
3D face recognition and facial expression synthesis based on
alignments.
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