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Abstract

1 1-sided which doesn’t work

Let w ∈ {0, 1}n, i ∈ [n] and Q ⊆ [n]. We use wi to denote the i’th letter of w and wQ to be the
a string v ∈ {0, 1}|Q| such that, for every j ∈ [|Q|], vj = wk(j), where k(j) is the j’th smallest
member of Q.

Definition 1.1 (constraints, etc). A q-constraint is a pair C = (Q,U) where Q is a subset of
[n] of size at most q, and U is a subset of {0, 1}|Q|. A word w ∈ {0, 1}n is said to violate C if
wQ ∈ U .

A q-formula F is a set of q-constraints, all of whose corresponding Q sets are distinct. The
property PF is defined as the set of words that violate no member of F . We say that F is
solvable if PF 6= ∅.

Given a property P and a a set Q ⊆ [n], the natural constraint is CQ = (Q,UQ), where
UQ ⊆ {0, 1}q is the set of strings v for which there exist no w ∈ P with wQ = v. A witness
against a word w 6∈ P is a set Q so that w does not satisfy the natural constraint (Q,UQ).

Similarly, given a set of subsets of [n], the corresponding natural formula is the set of the
corresponding natural constraints. It may be that such a natural formula F will not satisfy
PF = P , but it will always satisfy PF ⊇ P .

Given a word w and a formula F , its violator set F (w) is the set of the Q-sets of all members
of F that are violated by w. In particular, w ∈ PF if and only if F (w) = ∅.

Note that there can be constraints C = (Q,U) where Q = ∅. In this case U is either the
empty set, in which case the constraint does not restrict the input, or U contains the “null
assignment” as its sole element, in which case C is violated by all words w.

Lemma 1.2 (probability quantization). Suppose that µ is a distribution over a set S of size
m, where φ 6∈ S, and let 1 > α > 0. There exists a distribution µ′ over S′ = S ∪ {φ} satisfying
the following.

• For every T ⊆ S, µ(T ) ≥ µ′(T ) ≥ µ(T )− α.

• The set of values {µ′(s) : s ∈ S} is of size at most 2α−1(1 + logm+ logα) + 1.

Proof. Replace all probabilities smaller than α/2m with 0, and all other probabilities with the
lowest power of (1 − α/2) that is smaller than them, giving all surplus weight to the new φ.
The second bullet uses − log(1− β) > β for 1 > β > 0 in its calculation.
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Note about distributions: We usually identify a distribution µ over a formula F also with
the resulting distribution over subsets of [n] when taking the corresponding set of a constraint
drawn by µ (recall that all constraint sets are distinct). On the direction, given a property
P and a distribution µ over sets, we identify it (in the 1-sided testing context) also with the
corresponding distribution over the natural formula corresponding to Supp(µ).

Definition 1.3 (1-sided tests, sort of). An (ε, δ)-test for P consists is a distribution µ over
subsets of [n], so that for every w ∈ {0, 1}n \B(P, ε), with probability at least 1− δ a set drawn
by µ would be a witness against w.

A (q, ε, δ) test is an (ε, δ)-test µ where Supp(µ) contains only sets of size up to q.

Theorem 1.4 (main theorem). If there exists any (q, ε/2, 1/10q)-test for P , and n is bigger
than some polynomial of (2/ε)q, then µ

n−q5 is an (ε, 1/10)-test for P .

Definition 1.5 (subsuming set distributions). Given distributions µ and µ′ over subsets of [n],
we say that µ subsumes µ′ if there exists a distribution µ̃ over pairs of subsets of [n] satisfying
the following.

• For every (A,B) ∈ Supp(µ̃) we have A ⊇ B.

• The projection on the first coordinate of µ̃ is µ.

• The projection on the second coordinate of µ̃ is µ′.

Given µ and µ′, we say that µ η-subsumes µ′ if there exists a distribution µ′′ that is η-close
to µ′ and is subsumed by µ.

