
O(log log rank) Competitive-Ratio
for the

Matroid Secretary Problem

Oded Lachish∗

Abstract

In the Matroid Secretary Problem (MSP), the elements of the ground set of a Matroid are
revealed on-line one by one, each together with its value. An algorithm for the Matroid Secretary
Problem is Matroid-Unknown if, at every stage of its execution: (i) it only knows the elements
that have been revealed so far and their values, and (ii) it has access to an oracle for testing
whether or not any subset of the elements that have been revealed so far forms an independent
set. An algorithm is Known-Cardinality if, in addition to (i) and (ii), it also knows, from the
start, the cardinality n of the ground set of the Matroid.

We present here a Known-Cardinality algorithm with a competitive-ratio of O(log log ρ),
where ρ is the rank of the Matroid. The algorithm is also Order-Oblivious as defined by Azar et
al. (2013). The prior known results for a Known-Cardinality algorithm are a competitive-ratio
of O(log ρ), by Babaioff et al. (2007), and a competitive-ratio of O(

√
log ρ), by Chakraborty

and Lachish (2012).

1 Introduction

The Matroid Secretary Problem is a generalization of the Classical Secretary Problem, whose origins
seem to still be a source of dispute. One of the first papers on the subject [12], by Dynkin, dates back
to 1963. Lindley [21] and Dynkin [12] each presented an algorithm that achieves a competitive-ratio
of e, which is the best possible. See [14] for more information about results preceding 1983.

In 2007, Babaioff et al. [4] established a connection between the Matroid Secretary Problem
and mechanism design. This is probably the cause of an increase of interest in generalizations of
the Classical Secretary Problem and specifically the Matroid Secretary Problem.

In the Matroid Secretary Problem, we are given a Matroid {U, I} and a value function assigning
non-negative values to the Matroid elements. The elements of the Matroid are revealed in an on-line
fashion according to an unknown order selected uniformly at random. The value of each element
is unknown until it is revealed. Immediately after each element is revealed, if the element together
with the elements already selected does not form an independent set, then that element cannot be
selected; however, if it does, then an irrevocable decision must be made whether or not to select
the element. That is, if the element is selected, it will stay selected until the end of the process and
∗Birkbeck, University of London, London, UK. Email: oded@dcs.bbk.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/42134368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

likewise if it is not. The goal is to design an algorithm for this problem wit ha small competitive-
ratio, that is the ratio between the maximum sum of values of an independent set and the expected
sum of values of the independent set returned by the algorithm.

An algorithm for the Matroid Secretary Problem (MSP) is called Matroid-Unknown if, at every
stage of its execution, it only knows (i) the elements that have been revealed so far and their values
and (ii) an oracle for testing whether or not a subset the elements that have been revealed so far
forms an independent set. An algorithm is called Known-Cardinality if it knows (i), (ii) and also
knows from the start the cardinality n of the ground set of the Matroid. An algorithm is called
Matroid-Known, if it knows, from the start, everything about the Matroid except for the values of
the elements. These, as mentioned above, are revealed to the algorithm as each element is revealed.

Related Work Our work follows the path initiated by Babaioff et al. in [4]. There they for-
malized the Matroid Secretary Problem and presented a Known-Cardinality algorithm with a
competitive-ratio of log ρ. This line of work was continued in [8], where an algorithm with a
competitive-ratio of O(

√
log ρ) was presented. In Babaioff et al. [4] (2007), it was conjectured

that a constant competitive-ratio is achievable. The best known result for a Matroid-Unknown
algorithm, implied by the works of Gharan and Vondráck [15] and Chakraborty and Lachish [8]
(2012): for every fixed ε > 0, there exists a Matroid-Unknown algorithm with a competitive-ratio
of O(ε−1(

√
log ρ) log1+ε n). Gharan and Vondráck showed that a lower bound of Ω(logn

log logn) on the
competitive-ratio holds in this case.

Another line of work towards resolving the Matroid Secretary Problem is the study of the Sec-
retary Problem for specific families of Matroids. Most of the results of this type are for Matroid-
Known algorithms and all achieve a constant competitive-ratio. Among the specific families of
Matroids studied are Graphic Matroids [4], Uniform/Partition Matroids [3, 19], Transversal Ma-
troids [9, 20], Regular and Decomposable Matroids [11] and Laminar Matroids [17]. For surveys
that also include other variants of the Matroid Secretary Problem see [23, 18, 10].

There are also results for other generalizations of the Classical Secretary Problem, including the
Knapsack Secretary Problem [3], Secretary Problems with Convex Costs [5], Sub-modular Secretary
Problems [6, 16, 13] and Secretary problems via linear programming [7].

Main result We present here a Known-Cardinality algorithm with a competitive-ratio of
O(log log ρ). The algorithm is also Order-Oblivious as defined by Azar et al. [2]). Definition 13
is a citation of their definition of an Order-Oblivious algorithm for the Matroid Secretary Prob-
lem. According to [15], this implies that, for every fixed ε > 0, there exists a Matroid-Unknown
algorithm with a competitive-ratio of O(ε−1(log log ρ) log1+ε n). We believe, but do not prove ex-
plicitly, that our algorithm is also Order-Oblivious as in Definition 1 of [2], and hence, by Theorem
1 of [2], this would imply that there exists a Single Sample Prophet Inequality for Matroids with a
competitive-ratio of O(log log ρ).

High level description of result and its relation to previous work. As in [4] and [8], here
we also partition the elements into sets which we call buckets. This is done by rounding down the
value of each element to the largest possible power of two and then, for every power of two, defining

2

a bucket to be the set of all elements with that value. Obviously, the only impact this has on the
order of the competitive-ratio achieved is a constant factor of at most 2.

We call our algorithm the Main Algorithm. It has three consecutive stages: Gathering stage,
Preprocessing stage and Selection stage. In the Gathering stage it waits, without selecting any
elements, until about half of the elements of the matroid are revealed. The set F that consists of
all the elements revealed during the Gathering stage is the input to the Preprocessing stage. In the
Preprocessing stage, on out of the following three types of output is computed: (i) a non negative
value, (ii) a set of bucket indices, or (iii) a critical tuple. Given the output of the Preprocessing
stage, before any element is revealed the Main Algorithm chooses one of the following algorithms:
the Threshold Algorithm, the Simple Algorithm or the Gap Algorithm. Then, after each one of the
remaining elements is revealed, the decision whether to select the element is made by the chosen
algorithm using the input received from the Preprocessing stage and the set of all the elements
already revealed. Once all the elements have been revealed the set of selected elements is returned.

The Threshold Algorithm is chosen when the output to the Preprocessing stage is a non-negative
value, which happens with probability half regardless of the contents of the set F . Given this input,
the Threshold Algorithm, as in the algorithm for the Classical Secretary Problem, selects only the
first element that has at least the given value. The Simple Algorithm is chosen when the output
of Preprocessing stage is a set of bucket indices. The Simple Algorithm selects an element if it
is in one of the buckets determined by the set of indices and if it is independent of all previously
selected elements. This specific algorithm was also used in [8].

The Gap Algorithm is chosen when the output of Selection stage is a critical tuple, which we
define further on. The Gap Algorithm works as follows: every element revealed is required to have
one of a specific set of values and satisfy two conditions in order to be selected: it satisfies the first
condition if it is in the closure of a specific subset of elements of F ; it satisfies the second condition
if it is not in the closure of the union of the set of elements already selected and a specific subset
of elements of F (which is different than the one used in the first condition).

The proof that the Main Algorithm achieves the claimed competitive-ratio consists of the fol-
lowing parts: a guarantee on the output of the Simple Algorithm as a function of the input and
U \ F , where U is the ground set of the matroid; a guarantee on the output of the Gap Algorithm
as a function of the input and U \ F ; a combination of a new structural result for matroids and
probabilistic inequalities that imply that if the matroid does not have an element with a large value,
then it is possible to compute an input for either the Simple Algorithm or the Gap Algorithm that,
with high probability, ensures that the output set has a high value. This guarantees the claimed
competitive-ratio, since the case when the matroid has an element with a large value is dealt with
by the Threshold Algorithm.

One of the probabilistic inequalities we use is the key ingredient for ensuring that the Gap
Algorithm works. It is not clear whether it is possible to prove such an inequality using only the
techniques in [8], because they rely strongly on symmetry.

The paper is organized as follows: Section 2 contains the preliminaries required for the paper;
Section 3 is an overview of the main result and techniques; Section 4 formally presents the Simple
Algorithm and the Gap Algorithm; Section 5 presents the proof of the new probabilistic inequality;

3

Section 6 gives the proof of the new structural theorem for matroids; Section 7 contains the proof
of the main result; and the Appendix mainly contains proofs that were added for the sake of
completeness.

2 Preliminaries

All logarithms are to the base 2. We use Z to denote the set of all integers, N to denote the
non-negative integers and N+ to denote the positive integers. We use [α] to denote {1, 2, . . . , bαc}
for any non-negative real α. We use [α, β] to denote {i ∈ Z | α ≤ i ≤ β} and (α, β] to denote
{i ∈ Z | α < i ≤ β}, and so on. For every j ∈ Z and I ⊆ Z, we define j > I if and only if j > i for
every i ∈ I, and j < I if and only if j < i for every i ∈ I. For every I, J ⊆ Z, we define J > I if
and only if min J > max I, and we say I and J are comparable if either J > I, or I > J or I = J .
We use med (f) to denote the median of a function f from a finite set to the non-negative reals. If
there are two possible values for med (f) the smaller one is chosen.

We define β(n, 1/2) to be a random variable whose value is the number of successes in n

independent probability 1/2 Bernoulli trials.

Observation 1 Let A = {a1, a2, . . . , an} and W = β(n, 1/2); let π : [n] −→ [n] be a permutation
selected uniformly at random, and let D = {aπ(i) | i ∈ [W]}. For every i ∈ [n], we have that ai ∈ D
independently with probability 1/2.

Proof. To prove the proposition we only need to show that for every C ⊆ A, we have D = C

with probability 2−n. Fix C. There are
(n
|C|
)

subsets of A of size |C|. D is equally likely to be one
of these subsets. Hence, the probability that |D| = |C| is

(n
|C|
)
· 2−n and therefore the probability

that D = C is
(n
|C|
)
· 2−n/

(n
|C|
)

= 2−n.