Lemma 1.6. The subsuming relation is transitive. Moreover, if µ α-subsumes µ′ and µ′ β-
subsumes µ′′ then µ (α+ β)-subsumes µ′′.

Proof. For the first part, define µ̂(A,B,C) = µ̃(A,B) · µ̃′(B,C), and then project it on the first
and third coordinate. The second part is similar with a bit more massaging.

Observation 1.7. If µ′ subsumes µ, then for any A ∈ Supp(µ′), the probability that A is
contained in a set drawn according to µ′ is at least µ(A).

Definition 1.8 (sunflower). A t-sunflower with core A is a family of subsets B1, . . . , Bt ⊆
{1, . . . , n} so that every Bi contains A, and B1, . . . , Bt are disjoint outside of A (a completely
disjoint family is a sunflower with core A = ∅).

Lemma 1.9 (sunflower theorem, Erdös and Rado [1]). Any family of at least s = q!tq+1 sets
whose sizes are at most q contains a sub-family of size t which is a sunflower.

Lemma 1.10. If F is a solvable formula, µ a distribution over F that is (ε, δ)-averse to to a
word w, and F ′ ⊆ F is a sub-formula whose constraints cover less than εn many indexes, then
µ(F ′) < δ.

Lemma 1.11 (main mechanism). If F is a solvable q-formula, µ is a distribution over F that
is (ε, 1/10q)-averse to a word w, η < ε and n is bigger than some global polynomial of (2/η)q,
then there exists a (q − 1)-formula F ′ (not necessarily solvable) and a distribution µ′ over F ′

satisfying the following.

• µ′ is (ε− η, 1/10(q − 1))-averse to w.
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• With probability at least 1 − 1/10q2, a set U drawn according to µ
n−q4 is such that any

word w′ that satisfies PF and agrees with w over U has to satisfy PF ′. In particular, if
PF ′ is not solvable then this is the probability that U is a witness against PF .

Before we prove the above. . .

Definition 1.12 (cleaned distribution). Given a distribution over members of a solvable q-
formula F , and a word w, we perform the following in order (please add parameters. . . ).

1. Move to a quantized distribution µ′.

2. Greedily take equal-probability sunflowers until none are left.

3. Mark leftover sets for ignoring.

4. In every sunflower, consider only possible the assignments to the core to which at least
1/10q2q of the petals “raise an objection” through w. Mark all petals not raising objections
against any such assignment for ignoring.

The cleaned distribution µ̃ is µ′ when conditioned on the event of not choosing any of the sets
marked for ignoring.

Lemma 1.13. Moving from (ε, 1/10q)-averse distributions to (ε− η, 1/(10q − 5))-averse ones.

Proof. Please put one. First step has Lemma 1.2. Third step because of Lemma 1.10 following
Lemma 1.9. The ignored petals in the last step take a small probability because they are a small
part of every uniform-distribution sunflower (they could cover lots of indexes, who cares).

Proof of Lemma 1.11. First move to a cleaned distribution µ̃. Then define F ′ according to the
cores of the sunflowers in the cleaned distribution. For every core of a sunflower, forbid all
assignments that are forbidden by (non-ignored) petals. If a core appears in more than one
sunflower (could be for different set-probabilities ones), “unionize” the constraints. The distri-
bution µ′ chooses a core with probability the sum of probabilities of petals of the corresponding
sunflower (or sunflowers).

Now prove that with probability at least 1−1/10q2 it happens that a set U chosen according
to µ

n−q4 contains a full “witness petal” for every forbidden assignment of every constraint in
F ′. Given this event, the second item of the lemma clearly holds.

Now prove that the union of the set Q of a constraint C drawn according to µ′, with a set
drawn according to µ

n−q4 , 1/10q2-subsumes µ̃ when considered as a distribution over the sets
of F . This is since when the above event happens, you can first choose a core according to µ′

and then uniformly choose among the petals contained in U .
It is still a problem to prove the first part of the lemma. . .

2 2-sided which is not yet known not to work

Definition 2.1 (probabilistic constraints and formulas). A probabilistic q-constraint is a pair
C = (Q,S) where Q ⊆ [n] is a constraint set of size at most q and S is a satisfaction function
from 2|Q| to the real interval [0, 1].

A probabilistic q-formula P = (F, µ) is a set P of q-constraints, all with distinct constraint
sets, along with probability distribution µ over F .

Given a probabilistic formula P = (F, µ) and ∅ 6= F ′ ⊆ F , the F ′-conditioned formula is
P ′ = (F ′, µ′) where µ′ is µ conditioned on the event that a member from F ′ was chosen.
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Given a word w and a probabilistic formula P , the satisfaction of P by w is the average of
the random variable of picking a constraint (Q,S) ∈ F according to P and obtaining the value
S(wQ). P is said to be α-sure for w if its satisfaction is outside the range (α, 1− α).

The satisfiability of P is the maximum satisfaction of P among all possible words w.

Definition 2.2 (2-sided non-adaptive test). A 2-sided (ε, δ, q)-test for a property L is a proba-
bilistic q-formula so that its satisfaction is at least 1− δ by any word in L, while its satisfaction
is at most δ by any word ε-far from L.

We henceforth drop the word “probabilistic” when talking about constraints and formulas.
Note that it is possible for a constraint C = (Q,S) to have Q = ∅, in which case S is of the
type {∅ 7−→ α}, that is, the constraint has a satisfaction value that is not dependent on w.

Lemma 2.3. The requirement that the members of P have distinct query sets is without loss
of generality.

Proof. If C1 = (Q,S1) and C2 = (Q,S2) are two constraints in a formula P = (F, µ), then we
define F ′ by replacing them with C = (Q,S) where S = (µ(C1)·S1+µ(C2)·S2)/(µ(C1)+µ(C2)),
and define the corresponding µ′ by setting µ′(C) = µ(C1) + µ(C2). This preserves satisfaction
values over all words w.

Observation 2.4. If P = (F, µ) is 1
r -sure for w where r is some integer, and F ′ ⊆ F satisfied

µ(F \ F ′) ≤ s/r, then the F ′-conditioned formula P ′ is 1
r−s -sure for w.

Whenever F is clear from context (and satisfies the distinct constraint set requirement), we
freely identify the constraints with their corresponding sets. In particular distributions over P
are identified with distributions over the corresponding subsets of [n], and sunflowers of members
of F are sunflowers of the corresponding sets with the additional requirement that µ is constant
over the participating members of P .

Definition 2.5 (compound constraints and formulas). If C1, . . . , Ct are constraints forming a
sunflower with core A, and given a word w, the compound constraint C has the constraint set
A, and the satisfaction function defined by S(v) = 1

t

∑t
i=1 Si(v t wQi\A).

Given a formula P where the constraint set F is divided to sunflowers F1, . . . , Fr with cores
A1, . . . , Ar respectively, the compound formula P ′ = (F ′, µ′) is defined by F ′ consisting of the
compound constraints corresponding to every sunflower, and the distribution µ′ defined so that
for a compound constraint C, its probability is the sum of probabilities given by µ to the members
of the original sunflower (if some flowers have the same center, we use Lemma 2.3).

Given P as above and a constraint subset H ⊆ F , the H-approximated compound formula
is defined by F ′ consisting of the compound constraints corresponding to the intersections F1 ∩
H, . . . , Fr ∩H, and µ′ being the same as that of the compound formula for P (if Fj ∩H = ∅ for
some j then we arbitrarily set the corresponding satisfaction function to be a constant 1

2).

It is important to note that a compound constraint is calculated independently of the value
of the word w inside the core A itself.

Definition 2.6 (formula representation). Given two formulas F and F ′, we say that F ′ α-
represents F around a word w, if for every word w′ that differs from w in at most s places (for
any t), the satisfaction of F and F ′ by w′ differ by at most αs.

We say that F ′ (α, β)-represents F around w, if for every w′ in the above setting the satis-
faction of F and F ′ by w′ differ by at most αs+ β.