2.1 Matroid definitions, notations and preliminary results

Definition 2 [Matroid] A matroid is an ordered pair M = (U, I), where U is a set of elements,
called the ground set, and I is a family of subsets of U that satisfies the following:

• If I ∈ I and I ′ ⊂ I, then I ′ ∈ I

• If I, I ′ ∈ I and |I ′| < |I|, then there exists e ∈ I \ I ′ such that I ′ ∪ {e} ∈ I.

The sets in I are called independent sets and a maximal independent set is called a basis.

A value function over a Matroid M = (U, I) is a mapping from the elements of U to the non-
negative reals. Since we deal with a fixed Matroid and value function, we will always use M = (U, I)
for the Matroid. We set n = |U | and, for every e ∈ U , we denote its value by val(e).

Definition 3 [rank and Closure] For every S ⊆ U , let

• rank (S) = max{|S′| | S′ ∈ I and S′ ⊆ S} and

• Cl (S) = {e ∈ U | rank (S ∪ {e}) = rank (S)}.

4

The following proposition captures a number of standard properties of Matroids; the proofs can
be found in [22]. We shall only prove the last assertion.

Proposition 4 Let S1, S2, S3 be subsets of U and e ∈ U then

1. rank (S1) ≤ |S1|, where equality holds if and only if S1 is an independent set,

2. if S1 ⊆ S2 or S1 ⊆ Cl (S2), then S1 ⊆ Cl (S1) ⊆ Cl (S2) and rank (S1) ≤ rank (S2),

3. if e 6∈ Cl (S1), then rank (S1 ∪ {e}) = rank (S1) + 1,

4. rank (S1 ∪ S2) ≤ rank (S1) + rank (S2), and

5. suppose that S1 is minimal such that e 6∈ S1 but e ∈ Cl (S1), that is, e is not in the Closure
of any subset of S1, then e∗ ∈ Cl ((S1 \ {e∗}) ∪ {e}), for every e∗ ∈ S1.

Proof. We now prove 5. Assume for the sake of contradiction that there exists e∗ ∈
S1 such that e∗ 6∈ Cl ((S1 \ {e∗}) ∪ {e}). By the minimality of S1, e 6∈ Cl (S1 \ {e∗}) and
hence, rank ((S1 \ {e∗}) ∪ {e}) = rank (S1). Thus, by the initial assumption and Item 3,
rank ((S1 \ {e∗}) ∪ {e} ∪ {e∗}) = rank (S1) + 1. Yet, since e ∈ Cl (S1), we also have
rank ((S1 \ {e∗}) ∪ {e} ∪ {e∗}) = rank (S1) which is a contradiction to the preceding equality.

Assumption 5 val(e) = 0, for every e ∈ U such that rank ({e}) = 0. For every e ∈ U such that
val(e) > 0, there exists i ∈ Z such that val(e) = 2i.

In the worst case, the implication of this assumption is an increase in the competitive ratio by a
multiplicative factor that does not exceed 2, compared with the competitive ratio we could achieve
without this assumption.

Definition 6 [Buckets] For every i ∈ Z, the i’th bucket is Bi = {e ∈ U | val(e) = 2i}. We also
use the following notation for every S ⊆ U and J ⊂ Z:

• BS
i = Bi ∩ S,

• BJ =
⋃
i∈J Bi and

• BS
J =

⋃
i∈J B

S
i .

Definition 7 [OPT] For every S ⊆ U , let OPT (S) = max
{∑

e∈S′ val(e)
∣∣∣ S′ ⊆ S and S′ ∈ I

}
.

We note that if S is independent, then OPT (S) =
∑
e∈S val(e).

Observation 8 For every independent S ⊆ U , OPT (S) =
∑
i∈Z 2i · rank

(
BS
i

)
.

Definition 9 [LOPT] For every S ⊆ U , we define LOPT (S) =
∑
i∈Z 2i · rank

(
BS
i

)
.

Observation 10 For every S ⊆ U and J1, J2 ⊆ Z,

1. LOPT (S) ≥ OPT (S),

2. LOPT
(
BS
J1

)
=
∑
i∈J1 2i · rank

(
BS
i

)
and

3. if J1 ∩ J2 = ∅, then LOPT
(
BS
J1∪J2

)
= LOPT

(
BS
J1

)
+ LOPT

(
BS
J2

)
.

5

2.2 Matroid Secretary Problem

Definition 11 [competitive-ratio] Given a Matroid M = (U, I), the competitive-ratio of an
algorithm that selects an independent set P ⊆ U is the ratio of OPT (U) to the expected value of
OPT (P).

Problem 12 [Known-Cardinality Matroid Secretary Problem] The elements of the Matroid
M = (U, I) are revealed in random order in an on-line fashion. The cardinality of U is known
in advance, but every element and its value are unknown until revealed. The only access to the
structure of the Matroid is via an oracle that, upon receiving a query in the form of a subset of
elements already revealed, answers whether the subset is independent or not. An element can be
selected only after it is revealed and before the next element is revealed, and then only provided the
set of selected elements remains independent at all times. Once an element is selected it remains
selected. The goal is to design an algorithm that maximizes the expected value of OPT (P), i.e.,
achieves as small a competitive-ratio as possible.

Definition 13 (Definition 1 in [2]). We say that an algorithm S for the secretary problem
(together with its corresponding analysis) is order-oblivious if, on a randomly ordered input vector
(vi1 , . . . , vin):

1. (algorithm) S sets a (possibly random) number k, observes without accepting the first k values
S = {vi1 , . . . , vik}, and uses information from S to choose elements from V = {vik+1 , . . . , vin}.

2. (analysis) S maintains its competitive ratio even if the elements from V are revealed in any
(possibly adversarial) order. In other words, the analysis does not fully exploit the randomness
in the arrival of elements, it just requires that the elements from S arrive before the elements
of V , and that the elements of S are the first k items in a random permutation of values.

3 Overview

3.1 Overview of Main Algorithm

We start this section with a high level description of the Main Algorithm. The input to the
Main Algorithm is the number of indices n in a randomly ordered input vector (e1, . . . , en), where
{e1, . . . , en} are the elements of the ground set of the matroid. These are revealed to the Main
Algorithm one by one in an on-line fashion in the increasing order of their indices. The Main
Algorithm executes the following three stages:

1. Gathering stage. Let W = β(n, 1/2). Wait until W elements are revealed without selecting
any. Let F be the set of all these elements.

2. Preprocessing stage. Given only F , before any item of U\F is revealed, one of the following
three types of output is computed: (i) a non-negative value, (ii) a set of bucket indices, or
(iii) a critical tuple which is defined in Subsection 3.3.

6

3. Selection stage. One out of three algorithms is chosen and used in order to decide which
elements from U \F to select, when they are revealed. If the output of Preprocessing stage is
a non-negative value, then the Threshold Algorithm is chosen, if it is a set of bucket indices,
then the Simple Algorithm is chosen and if it is a critical tuple, then the Gap Algorithm is
chosen.

With probability 1
2 , regardless of F , the output of the Preprocessing stage is a non-negative

value. The Threshold Algorithm, that is used in this case, selects the first revealed element of U \F
that has a value at least as large as the output of the Preprocessing stage. This ensures that if
max{val(e) | e ∈ U} ≥ 2−234 ·OPT (U) , then the claimed competitive-ratio is achieved. Therefore,
from here on, unless explicitly mentioned otherwise, we make the following assumption:

Assumption 14 max{val(e) | e ∈ U} < 2−234 ·OPT (U) .

In this paper the constants have not been optimized.
The Simple Algorithm and the Gap Algorithm share a common scheme. They are both vari-

ations of the following Greedy Algorithm: start with an empty set P , then when an element e is
revealed, add the element to P if P ∪ {e} is an independent set. Clearly, at the end of this process
P is an independent set. In addition, by the definition of the rank function (Definition 3), it is easy
to see that the rank of P is exactly the rank of the set of all the elements revealed. This implies
that, in the trivial case where all the elements of the matroid have the same value, the Greedy
Algorithm achieves a competitive-ratio of 1.

In the following subsection, we describe the Simple Algorithm, formally prove a guarantee on
its output, and explain when the output of the Preprocessing stage is a set of bucket indices. In
Subsection 3.3, we define critical tuple, describe the Gap Algorithm and explain when the output of
the Preprocessing stage is a critical tuple. In Subsection 3.4, we explain the probabilistic inequality
that validates the use of the Gap Algorithm. In Subsection 3.5, we explain the central structural
results we use and, in Subsection 3.6, we explain how everything fits together.

3.2 The Simple Algorithm

Exactly the same algorithm is also used in [8]. We explain the algorithm and prove its correctness
as a preparation towards the presentation of the Gap Algorithm.

Let J be a set of bucket indices that is the output of the Preprocessing stage. The Simple
Algorithm, when executed in the Selection stage, receives J as an input and selects an independent
subset P of U \ F as follows: initially it sets P = ∅ and then, each time an element e is revealed,
it is added to P if and only if (a) log val(e) ∈ J and (b) P ∪ {e} is an independent set.

Thus, the Simple Algorithm operates exactly like the Greedy Algorithm would if only the
elements of BU\F

J were revealed to it. Hence, the set P of elements selected by the Simple Algorithm
satisfies rank (P) = rank

(
B
U\F
J

)
. Now, for every j ∈ J , since the set P ∩BU\F

J\{j} has a rank of at

most rank
(
B
U\F
J\{j}

)
, by Item 4 of Proposition 4, there are at least rank

(
B
U\F
J

)
− rank

(
B
U\F
J\{j}

)
elements of BU\F

j in P . We use the following definition to succinctly express this fact.

7

Definition 15 [uncov] For every R,S ⊆ U , let

uncov (R,S) = rank (R ∪ S)− rank (R \ S) .

According to the preceding intuition, for every j ∈ J , uncov
(
B
U\F
J\{j}, B

U\F
j

)
is the minimum

number of elements the Simple Algorithm will select from B
U\F
j , given J . Thus, given a finite set

J ⊂ Z, the Simple Algorithm selects an independent set P ⊆ U \ F such that OPT (P) is at least∑
j∈J 2j ·uncov

(
B
U\F
J\{j}, B

U\F
j

)
. This implies that, in order to achieve the claimed competitive-ratio,

it is sufficient to find a set J such that
∑
j∈J 2j · uncov

(
B
U\F
J\{j}, B

U\F
j

)
is sufficiently large, with

high probability. The problem is to find such a set. Searching for such a J is done by exhaustively
checking whether a specific portion of the subsets of a specific set of bucket indices, called V aluable,
contains such a set J . The proof that this is a good choice relies on the following precise definition
of V aluable:

Definition 16 [Valuable] We define Valuable to be the set of all j ≥ 4 + logLOPT (F) − 2 ·
log rank (F) such that rank

(
BF
j

)
≥ max

{
1,
√

LOPT (F)
2j+8

}
.