Observation 2.7. If F ′ (α, β)-represents F around w and F ′′ (α′, β′)-represents F ′ around w,
then F ′′ (α+ α′, β + β′)-represents F around w.
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Lemma 2.8. If P ′ is the compound formula of P according to a word w, then the satisfaction
of P and P ′ by w is the same. Moreover, if the sunflowers F1, . . . , Fr used for the compound
formula P ′ are all of size at least t, and w′ is obtained from w by changing at most s letters,
then the satisfaction of P and the satisfaction of P ′ by w′ differ by no more than s/t.

Proof. The first statement is chain rule etc. For the second statement construct the compound
formula P̃ of P according to w′, and then note that each of its (compound) constraints has a
satisfaction function differing by not more than s/t (in l∞ norm) from that of the corresponding
compound constraint of P ′.

Lemma 2.9 (large deviation bound). Suppose that α1, . . . , αm are all values in [0, 1], and let
U ⊆ [m] be chosen according to µp for p ≥ 10c/η2m where c > 1. Then with probability at
least 1− 2−c the value (

∑
i∈U αi)/|U | (where we arbitrarily set it to 1

2 if U = ∅) is in the range
(
∑m

i=1 αi)/m± η.

Proof. Surely there must be a nice proof and with the correct coefficients somewhere. . . I can
think of a kludgy one that starts with bounding the size of U and then for each fix size use that
selecting without repetitions is no less concentrated than with repetitions, and then a standard
deviation inequality.

Lemma 2.10. Suppose that a q-formula F is partitioned to sunflowers of size at least t. Let
U ⊆ [n] be chosen according to µp where p = (2000q54q log n/t)1/q, and let H be the set of
constraints whose “petal part” is contained in U . That is, denoting the sunflowers by F1, . . . , Fr
and their cores by A1, . . . , Ar, we set H =

⋃r
j=1{(Q,S) : (Q,S) ∈ Sj ∧ Q \ Aj ⊆ U}. With

probability at least 1/3q, the H-approximated compound formula of F (with respect to a given
word w) is a (1/t, 1/10q2)-representation of F around w.

Proof. We compare the resulting H-approximated compound formula with the correspond-
ing (non-approximated) compound formula. For every sunflower Fj with center Aj and every
possible assignment v ∈ {0, 1}|Aj | we compare the corresponding value of the satisfaction func-
tion of the compound constraint Cj = (Aj , Sj) and the approximated compound constraint
C ′j = (Aj , S

′
j), noting that inside the sunflower the the distribution of H ∩ Fj is just like invok-

ing µ
pq−|Aj | over Fj . We use Lemma 2.9 with η = 1/10q22q and c = log(3qnq2q). A union bound

over every value of every satisfaction function of every constraint of every sunflower brings us
to a situation where the approximated compound formula (0, 1/10q2)-represents the compound
formula, which in turn by Lemma 2.8 (1/t, 0)-represents F around w, allowing us to conclude
by Observation 2.7.

Observation 2.11 (multi-round sampling). An algorithm making k rounds of sampling using
µp1 , . . . , µpk respectively can be converted to an algorithm making one round of sampling µp for

p = 1−
∏k
i=1(1− pi)

Proof. First note that p is the probability for any given index to be picked in at least one
of the rounds. To convert the algorithm, first choose U according to µp, and then for every
index j ∈ U say that it appears in exactly the rounds Ij (where ∅ 6= I ⊆ [k]) with probability
(
∏
i∈I pi)(

∏
i 6∈I(1 − pi))/p. Now run the original algorithm setting Ui = {j : i ∈ Ij} as the set

chosen in round i for every i, noting that all probabilities stay the same.

Theorem 2.12. A 2-sided (ε/2, 1/10q, q)-test can be converted to an ε-test whose querying
method consists of just sampling according to µp for p = n1−α(q), where α(q) is some global
positive function, as long as n is larger than some global polynomial of 1/ε and α(q).
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Proof. We will do the sampling in q rounds, considering Observation 2.11. The probabilities
p1, . . . , pq will also have coefficients depending on q and log n, but such coefficients are subsumed
(decreasing somewhat the power of n) by the assumption that n is large enough. We Define
t1, . . . , tq along the way, and our sampling probabilities will be those related to Lemma 2.10
(noting that (q−i)-formulas are also q-formulas, so the lemma will work in all rounds). p1, . . . , pq
will be the corresponding probabilities provided by the lemma, while t1, . . . , tq will be powers
of n with some coefficients polynomial in q and log n.

The analysis is such that the only possibility for an error is when the small probability bad
event of Lemma 2.10 happens, and for q rounds the probability of it happening throughout the
algorithm is bounded by 1

3 . The rest of the analysis is assuming that it didn’t happen.
We assume that w is either a word satisfying the property or a word ε/2-far from satisfying

it, so in particular P is originally 1/10q-sure for w. At every round of the algorithm, we either
calculate a scheme for moving to a compound formula or gain sufficient knowledge on the
satisfaction of the current formula to stop and provide an answer. In the first case we then use
sampling and calculate an approximated compound formula, in particular a (q− i)-formula, for
the next round. If we didn’t stop earlier, after q rounds we are left with a 0-formula, which is
basically just one satisfaction value, so we can surely stop then.

Formally we start the i round with a (q − i + 1)-formula the is 1/10(q − i + 1)-sure for w,
and either output an answer or end the round with a (q− i)-formula that is 1/10(q− i)-sure for
w. In the case of w being ε-far from the property there will be a stronger invariant in that the
resulting formula will be 1/10(q − i)-sure in rejecting any word that differs from w in less than
min{εn/2, ti/10q2} places. The first value is subsumed in the second for any n large enough, so
we will henceforth ignore it.

Denoting the formula from the i− 1 round by Pi−1, to construct Pi we start by quantizing
Pi−1 by Lemma 1.2 to get a 1/(10(q− i) + 9)-sure formula P ′i−1 that has at most 500q2 log(qn)
probability values. Now we define ti as the largest value so that q!(ti)

q+1 · 500q2 log(qn) · q <
ti−1/10q2. We then greedily take sunflowers (every sunflower of equal probability constraints)
until we are left with at most q!(ti)

q+1 · 500q2 constraints of each of the possible 500q2 log(qn)
probability values, in particular covering a total of less than ti−1/10q2 indexes. P ′′i−1 be the
conditioning of P ′i−1 on not picking one of the remaining constraints outside the sunflowers,
while Qi−1 be the conditioning of P ′i−1 on only picking constraints outside the sunflowers.

Now there are two cases. The first case is where the total weight of constraints outside
the sunflowers is at most 3/(10(q − i) + 9). In this case P ′′i−1 is 1/(10(q − i) + 6)-sure for w,

and its corresponding compound formula P̂i is also 1/(10(q − i) + 6)-sure for w. Additionally,
if w is ε-far from the property and w′ differs from w in less than ti/10q2 places then P̂i is
still 1/(10(q − i) + 5)-sure about rejecting w′ by Lemma 2.8. To construct Pi as required we
do a sampling with the pi as per Lemma 2.10 and construct the corresponding approximate
compound formula.

The second case is when the weight of the constraints outside the sunflowers of P ′i−1 is more
than 3/(10(q − i) + 9). In this case we calculate the maximum satisfiability of Qi (without any
additional sampling), and act accordingly. If it is at least 1

2 then we accept the input w, and
otherwise we reject it. We claim that this decision is not wrong. If we accepted the input, then
it means that we can change w in less than ti−1/10q2 places and reach a word w′ for which
P ′i−1 cannot be 1/(10(q − i) + 9)-sure about rejecting, and so it cannot be the situation that w
was ε-far from the property. If we rejected the input, then no word at all (including w itself)
can cause P ′i−1 to be 1/(10(q − i) + 9)-sure about accepting, and so w cannot be a word in the
property.
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