It is easy to see that the size of V aluable is small, because j ≤ logLOPT (F), for every j such that
BF
j 6= ∅ and hence the following observation holds:

Observation 17 |V aluable| ≤ 2 · log rank (F)

In the formal part of the paper we use the preceding observation in a proof that, with very high
probability, rank

(
BF
J∗

)
≈ rank

(
B
U\F
J∗

)
, for all J∗ ⊆ V aluable. This ensures that if a set J as

described is found, then with very high probability, for every j ∈ J ,
∑
j∈J 2j ·uncov

(
BF
J\{j}, B

F
j

)
≈∑

j∈J 2j · uncov
(
B
U\F
J\{j}, B

U\F
j

)
. Consequently, if a set such as J exists, it will be found and this

will ensure that the Simple Algorithm will achieve the claimed competitive-ratio.

3.3 Overview of the Gap Algorithm

This algorithm ensures that the competitive-ratio of this paper is exponentially better than that
of [8]. We start the overview with a simple scenario and some wishful thinking assumptions that
will eventually lead to the Gap Algorithm.

Suppose that the output of Preprocessing stage consists of two disjoint sets of bucket indices
K1 and K2, and a minimal independent set Fence such that BU\F

K1
⊆ Cl (Fence) that satisfy the

following:

1. LOPT
(
B
U\F
K1

)
= LOPT

(
B
U\F
K2

)
;

2. for every j ∈ K2, rank (Fence) is significantly smaller than rank
(
B
U\F
j

)
, say

rank
(
B
U\F
j

)
≥ 32 · rank (Fence) (this is the wishful thinking);

3. for i = 1 or 2, if the Simple Algorithm received Ki, then it returns a set of elements P that
satisfies OPT (P) = LOPT

(
B
U\F
Ki

)
;

8

4. If the Simple Algorithm received K1 ∪K2, then it returns a set of elements P that satisfies
OPT (P) ≈ LOPT

(
B
U\F
K2

)
.

The following is a simple example of such a matroid. Suppose that K1 = {6}, K1 = {1},
|BU\F

K1
| = n1, BU\F

K1
and B

U\F
K2

contains a very large number of sets S such that, for every e1 ∈ S,
there exists e2 ∈ B

U\F
K1

that satisfies e2 ∈ Cl ({e1}). Suppose also that BU\F
K2

contains a set of
31 · n1 elements that together with B

U\F
K1

form an independent set. Clearly, in this case, if the
Simple Algorithm received K1∪K2, then it would hardly select any elements from B

U\F
K1

and hence
will return a set of elements P that satisfies OPT (P) ≈ LOPT

(
B
U\F
K2

)
. The wishful thinking is

that we also had a minimal independent set Fence such that BU\F
K1
⊆ Cl (Fence).

We note that, for a more specific but slightly different example, one can assume the matroid is
a vector matroid, take Fence to be a basis for BU\F

K1
, and B

U\F
K2

that contain a very large number
of sets S, each spanning the same vector space spanned by B

U\F
K1

. It should be assumed that the
number of these sets is so large that, with very high probability, all the vectors, in at least one of
them, are revealed before any vector in B

U\F
K1

.
The algorithm we describe now for this scenario selects an independent set of elements whose

sum is almost LOPT
(
B
U\F
K1∪K2

)
. This, by the last assumption above, is much better than what

would happen if the Simple Algorithm was used with K1 ∪ K2. The algorithm initially sets P
to be the empty set and for each element e ∈ U \ F that is revealed, e is added to P if either
log val(e) ∈ K2 and e 6∈ Cl (P ∪ Fence), or log val(e) ∈ K1 and e 6∈ Cl (P).

Intuitively, for every j ∈ K2, the fact that we require every element e ∈ BU\F
j to satisfy the

condition e 6∈ Cl (P ∪ Fence), in order to be selected, results in |P ∩ BU\F
j | ≥ rank

(
B
U\F
j

)
−

|Fence|. Hence, by assumption 2 above, for every j ∈ K2, we have that |P ∩ BU\F
j | ≥ (1 − 1

32) ·
rank

(
B
U\F
j

)
.

The situation is even better for K1. According to the selection condition of elements in BU\F
K2

, it
can never be the case that an element from Cl (Fence) is in Cl

(
P ∩BU\F

K2

)
and hence, in particular,

Cl
(
P ∩BU\F

K2

)
and BU\F

K1
are disjoint. This in turn implies that the elements of P ∩BU\F

K2
cannot

in any way prevent an element of BU\F
K1

from being selected. Thus, by assumption 3 above, for
every j ∈ K1, we have that |P ∩BU\F

j | = rank
(
B
U\F
j

)
. Therefore, the set of elements P selected

by this algorithm satisfies OPT (P) ≥ LOPT
(
B
U\F
K1

)
+ (1− 1

32) · LOPT
(
B
U\F
K2

)
which is almost

LOPT
(
B
U\F
K1∪K2

)
.

It is not clear how to find a replacement for Fence using F . So, instead we use something
slightly weaker. We will be satisfied if Fence is replaced by a set B′ such that

∑
j∈K1 2j ·

rank
(
B
U\F
j \ Cl (B′)

)
is very small. We use the following definition to capture this idea.

Definition 18 [loss] For every R,S ⊆ U , let

loss (R,S) = rank (S \ Cl (R)) .

According to this definition, we want to find a B′ such that
∑
j∈K1 2j ·loss

(
B′, B

U\F
j

)
is very small.

So, suppose that instead of the set Fence we can find a set B′ such that assumption 2 holds for

9

Fence replaced by B′ and loss
(
B′, B

U\F
j

)
≤ 1

16 · rank
(
B
U\F
j

)
, for every j ∈ K1. In this case we

use an algorithm that is the same as the preceding algorithm except for the last condition. The
algorithm initially sets P to be the empty set and for each element e ∈ U \ F that is revealed, e
is added to P if either log val(e) ∈ K2 and e 6∈ Cl (P ∪B′), or log val(e) ∈ K1, e 6∈ Cl (P) and
e ∈ Cl (B′).

By reasoning similar to that above, for every j ∈ K2, we have that |P ∪ BU\F
j | ≥ (1 − 1

32) ·
rank

(
B
U\F
j

)
; and for every j ∈ K1, we have that |P ∩BU\F

j | ≥ (1− 1
16) · rank

(
B
U\F
j

)
, by Item 4

of Proposition 4 and the fact that the rank of all the elements in BU\F
j that are not in Cl (B′) is at

most 1
16 · rank

(
B
U\F
j

)
. Consequently, OPT (P) is almost LOPT

(
B
U\F
K1∪K2

)
. Note that, without

the extra condition the algorithm would not work.
Further on we show that a set BF

K′ such that K1 ⊂ K ′ and K ′ ∩K2 = ∅ can be used for the
role of B′.

Now we describe what happens when indeed the preceding replacement occurs and as-
sumption 3 above does not necessarily hold. When the algorithm is dealing with elements in
B
U\F
K2

, the elements of BF
K′ can be viewed as if they were initially selected to be in P and

hence, by the same reasoning as for the Simple Algorithm, for every j ∈ K2, we have that
|P ∩ BU\F

j | ≥ uncov
(
BF
K′ ∪B

U\F
K2\{j}, B

U\F
j

)
. When the algorithm is dealing with elements in

B
U\F
K1

, for every j ∈ K1 the rank of the set of elements in B
U\F
j satisfying the new condi-

tion is at least rank
(
B
U\F
j

)
− loss

(
BF
K′ , B

U\F
j

)
and out of these the rank of those not se-

lected is at most rank
(
B
U\F
j

)
− uncov

(
BF
K1\{j}, B

U\F
j

)
. Thus, for every j ∈ K1, we have that

|P ∩ BU\F
j | ≥ uncov

(
BF
K1\{j}, B

U\F
j

)
− loss

(
BF
K′ , B

U\F
j

)
. For the Gap Algorithm, which we de-

scribe next, we need a nested variation of the preceding setting, which is captured by the following
definition.

Definition 19 [critical tuple] (Block,Good,Bad), where Good, Bad and Block are mappings
from Z to 2Z, is a critical tuple if the following hold for every i and j in Z:

1. if Block(j) 6= ∅, then j ∈ Block(j)

2. if i ∈ Block(j), then Block(i) = Block(j), Good(i) = Good(j) and Bad(i) = Bad(j),

3. Block(i) ∩Bad(i) = ∅ and Block(i) ⊆ Good(i), and

4. there exists a minimal set {j1, j2, . . . , js} that contains a distinct element from Block(`), for
every ` ∈ Z such that Block(`) 6= ∅, and

Bad(j1) ⊂ Good(j1) ⊆ Bad(j2) ⊂ Good(j2) ⊆ · · · ⊆ Bad(js) ⊂ Good(js).

The following observation, follow directly from the previous definition.

Observation 20 If (Block,Good,Bad) is a critical tuple, then

1. the sets in {Block(j)}j∈Z are pairwise-disjoint, and

10

2. for every i and j in
⋃
`∈ZBlock(`), if j 6∈ Good(i), then Good(i) ⊆ Bad(j).

We note that the previous scenario can be captured by the above definition if {Block(j)}j∈Z =
{K1,K2}, Good(j) = K ′ and Bad(j) = ∅, for every j ∈ K1, and Good(j) = ∅ and Bad(j) = K ′,
for every j ∈ K2. Thus, in this more general definition, the role of K ′, is done by two possibly
different sets.

The Gap Algorithm initially sets P to be the empty set and for each element e ∈ U \ F
that is revealed, e is added to P if log val(e) ∈ ∪j∈ZBlock(j), and e ∈ Cl

(
BF
Good(log val(e))

)
and

e 6∈ Cl
(
P ∪BF

Bad(log val(e))

)
. The guarantee proved for Gap Algorithm, in Section 4, is that the set

of elements P is independent and

OPT (P) ≥
∑

j∈
⋃

i∈ZBlock(i)

2j ·
(
uncov

(
BF
Bad(j) ∪B

U\F
Block(j)\{j}, B

U\F
j

)
− loss

(
BF
Good(j), B

U\F
j

))
.

Thus, the goal is to search for a critical tuple (Block,Good,Bad), for which the previ-
ous expression is sufficiently large. As in the case of the Simple Algorithm, the search is re-
stricted to the members of V aluable. The ability to find a good candidate for such a critical
tuple, when the Simple Algorithm cannot be used, enables the Main Algorithm to achieve a
competitive-ratio that is exponentially better than that of [8]. The reason this can be done,
is that by using the probabilistic inequality we describe in Subsection 3.4, we prove that, with
very high probability, for every K ⊆ V aluable and every j ∈ K, loss

(
BF
K , B

U\F
j

)
is less than

uncov
(
BF
K\{j}, B

F
j

)
plus a bit. Thus, together with what we know about uncov from the Simple

Algorithm, the indication that a critical tuple (Block,Good,Bad) is good for our purposes is that∑
j∈
⋃

i∈ZBlock(i) 2j ·
(
uncov

(
BF
Bad(j) ∪B

F
Block(j)\{j}, B

F
j

)
− uncov

(
BF
Good(j)\{j}, B

F
j

))
is sufficiently

large.
In the following subsection, we explain how we prove the probabilistic inequality that is used

for bounding loss by uncov. In the subsection afterwards, we explain why in the Preprocessing
stage a critical tuple as above can be found when a set as required for the Simple Algorithm can
not be found. In the last subsection of this section, we give a short explanation how everything fits
together to form the main result.

3.4 Overview of central probabilistic inequality

We give here an overview of the proof of Theorem 23, which is stated and proved in Section 5 and as-
serts that, for every finite subset K of Z and every k ∈ K, if rank (Bk) is sufficiently large then, with
very high probability, loss

(
B
U\F
k , Cl

(
BF
K

))
is at most slightly larger than uncov

(
BF
K\{k}, B

F
k

)
.

The proof is based on a process of exposing the elements of BK one by one in an on-line
manner according to a specific predetermined order, where an element in BK is exposed when it is
determined whether it is in F or in U \ F . During the process two sets are constructed H and H̃.
They are both initially empty. The predetermined order is as follows:

1. All the elements in BK\{k} are exposed according to an arbitrary predetermined order, and
none of them are added to either H or H̃.

11

2. The elements of Bk are exposed according to a predetermined order, which is repre-
sented by a labeled tree and ensures that during the process elements e ∈ Bk such that
e 6∈ Cl

(
BF
K\{k} ∪H

)
are exposed first. An element e ∈ Bk such that e 6∈ Cl

(
BF
K\{k} ∪H

)
is

added to H if it is in F , and otherwise it is added to H̃.

It turns out, as we shall explain later, that |H| = uncov
(
BF
K\{k}, B

F
k

)
, |H̃| ≥

uncov
(
BF
K\{k}, B

F
k

)
and, with very high probability, |H̃| is at most slightly larger than |H|. It is

easy to see that this implies Theorem 23.
It remains to explain why the preceding three assertions hold. We start by explaining the first.

According to Item 2, H is an independent set and rank
(
BF
K\{k} ∪H

)
= rank

(
BF
K

)
, because every

element in BF
k must be also in Cl

(
BF
K\{k} ∪H

)
. The required equality follows, by the definition

of uncov (Definition 15). We next explain why |H̃| ≥ uncov
(
BF
K\{k}, B

F
k

)
.

According to Item 2, Cl
(
BF
K\{k} ∪H

)
= Cl

(
BF
K

)
and every element in B

U\F
k \ H̃ is in

Cl
(
BF
K\{k} ∪H

)
. Thus, H̃ contains all the elements in B

U\F
k \ Cl

(
BF
K

)
and the required in-

equality follows.
We now explain the probabilistic part. We note that every element in H ∪ H̃ was selected to

the specific set with probability 1
2 independently, so any event in which |H̃| is significantly larger

than |H| has a very low probability and therefore, the required probabilistic inequality follows. The
actual proof relies on the predetermined order in order to use probabilities that are conditioned on
the number of elements in H ∪ H̃.

3.5 Overview of structural results used

In this section we explain how we prove that if the set of bucket indices V aluable does not contain
a heavy set then it has a heavy critical tuple (Block,Good,Bad), where by heavy set and heavy
critical tuple we mean the following: a set J ⊆ V aluable is heavy if

∑
j∈J 2j · uncov

(
BF
J\{j}, B

F
j

)
is sufficiently large; and a critical tuple (Block,Good,Bad) is heavy if∑

j∈
⋃

i∈ZBlock(i)

2j ·
(
uncov

(
BF
Bad(j) ∪B

F
Block(j)\{j}, B

F
j

)
− uncov

(
BF
Good(j)\{j}, B

F
j

))

is sufficiently large. We note that both these structures can be found using exhaustive search and
the knowledge about the matroid that consists of F and whatever can be gained by access to
the matroid oracle. We also note that given a heavy set the Simple Algorithm is guaranteed to
achieve the claimed competitive-ratio and given a heavy critical tuple (Block,Good,Bad) the Gap
Algorithm is guaranteed to achieve the claimed competitive-ratio.

We now describe a technique we use for constructing a critical tuple from a family of comparable
subsets of V aluable. Afterwards we explain its role in finding a heavy critical tuple. Given a
partition {H1, H2, . . . ,Hs} of a set H and sets H∗1 , H∗2 , . . . ,H∗s such that H1 > H2 > · · · > Hs

and, for every i ∈ [s], H∗i ⊂ Hi, we construct the tuple (Block,Good,Bad) as follows: for every
i ∈

⋃
j∈[s]H

∗
j , we let Block(i) = H∗i , Bad(i) = {t ∈ H | t > H∗i } and Good(i) = Hi ∪ Bad(i), and

for every other i, we let Block(i) = Bad(i) = Good(i) = ∅. It is easy to see that this construction
satisfies the definition of a critical tuple (Definition 19).

12

Recall that one of the features a heavy critical tuple, implicitly mentioned in Subsection 3.3,
is that, for every i ∈

∑
j∈ZBlock(j), we have that rank

(
BF
i

)
is significantly larger than

rank
(
BF
Bad(i)

)
. This is the reason why we search for a heavy critical tuple not in V aluable,

but instead in a subset of it that consists of the members of a strong sequence H consisting of
the integers h1, h2, . . . , hk, which is a sequence that has the following properties: it is strictly
monotonically increasing; LOPT

(
BF
H

)
is close to LOPT

(
BF
V aluable

)
; and for every j ∈ [k − 1],

0 < rank
(
BF
hj

)
≤ 1

32 · rank
(
BF
hj+1

)
.

The next step towards finding a heavy critical tuple is to partition H into a family of comparable
sets, that is denoted by Partition(H), such that, for every set Hi in the family, rank

(
BF

maxHi

)
is significantly larger than rank

(
BF
Hi

)c
, where c < 1 is defined below. This property is required

in order to ensure that the extra terms, that are added because of the use of the probabilistic
inequalities, are negligible.

In order to find the sets for the construction of the heavy critical tuple, we use an iterative
process that applies one of three operation on a set depending on which one of the following types
it is:

1. a set K ⊆ H is negligible if LOPT
(
BF
K

)
is significantly small,

2. a set K ⊆ H is useful if it has a subset K∗ such that
∑
j∈K∗ 2j ·(

uncov
(
BF
M(K∗)∪K∗\{j}, B

F
j

)
− uncov

(
BF
M(K)∪K\{j}, B

F
j

))
is sufficiently large, and

3. a set K ⊆ H is splittable it has a partition into two comparable sets, each with a LOPT

measure that is not too small.

The iterative process starts with Partition(H). On each iteration it goes over all the sets, removing
every set that is negligible and then replacing every set that is splittable and not useful or negligible
with the two sets of a partition that makes it splittable. The iterations ends when all the remaining
sets are useful.

We note that splittable sets are replaced with sets that are strictly smaller and that sets of
size 1 are not splittable. We also note that, as we prove later on, every one of the sets in the
process is either negligible or useful or splittable or some combination of these. Thus, after a finite
number of iterations, all the remaining sets are useful and it easy to see that all these sets are also
pairwise comparable. The aforementioned process, for constructing a critical tuple is applied to
the remaining sets.

To prove that the resulting critical tuple is heavy, we show that the LOPT measure over all
the remaining sets is not much smaller the LOPT measure over the set of Partition(H), which we
show is sufficiently large. We prove this by showing that the LOPT of the sets we removed is small.
In the proof we also use the fact that Partition(H) has only O(log log rank (F)) sets and hence,
because there are no heavy sets, for every set Hi in the partition either LOPT

(
BF
H

)
is small or∑

j∈Hi
2j · uncov

(
BF
Hi\{j}, B

F
j

)
is small. Because the sum of LOPT over the sets of Partition(H)

is large, this implies that the preceding sum is small. We also show that the same holds for the
remaining sets despite the replacement of the splittable sets.

13

3.6 Main result

We give here a short sketch of the proof of the main result appearing in Section 7. The proof starts
by showing that if Assumption 14 does not hold, then the claimed competitive-ratio is achieved, be-
cause with probability 1

2 the output of the Preprocessing stage is a non-negative value. Afterwards
it is shown that, if Assumption 14 does hold, then by using the structural and probabilistic tech-
niques we described, we show that the output of the Preprocessing stage is such that the relevant
algorithm achieves the claimed competitive-ratio.

4 The Simple Algorithm and the Gap Algorithm

In this section we present the pseudo-code for the Simple Algorithm and the Gap Algorithm, and
prove the guarantees on the competitive-ratio they achieves.

4.1 The Simple Algorithm

Algorithm 1 Simple Algorithm
Input: a set J of bucket indices

1. P ←− ∅

2. immediately after each element e ∈ U \ F is revealed, do

(a) if log val(e) ∈ J , do
i. if e 6∈ Cl (P), do P ←− P ∪ {e}

Output: P

Theorem 21 Given a finite J ⊂ Z, the Simple Algorithm selects an independent set P ⊆ U \ F
such that

OPT (P) ≥
∑
j∈J

2j · uncov
(
B
U\F
J\{j}, B

U\F
j

)
.

Proof. According to the manner in which the Simple Algorithm selects elements, P is indepen-
dent and

rank (P) = rank
(
BP
J

)
= rank

(
B
U\F
J

)
.

Consequently, for every j ∈ J , since BP
J\{j} ⊆ B

U\F
J\{j}, by Items 2 and 4 of Proposition 4,

rank
(
BP
j

)
≥ rank

(
BP
J

)
− rank

(
BP
J\{j}

)
≥ rank

(
B
U\F
J

)
− rank

(
B
U\F
J\{j}

)
.

Thus, by the definition of uncov (Definition 15),

OPT (P) ≥
∑
j∈J

rank
(
BP
j

)
≥
∑
j∈J

uncov
(
B
U\F
J\{j}, B

U\F
j

)
.

By Observation 8, this implies the theorem.

14

4.2 The Gap Algorithm

Algorithm 2 Gap Algorithm
Input: a critical tuple (Block,Good,Bad)

1. P ←− ∅

2. immediately after each element e ∈ U \ F is revealed, do

(a) i←− log val(e)
(b) if i ∈

⋃
j∈ZBlock(j), do

i. if e ∈ Cl
(
BF
Good(i)

)
, do

A. if e 6∈ Cl
(
P ∪BF

Bad(i)

)
, do P ←− P ∪ {e}

Output: P

Theorem 22 Given a critical tuple (Block,Good,Bad) as input, Algorithm 2 returns an indepen-
dent set of elements P ⊆ U \ F such that

OPT (P) ≥
∑

j∈
⋃

i∈ZBlock(i)

2j ·
(
uncov

(
BF
Bad(j) ∪B

U\F
Block(j)\{j}, B

U\F
j

)
− loss

(
BF
Good(j), B

U\F
j

))
.

Proof. We note that Step 2(b)iA implies that P is always an independent set. We show that,
after all the elements of U \ F have been revealed, for every j ∈

⋃
i∈ZBlock(i),

rank
(
BP
j

)
≥ uncov

(
BF
Bad(j) ∪B

U\F
Block(j)\{j}, B

U\F
j

)
− loss

(
BF
Good(j), B

U\F
j

)
. (1)

By Observation 8, this implies the theorem. Let j ∈
⋃
i∈ZBlock(i) and

Ej = B
U\F
j \ Cl

(
BF
Good(j)

)
. (2)

Suppose first that

rank
(
BF
Bad(j) ∪B

U\F
Block(j)\{j} ∪ Ej ∪B

P
j

)
= rank

(
BF
Bad(j) ∪B

U\F
Block(j)

)
(3)

We next show that (3) implies that the theorem holds and afterwards prove that (3) indeed holds.
By Item 4 of Proposition 4,

rank
(
Ej ∪BP

j

)
≥ rank

(
BF
Bad(j) ∪B

U\F
Block(j)\{j} ∪ Ej ∪B

P
j

)
− rank

(
BF
Bad(j) ∪B

U\F
Block(j)\{j}

)
.

Therefore, by (3),

rank
(
Ej ∪BP

j

)
≥ rank

(
BF
Bad(j) ∪B

U\F
Block(j)

)
− rank

(
BF
Bad(j) ∪B

U\F
Block(j)\{j}

)
.

Hence, by Item 4 of Proposition 4 and the definition of uncov (Definition 15),

15

rank
(
BP
j

)
≥ uncov

(
BF
Bad(j) ∪B

U\F
Block(j)\{j}, B

U\F
j

)
− rank (Ej) .

Thus, inequality (1) follows immediately using (2) and the definition of loss (Definition 18).
Assume for the sake of contradiction that (3) does not hold. Then, since BF

Bad(j)∪B
U\F
Block(j)\{j} ⊆

BF
Bad(j)∪B

U\F
Block(j), by the definition of the rank function (Definition 3), there exists e ∈ BU\F

j such
that

e 6∈ Cl
(
BF
Bad(j) ∪B

U\F
Block(j)\{j} ∪ Ej ∪B

P
j

)
. (4)

By (2), since e ∈ BU\F
j , we get that e 6∈ Cl

(
BF
Good(j)

)
implies that e ∈ Ej . This contradicts (4).

So it must be the case that
e ∈ Cl

(
BF
Good(j)

)
. (5)

Consequently, e satisfies the conditions in Steps 2b and 2(b)i. We next prove that e also satisfies
the condition in Step 2(b)iA. This completes the proof because it implies that e ∈ BP

j , which
contradicts (4).

Assume for the sake of contradiction that e does not satisfy the conditions in Step 2(b)iA.
Hence, e ∈ Cl

(
P ∪BF

Bad(j)

)
. Let C be a minimal subset of P ∪BF

Bad(j) such that e ∈ Cl (C).

Suppose first that C ⊆ Cl
(
BF
Good(j)

)
. Then, by the definition of a critical tuple (Definition 19),

for every e′ ∈ C, either e′ ∈ BF
Bad(j) or e′ ∈ Ej ∪ BP

Block(j). Thus, C ⊆ BF
Bad(j) ∪ Ej ∪ B

P
Block(j).

Consequently, because

BF
Bad(j) ∪ Ej ∪B

P
Block(j) ⊆ B

F
Bad(j) ∪B

U\F
Block(j)\{j} ∪ Ej ∪B

P
j ,

by Item 2 of Proposition 4,

e ∈ Cl (C) ⊆ Cl
(
BF
Bad(j) ∪ Ej ∪B

P
Block(j)

)
⊆ Cl

(
BF
Bad(j) ∪B

U\F
Block(j)\{j} ∪ Ej ∪B

P
j

)
.

This contradicts (4). Hence, we only need to deal with the case that C \ Cl
(
BF
Good(j)

)
6= ∅.

Suppose that C \ Cl
(
BF
Good(j)

)
6= ∅. By the definition of a critical tuple (Definition 19),

BF
Bad(j) ⊂ BF

Good(j) and therefore, C \ Cl
(
BF
Good(j)

)
⊆ P , because C ⊆ P ∪ BF

Bad(j). Let e∗ be the

element from C \ Cl
(
BF
Good(j)

)
that was revealed last. For future reference, we note,

e∗ ∈ P (6)

Recall that, by construction, e ∈ Cl (C), and C is minimal such that e ∈ Cl (C), and e 6∈ C because
e 6∈ P ∪BF

Bad(j) and C ⊆ P ∪BF
Bad(j). Therefore, by Item 5 of Proposition 4,

e∗ ∈ Cl ((C \ {e∗}) ∪ {e}) .

As a result, by (5) and Item 2 of Proposition 4,

e∗ ∈ Cl
(
(C \ {e∗}) ∪ {e} ∪BF

Good(j)

)
= Cl

(
((C \BF

Good(j)) \ {e
∗}) ∪BF

Good(j)

)
.

16

Since e∗ ∈ P , by Step 2b, we also have log val(e∗) ∈
⋃
i∈ZBlock(i), and hence by Observation 20, the

fact that log val(e∗) 6∈ Good(j) implies that BF
Good(j) ⊆ B

F
Bad(log val(e′)). Thus, by Proposition 4.2,

e∗ ∈ Cl
(
((C \BF

Good(j)) \ {e
∗}) ∪BF

Good(j)

)
⊆ Cl

(
((C \BF

Good(j)) \ e
∗) ∪BF

Bad(log val(e∗))

)
.

Thus, because all the items in C \ BF
Good(j) were added to P before e∗ was revealed, we conclude

that e∗ does not satisfy the condition in Step 2(b)iA. Hence e∗ 6∈ P , which contradicts (6).

5 Upper Bounding loss

Theorem 23 For every finite K ⊂ Z and k ∈ K, if rank (Bk) ≥ 264, then

prob
(
loss

(
BF
K , B

U\F
k

)
≤ uncov

(
BF
K\{k}, B

F
k

)
+ rank (Bk)

2
3
)
> 1− e−rank(Bk)

1
6 .

We note that the upper bound, that this theorem provides, may be very far from being tight, yet
since that only happens when uncov is very large, if it happens on a large scale, then the Simple
Algorithm is sufficient for dealing with this case.

From here until the end of this subsection, K is a fixed finite subset of Z, k is a fixed member
of K and m = |Bk|.

The proof of Theorem 23 relies on two random variables Z and Z̃, which we define later on
and use in order to construct the sets H and H̃ that are mentioned in Subsection 3.4 and satisfy
Z = |H| and Z̃ = |H̃|. For the proof of Theorem 23 it is sufficient to know that these random
variables satisfy the following lemmas, which we prove in Subsections 5.1 and 5.2.

Lemma 24 For every S ⊆ BK\{k} and R ⊆ Bk, Z(S,R) = uncov (S,R) .

Lemma 25 For every S ⊆ BK\{k} and R ⊆ Bk, Z̃(S,R) ≥ loss (S ∪R,Bk \R) .

Lemma 26 If rank (Bk) ≥ 264, then

prob
(
Z̃(BF

K\{k}, B
F
k) ≤ Z(BF

K\{k}, B
F
k) +m

2
3
)
> 1− e−rank(Bk)

1
6 .

Proof of Theorem 23 By Lemma 24, Z(BF
K\{k}, B

F
k) = uncov

(
BF
K\{k}, B

F
k

)
and by Lemma 25,

loss
(
BF
K , B

U\F
k

)
≤ Z̃(BF

K\{k}, B
F
k). Consequently, by Lemma 26 the theorem follows.

The random variables Z̃ and Z are defined using an S, k-Closure-Read-Once-Tree, which is a
vertex and edge labelled tree that encodes the fixed predetermined order, that is mentioned in
Subsection 3.4, in which it is exposed whether each element in Bk is either in F or in U \ F . The
definition of a S, k-Closure-Read-Once-Tree is based upon the definition of a k-Read-Once-Tree.
The graph theoretic definitions and notations, that are used for formally defining a k-Read-Once-
Tree, are provided in Appendix A.

Definition 27 [k-Read-Once-Tree, Elements-Set and First-Elements-Set] A k-Read-
Once-Tree is an arc and vertex labelled balanced-binary-tree such that:

17

1. every internal vertex is labelled by an element of Bk and

2. every internal vertex has one outgoing-arc labelled 1 and the other labelled 0.

The element-set of a vertex v of a k-Read-Once-Tree, denoted by Tv, is the set of all labels of
vertices on the path from the root r to the parent of v. The first-elements-set of a vertex v of a
k-Read-Once-Tree, denoted by T̂v, is the set of all labels of vertices w ∈ Tv such that w’s 1 labelled
outgoing-arc is on the path from r to v.

We next define, the specific type of k-Read-Once-Tree we call S, k-Closure-Read-Once-Tree. In
an S, k-Closure-Read-Once-Tree the order in which the elements of Bk are exposed depends on the
set S. Specifically, precedence is given to elements in Bk that are not in the closure of S union
with the elements of BF

k that have already been exposed.

Definition 28 [S, k-Closure-Read-Once-Tree] For every S ⊆ BK\{k}, a S, k-Closure-Read-
Once-Tree, denoted by CDTSk , is a fixed arbitrarily selected k-Read-Once-Tree such that,

1. for every leaf v, TSv = Bk and

2. for every internal vertex v, v’s label is in
(
Bk \ TSv

)
\ Cl

(
T̂Sv ∪ S

)
if this set is not empty.

Observation 29 For every S ⊆ BK\{k}, T̂Sv is a bijection when viewed as a mapping from the
leaves of CDTSk to 2Bk .

The path from r to a leaf v of CDTSk is sometimes referred to as the path associated with the set
T̂Sv . Given that BF

k = R, the order of the vertices in the path associated with R is the order they
where exposed. For every internal vertex v on this path: Bk \ TSv is the set of elements of Bk that
were not exposed prior to the element labelling v; and Cl

(
T̂Sv ∪ S

)
is the closure of the union S of

the vertices of Bk that have already been exposed to be in R prior to the element labelling v being
exposed.

For every S ⊆ BK\{k}, R ⊆ Bk and i ∈ [m], we define the random variables Xi(S,R), Yi(S,R),
Zi(S,R) and Z̃i(S,R), for which we omit the parameters when clear from context, as follows: let

1. Xi be the label of the depth i arc in the path associated with R in CDTSk ,

2. Yi be 1 if the label of the vertex v at depth i, on the path associated with R in CDTSk , is not
in Cl

(
T̂v ∪ S

)
, and 0 otherwise, and Y =

∑m
j=1 Yj ,

3. Zi = Yi ·Xi, Z =
∑
j∈[m] Zj , and

4. Z̃i = Yi · (1−Xi) and Z̃ =
∑
j∈[m] Z̃j .

We now define the sets H and H̃ that are mentioned in Subsection 3.4.

Definition 30 [H(S,R), H̃(S,R) and uSi (R)] For every S ⊆ BK\{k}, R ⊆ Bk and i ∈ [m], let
uSi (R) be the vertex of depth i on the path associated with R in CDTSk and eSi (R) be uSi (R)’s label.
Let H(S,R) be the set of all eSi (R) such that Zi = 1 and H̃(S,R) be the set of all eSi (R) such that
Z̃i = 1. We omit the parameters when clear from context.

18

Observation 31 For every S ⊆ BK\{k} and R ⊆ Bk,

1. Z = |H|, Z̃ = |H̃|, Y = Z + Z̃, and

2. Y = 1 for every i ∈ [Y] and Yi = 0 for every i ∈ (Y,m].

5.1 Proofs of Lemma 24 and Lemma 25

These proofs require the following proposition.

Proposition 32 For every S ⊆ BK\{k}, R ⊆ Bk and i ∈ [m+ 1],

Cl
(
S ∪ T̂ui

)
⊆ Cl (S ∪H) = Cl (S ∪R) .

Proof. According to the definition of T̂ui , we have that T̂um+1 = R and T̂ui ⊆ T̂ui+1 ⊆ R, for
every i ∈ [m]. Hence, Cl

(
S ∪ T̂ui

)
⊆ Cl (S ∪R), for every i ∈ [m + 1]. By the definition of H,

Cl (S ∪H) ⊆ Cl (S ∪R). So, now we only need to show that Cl (S ∪R) ⊆ Cl (S ∪H).
According to construction, Xj = 1, for every ej ∈ R. So, by the definition of H, ej ∈ H,

for every ej ∈ R such that Yj = 1, and ej ∈ Cl (S ∪H) for every ej ∈ R such that Yj = 0.
Consequently, Cl (S ∪R) ⊆ Cl (S ∪H).

Lemma 24 (restated) For every S ⊆ BK\{k} and R ⊆ Bk, Z = uncov (S,R) .
Proof. By definition, for every ei ∈ H, ei 6∈ Cl

(
S ∪ T̂ui

)
. Therefore, by Item 3 of Proposition 4,

for every ei ∈ H,
rank

(
S ∪ T̂ui ∪ {ei}

)
= rank

(
S ∪ T̂ui

)
+ 1.

Hence, inductively,

rank (S ∪R) = rank
(
S ∪ T̂um+1

)
= rank (S) + |H|.

Now since, by Proposition 32, rank (S ∪H) = rank (S ∪R), according to the definition of uncov
(Definition 15),

|H| = rank (S ∪R)− rank (S) = uncov (S,R) .

The lemma follows from the preceding equality, because Z = |H|, by Observation 31.

Lemma 25 (restated) For every S ⊆ BK\{k} and R ⊆ Bk, Z̃ ≥ loss (S ∪R,Bk \R) .
Proof. We observe that, for every ei ∈ (Bk \R) \ H̃ both Xi = 0 and Yi = 0 and hence

ei ∈ Cl
(
S ∪ T̂ui

)
.

As a result, by Proposition 32, ei ∈ Cl (S ∪R) , for every ei ∈ (Bk \R) \ H̃. Thus, (Bk \R) \ H̃ ⊆
Cl (S ∪R) and therefore, (Bk\R)\Cl (S ∪R) ⊆ H̃. Now, since Z̃ = |H̃|, by Item 1 of Proposition 4
and the definition of loss (Definition 18),

Z̃ = |H̃| ≥ |(Bk \R) \ Cl (S ∪R)| ≥ rank ((Bk \R) \ Cl (S ∪R)) = loss (S ∪R,Bk \R) .

19

5.2 Proof of Lemma 26

Proposition 33 For every i ∈ [m] independently, Xi(BF
K\{k}, B

F
k) = 1 with probability 1/2.

Proof. Let i ∈ [m]. By Observation 29, for every S ⊆ Bk, there exists a distinct leaf v in CDTSk
such that S = T̂v. Therefore, by the definition of Xi, to prove the proposition we only need to
show that, with probability exactly 1/2, a path from the root of CDTSk to a uniformly at random
selected leaf has a depth i arc labeled 1.

By Observation 1, F is uniformly distributed over the subsets of U and hence, by construction,
BF
k is uniformly distributed over the subsets of Bk. By definition, every depth i vertex of CDTSk

has one outgoing-arc labeled 1 and the other labeled 0. Hence, half of the depth i arcs of CDTSk
are labeled 1 and the other half are labeled by 0. Thus, since CDTSk is a balanced-binary tree, a
path from the root of CDTSk to a uniformly selected at random leaf has a depth i arc labeled 1,
with probability exactly 1/2.

Lemma 26 (restated) If rank (Bk) ≥ 264, then

prob
(
Z̃(BF

K\{k}, B
F
k) ≤ Z(BF

K\{k}, B
F
k) +m

2
3
)
> 1− e−rank(Bk)

1
6 .

Proof. By Observation 31, Z̃ = Y − Z and hence,

prob
(
Z̃(BF

K\{k}, B
F
k) > Z(BF

K\{k}, B
F
k) +m

2
3
)
≤
∑
i∈[m]

prob

(
Z <

i−m
2
3

2

∣∣∣Y = i

)
· prob (Y = i) .

and therefore,

prob
(
Z̃(BF

K\{k}, B
F
k) > Z(BF

K\{k}, B
F
k) +m

2
3
)
≤ m ·max

i∈[m]
prob

(
Z <

i−m
2
3

2

∣∣∣Y = i

)
.

We shall prove that, for every i ∈ [m],

m · prob
(
Z <

i−m
2
3

2

∣∣∣Y = i

)
< e−rank(Bk)

1
6 , (7)

which by the preceding inequalities, implies the lemma. According, to Item 2 of Observation 31, if
Y = i then, according to the construction of Z, Zj = 0, for every j > i. Consequently, according
to the construction of X, Y and Z, the event Z < i−m

2
3

2 , given Y = i, occurs only if among

X1, X2, . . . , Xi, at most i−m
2
3

2 have a value of 1. Hence,

prob

(
Z <

i−m
2
3

2

∣∣∣Y = i

)
≤ prob

 i∑
j=1

Xj <
i−m

2
3

2

 .
20

By Proposition 33 and the Chernoff bound,

prob

 i∑
j=1

Xj <
i−m

2
3

2

 ≤ e− (m
2
3)2

2i .

Since, m = rank (Bk), i ≤ m and rank (Bk) ≥ 264, for every i ∈ [m], m · e−
(m

2
3)2

2i < e−rank(Bk)
1
6 .

Thus, (7) indeed holds.

6 Structural Theorem

In this section F is used after all its elements have been revealed and hence it is treated as fixed.
We next formally define the strong sequence that was mentioned in Subsection 3.5.

Definition 34 [Strong sequence] Let K ⊂ Z. A sequence H of integers h1, h2, . . . , hk is a strong
sequence for BF

K , if

1. h1, h2, . . . , hk ∈ K,

2. H is strictly monotonically decreasing,

3. LOPT
(
BF
H

)
≥ 1

18 · LOPT
(
BF
K

)
and

4. for every j ∈ [k − 1], 0 < rank
(
BF
hj

)
≤ 1

32 · rank
(
BF
hj+1

)
.

Lemma 35 For every F ⊆ U and K ⊂ Z, there exists a strong sequence for BF
K .

The proof of the preceding lemma is in Appendix C. The observation is a direct result of the
definition of uncov (Definition 15), the definition of a strong sequence (Definitions 34) and Item 4
of Proposition 4.

Observation 36 Let K ⊂ Z, F ⊆ U and H be a strong sequence for BF
K , ` ∈ H∗ ⊆ H ′ ⊂ H and

j ∈ H such that j < H∗, then

1. 2 · rank
(
BF

minH′
)
> rank

(
BF
H′

)
,

2. uncov
(
BF
H∗\{`}, B

F
`

)
≥ uncov

(
BF
H′\{`}, B

F
`

)
,

3. uncov
(
BF
H∗\{j}, B

F
j

)
≥ 31

32 · rank
(
BF
j

)
and

4. 2j · uncov
(
BF
H∗\{j}, B

F
j

)
≥ 31

32 · LOPT
(
BF
j

)
.

We now formally define the Partition that was mentioned in Subsection 3.5.

Definition 37 [Partition] Let K ⊂ Z, F ⊆ U and H a sequence of integers h1, h2, . . . , hk that
is a strong sequence for BF

K . We define Partition(H) to be an arbitrary partition of H into sub-
sequences H1, H2, . . . ,Hg such that:

21

1. g ≤ max
{

1, 16 · log log rank
(
BF
K

)}
2. for every i ∈ [g − 1], Hi > Hi+1,

3. for every i ∈ [g], rank
(
BF

maxHi

)
≥ rank

(
BF

minHi

) 11
12 .

The next observation follows from Item 1 of Observation 36 and the above definition.

Observation 38 Let K ⊂ Z, F ⊆ U and H a sequence of integers h1, h2, . . . , hk that is a
strong sequence for BF

K . For every Hi ∈ Partition(H) and ` ∈ Hi, we have 2 · rank
(
BF
`

) 12
11 ≥

rank
(⋃

j∈[i]B
F
Hj

)
.

Lemma 39 For every, F ⊆ U , K ⊂ Z and a sequence H of integers h1, h2, . . . , hk that is strong
sequence for BF

K , Partition(H) is well defined.

Proof. Let `1 = h1 and r1 be the minimum member of K such that rank
(
BF
`1

)
≥ rank

(
BF
r1

) 11
12

and set H1 = [`1, r1]∩H. Now, inductively, for every i > 1 let `i be the maximum member of K that

is smaller than ri−1, and ri be the minimum member of H such that rank
(
BF
`i

)
≥ rank

(
BF
ri

) 11
12

and Hi = [`i, ri] ∩H. Let g be the maximum integer for which Hg is defined.
We observe that, by construction, the sets H1, H2, . . . ,Hg satisfy Items 2 and 3 of Defini-

tion 37.
If g = 1, then Item 1 of Definition 37 trivially holds and the lemma follows. So, assume that

g > 1. By definition, rank
(
BF
`i

)
< rank

(
BF
`i+1

) 11
12 , for every i ∈ [g − 1], and hence

rank
(
BF
K

)
≥ rank

(
BF
`g

)
> rank

(
BF
`2

)(12
11)g−2

.

Since `1 and `2 are members of the strong sequence H and `2 < `1, by Item 4 of Definition 34,
rank

(
BF
`2

)
≥ 32 · rank

(
BF
`1

)
≥ 32, and hence the preceding inequality implies that indeed g ≤

16 · log log rank
(
BF
K

)
, that is, Item 1 of Definition 37 holds and the lemma follows.

We next define formally the three types of sets that where mentioned in Subsection 3.5: useful,
negligible and splittable. The succeeding definition is essential for this goal.

Definition 40 [MH] Let H be a strong sequence. For every K ⊆ H, we define

MH (K) = {i ∈ H | i > K}.

We omit the subscript when clear from context.

Definition 41 [useful] A subset K∗ of K ⊆ H is useful for K if the following hold:

1. LOPT
(
BF
K∗

)
> 1

32 · LOPT
(
BF
K

)
2.
∑
j∈K∗ 2j ·

(
uncov

(
BF
M(K∗)∪K∗\{j}, B

F
j

)
− uncov

(
BF
M(K)∪K\{j}, B

F
j

))
≥ LOPT(BF

K∗)
214·log log rank(F) .

22

A set that has a useful subset is useful.

Definition 42 [negligible] A set K ⊆ H is negligible if the following hold:

1.
∑
j∈K 2j · uncov

(
BF
M(K)∪K\{j}, B

F
j

)
> 7

8 · LOPT
(
BF
K

)
or

2. LOPT
(
BF
K

)
<

LOPT(BF
H)

64·log rank(F) .

Definition 43 [splittable] K ⊆ H is splittable if it has a partition {K1,K2} such that

1. K1 > K2 and

2. LOPT
(
BF
Ki

)
> 1

32 · LOPT
(
BF
K

)
, for every i ∈ [2].

Proposition 44 Every set is K ⊆ H is at least one of the following: useful, negligible and split-
table.

Proof. Let K ⊆ H. Recall that H is a sequence of integers and for every K ⊆ H, we have that
M (K) is a set of integers in H.

Fix K ⊆ H and assume that K is neither negligible nor splittable. We show next that this
implies that K is useful, which in turn implies the proposition.

Since K is not splittable, there exists γ ∈ K that satisfies the following inequality, since other-
wise, by the definition of splittable (Definition 43), a contradiction is reached.

LOPT
(
BF
K

)
<

16
15 · LOPT

(
BF
γ

)
. (8)

Consequently, since K is not negligible, by the definition of negligible (Definition 42),

∑
j∈K

2j · uncov
(
BF
M(K)∪K\{j}, B

F
j

)
≤ 7

8 · LOPT
(
BF
K

)
≤ 14

15 · LOPT
(
BF
γ

)

and hence,

2γ · uncov
(
BF
M(K)∪K\{γ}, B

F
γ

)
≤
∑
j∈K

2j · uncov
(
BF
M(K)∪K\{j}, B

F
j

)
≤ 14

15 · LOPT
(
BF
γ

)
. (9)

Let K∗ = {γ}. By the definition of M (Definition 40), γ < M (K∗) and therefore, since also
M (K∗) ∪K∗ ⊆ H, by Item 4 of Observation 36,

2γ · uncov
(
BF
M(K∗)∪K∗\{γ}, B

F
γ

)
≥ 31

32 · LOPT
(
BF
K∗

)
.

Thus, together with Inequality (9) implies,

∑
j∈K∗

2j ·
(
uncov

(
BF
M(K∗)∪K∗\{j}, B

F
j

)
− uncov

(
BF
M(K)∪K\{j}, B

F
j

))
≥

LOPT
(
BF
K∗

)
214 · log log rank (F) .

23

Thus, by (8) and the definition of useful (Definition 41), K∗ is useful for K and hence, K is useful.
This, concludes the proof.

The following proposition bounds the impact of ’replacing’ splittable as mentioned in Subsec-
tion 3.5.

Proposition 45 Let K ⊆ H be splittable with partition {K1,K2} and not useful, then

∑
i∈[2]

∑
j∈Ki

2j ·uncov
(
BF
M(Ki)∪Ki\{j}, B

F
j

)
<
∑
j∈K

2j ·uncov
(
BF
M(K)∪K\{j}, B

F
j

)
+

LOPT
(
BF
K

)
214 · log log rank (F) .

Proof. Since K is splittable, by the definition of splittable (Definition 43), LOPT
(
BF
Ki

)
>

1
32 · LOPT

(
BF
K

)
, for every i ∈ [2]. Hence, because K is not useful, by the definition of useful

(Definition 41),

∑
i∈[2]

∑
j∈Ki

2j ·
(
uncov

(
BF
M(Ki)∪Ki\{j}, B

F
j

)
− uncov

(
BF
M(K)∪K\{j}, B

F
j

))
<
∑
i∈[2]

LOPT
(
BF
Ki

)
214 · log log rank (F) .

Since {K1,K2} is a partition of K, by Observation 10, LOPT
(
BF
K

)
=
∑
i∈[2] LOPT

(
BF
Ki

)
and

therefore, by the preceding inequality, the proposition follows.
Remark: This algorithm is used later on in the proof of Theorem 54. There it is ensured that

the input parameter Λ is not empty and hence we assume that indeed Λ is not empty. The output
of the algorithm (Block,Good,Bad) is such that, Block(i) = Good(i) = Bad(i) = ∅, for every
i 6∈

⋃
j∈ZBlock(j). In addition, it is important to note, that for accounting reasons the algorithm

uses the sets Qi instead of a single set and that if this was not done, then it would follow the
description in Subsection 3.5. From here until the end of this section we assume that, H is as
defined in Algorithm 3, (Block,Good,Bad) was the output of Algorithm 3. We define d to be one
less than the maximum value the index ` reaches when Algorithm 3 halts. Lemma 47 below show
that Algorithm 3 always halts.

Proposition 46 On input F and Λ ⊆ V aluable, for every finite value of ` reached by the execution
of Algorithm 3, the sets in Q` are pairwise comparable and in particular pairwise disjoint.

Proof. According to Step 2, Q0 = ∅, and hence the sets in Q0 trivially satisfy the conditions of
the proposition. According to Step 2, Q1 = Partition(H). Thus, the sets in Q1 satisfy the condi-
tions of the proposition, by the definition of Partition(H) (Definition 37). Assume by induction
that the conditions of the proposition hold for Q`−1, where ` ≥ 2. We note that, by Step 3b, Q` is
initially empty and set are added to Q` only in Steps 3(c)ii and 3(c)iii. In addition sets are added
to Q` only as a result of every set in Q`−1 being examined individually and for each K ∈ Q`−1
examined exactly one of the following happens: (i) nothing happens; (ii) K is added to Q` and (iii)
the set in a partition of K into pairwise-comparable sets are added to Q`. Thus, it is easy to see
that, since all the sets Q`−1 are pairwise comparable and in particular pairwise disjoint the same
holds for all the sets in Q`−1. Therefore, the induction step holds and the proposition follows.

24

Algorithm 3 critical tuple Algorithm
Input: F and Λ ⊆ V aluable

1. H ←− strong sequence for BF
Λ

2. `←− 1, Q0 ←− ∅, Q1 ←− Partition(H)

3. while Q` 6= Q`−1, do

(a) `←− `+ 1
(b) Q` ←− ∅
(c) for each K ∈ Q`−1, do

i. if K is negligible, do nothing
ii. else, if K is useful, do Q` ←− Q` ∪ {K}
iii. else, if K is splittable with partition {K1,K2}, do Q` ←− Q` ∪ {K1,K2}

4. for each K ∈ Q`−1, do

(a) if there exists a set K∗ that is useful for K, do
i. for each j ∈ K∗, do

A. Block(j)←− K∗

B. Bad(j)←−M (K∗)
C. Good(j)←− Bad(j) ∪K

Output: (Block,Good,Bad)

25

Lemma 47 On input F and Λ ⊆ V aluable, Algorithm 3 satisfies the following:

1. it halts,

2. all the sets in Qd are useful,

3. the output it returns (Block,Good,Bad) is a critical tuple,

4. for every i ∈
⋃
j∈ZBlock(j), we have that Good(i), Bad(i) and Block(i) are all subsets of

V aluable and Block(i) is a subset of a set in Partition(H), and

5. d ≤ 28 + 25 · log log rank (F).

Proof. We start by proving that Items 1 and 2. For every j such that Qj is defined, let mj

be the maximal size of a set in Qj that is splittable but neither useful nor negligible, if such a set
exists and 0 otherwise. By Steps 3(c)i, 3(c)ii and 3(c)iii, as set in Qj+1 is splittable but neither
useful nor negligible only if it is a strict subset of a set in Qj that is splittable but neither useful nor
negligible. Consequently, mj+1 < min{2,mj}, or every j such that Qj+1 is defined. We note that,
by the definition of splittable (Definition 43), mj > 1, for every j such that Qj is defined. Hence,
by the above there exists a finite i such that every set in Qi is useful. Thus, by the preceding case
Algorithm 3 halts and therefore, Item 1 holds, d is finite, and by the above three cases all the sets
in Qd are useful. Consequently, Item 2 also holds.

By Proposition 46, all the sets in Qd are pairwise-comparable and hence, by all the Steps
in the ”for each” of Step 4, (Block,Good,Bad) is a critical tuple. Thus, Item 3 holds. By
Steps 1, 3(c)i, 3(c)ii and 3(c)iii, Item 4 holds. We next prove that Item 5 holds.

Let i ≥ 4 be an integer not exceeding d and suppose that K ′i ∈ Qi is splittable and neither
negligible nor useful. Then, by Steps 3(c)i, 3(c)ii and 3(c)iii, there exists a set K ′i−1 ∈ Qi−1 that is
a superset of K ′i and, for every j ∈ [i− 1] inductively, there exists a set K ′j ∈ Qj that is a superset
of K ′j+1. We note that, for every j ∈ [i − 1], K ′j splittable and neither negligible nor useful since
otherwise, either K ′i 6∈ Qi or K ′i satisfies at least one of the conditions of Steps 3(c)i and 3(c)ii
which is a contradiction. Consequently, by the definition of splittable (43),

LOPT
(
BF
K′i

)
≤
(15

16

)i−1
· LOPT

(
BF
K′1

)
≤
(15

16

)i−1
· LOPT

(
BF
H

)
(10)

Since K ′i−1 is not negligible, by the definition of negligible (Definition 42),

LOPT
(
BF
H

)
64 · log rank (F) ≤ LOPT

(
BF
K′i−1

)
.

This together with (10), implies that

LOPT
(
BF
H

)
64 · log rank (F) ≤

(15
16

)i−4
· LOPT

(
BF
H

)
.

Hence, i − 1 ≤ 28 − 4 + 25 · log log rank (F). Thus, for any i > 28 + 25 · log log rank (F) − 3, Qi
does not have any splittable set. Consequently, by Steps 3(c)i and 3(c)ii, Qi = Qi+1, for some

26

i ≤ 28 + 25 · log log rank (F) − 1. By Step 3, this implies that d ≤ 28 + 25 · log log rank (F) when
Algorithm 3 halts. Thus, Item 5 holds.

Lemma 48 On input F and Λ ⊆ V aluable, Algorithm 3 satisfies the following: H computed by
Algorithm 3 is a strong sequence for BF

Λ , and if

for every Hi ∈ Partition(H),
∑
j∈Hi

2j · uncov
(
BF
Hi\{j}, B

F
j

)
≤

LOPT
(
BF
H

)
214 · log log rank (F) , (11)

then Algorithm 3 returns a critical tuple (Block,Good,Bad) such that

∑
j∈Z

2j ·
(
uncov

(
BF
Bad(j)∪Block(j)\{j}, B

F
j

)
− uncov

(
BF
Good(j)\{j}, B

F
j

))
≥

LOPT
(
BF
H

)
220 · log log rank (F) .

Proof. By Step 1, H computed by Algorithm 3 is a strong sequence for BF
Λ . By Lemma 47,

on input F and Λ, d is a finite integer and Algorithm 3 halts and returns a critical tuple
(Block,Good,Bad). Suppose first that,

∑
K∈Qd

LOPT
(
BF
K

)
≥ 1

2 · LOPT
(
BF
H

)
. (12)

By Lemma 47, all the sets in Qd are useful and therefore, according to the steps executed in the
”for each” of Step 4 and the definition of useful (Definition 41),

∑
K∈Qd

∑
j∈K

2j ·
(
uncov

(
BF
Bad(j)∪Block(j)\{j}, B

F
j

)
− uncov

(
BF
Good(j)\{j}, B

F
j

))
≥ 1

32
∑
K∈Qd

LOPT
(
BF
K

)
214 · log log rank (F)

and hence, by (12) the lemma follows. We now prove that (11) implies (12).
Let Qsmall be the family of all the negligible sets in

⋃
i∈[d]Qi, that satisfy Item 2 of Definition 42,

and Quncov be the family of all the negligible sets in
⋃
i∈[d]Qi, that are not in Qsmall. According

to construction:∑
K∈Qd

LOPT
(
BF
K

)
=

∑
K∈Q1

LOPT
(
BF
K

)
−

∑
K∈Quncov

LOPT
(
BF
K

)
−

∑
K∈Qsmall

LOPT
(
BF
K

)
. (13)

We will individually bound each sum in the preceding equality, so that (12) follows.
According to Step 2 of Algorithm 3, the definition of Partition(H) (Definition 37) and the definition
of LOPT (Definition 9),∑

K∈Q1

LOPT
(
BF
K

)
=

∑
K∈Partition(H)

LOPT
(
BF
K

)
= LOPT

(
BF
H

)
. (14)

27

Since H ⊆ V aluable, by Observation 17, we have |H| ≤ 2 log rank (F) and therefore

∑
K∈Qsmall

LOPT
(
BF
K

)
≤ |H| ·

LOPT
(
BF
H

)
64 · log rank (F) ≤

1
32 · LOPT

(
BF
H

)
. (15)

We next prove the succeeding inequality which, by (13), (14), (15) and (16), implies that (12) holds.

∑
K∈Quncov

LOPT (K) ≤ 1
14 · LOPT

(
BF
H

)
. (16)

For every i ∈ [d], let Q′i = Qi
⋃(
Quncov ∩

⋃
j∈[i−1]Qj

)
. By Lemma 47, Quncov ∩Qd = ∅ and hence,

Quncov ⊆ Q′d. As a result,∑
K∈Quncov

∑
j∈K

2j · uncov
(
BF
M(K)∪K\{j}, B

F
j

)
≤

∑
K∈Q′

d

∑
j∈K

2j · uncov
(
BF
M(K)∪K\{j}, B

F
j

)
.

By the definition of negligible (Definition 42), this implies that,

∑
K∈Quncov

LOPT
(
BF
K

)
≤ 8

7 ·
∑
K∈Q′

d

∑
j∈K

2j · uncov
(
BF
M(K)∪K\{j}, B

F
j

)
. (17)

We prove next that

8
7 ·

∑
K∈Q′

d

∑
j∈K

2j · uncov
(
BF
M(K)∪K\{j}, B

F
j

)
≤ 1

14 · LOPT
(
BF
H

)
, (18)

which, by (17), implies that (16) indeed holds. By Item 2 of Observation 36,∑
K∈Q1

∑
j∈K

2j · uncov
(
BF
M(K)∪K\{j}, B

F
j

)
≤

∑
K∈Q1

∑
j∈K

2j · uncov
(
BF
K\{j}, B

F
j

)
.

Hence, by (11),

∑
K∈Q1

∑
j∈K

2j · uncov
(
BF
M(K)∪K\{j}, B

F
j

)
≤ |Partition(H)| ·

LOPT
(
BF
H

)
214 · log log rank (F) .

By Step 2 of Algorithm 3 and the definition of Partition(H) (Definition 37), |Q1| =
|Partition(H)| ≤ 16 · log log rank

(
BF
K

)
, and hence, by the preceding inequality,

∑
K∈Q1

∑
j∈K

2j · uncov
(
BF
M(K)∪K\{j}, B

F
j

)
≤ 1

210 · LOPT
(
BF
H

)
. (19)

28

By Proposition 45 and Steps 3(c)i, 3(c)ii and 3(c)iii, for every i ∈ [2, d],

∑
K∈Q′i

∑
j∈K

2j ·uncov
(
BF
M(K)∪K\{j}, B

F
j

)
≤

∑
K∈Q′i−1

∑
j∈K

2j ·uncov
(
BF
M(K)∪K\{j}, B

F
j

)
+

LOPT
(
BF
H

)
214 · log log rank (F) .

By resolving the recurrence we get,

∑
K∈Q′

d

∑
j∈K

2j ·uncov
(
BF
M(K)∪K\{j}, B

F
j

)
≤

∑
K∈Q1

∑
j∈K

2j ·uncov
(
BF
M(K)∪K\{j}, B

F
j

)
+

(d− 1) · LOPT
(
BF
H

)
214 · log log rank (F)

Consequently, inequality (18) follows, by (19) and Item 5 of Lemma 47.

Theorem 49 Let Λ ⊆ V aluable, if rank (F) > 28, then one of the following exists:

1. a set J ⊆ Λ, where
∑
j∈J 2j · uncov

(
BF
J\{j}, B

F
j

)
≥ LOPT(BF

Λ)
219·log log rank(F)

and for every j ∈ J , we have that 2 · rank
(
BF
j

) 12
11 ≥ rank

(
BF
J

)
, or

2. a critical tuple (Block,Good,Bad), where for every i ∈ Z, we have that Good(i), Bad(i) and

Block(i) are subsets of Λ and 2 · rank
(
BF
i

) 12
11 ≥ rank

(
BF
Good(i)

)
, and

∑
j∈Z

2j ·
(
uncov

(
BF
Bad(j) ∪B

F
Block(j)\{j}, B

F
j

)
− uncov

(
BF
Good(j)\{j}, B

F
j

))
≥

LOPT
(
BF

Λ

)
225 · log log rank (F) .

Proof. Suppose that there exists J ∈ Partition(H), where H be a strong sequence for BF
Λ ,

such that
∑
j∈J 2i · uncov

(
BF
J\{j}, B

F
j

)
≥ LOPT(BF

H)
220·log log rank(F) . Then, by Item 3 of the definition of a

strong sequence (Definition 34), the first equation of the theorem holds for J . By Observation 38,
J satisfies the condition of the first item of the theorem. So, suppose that a set as J does not exist.
Then, by Lemma 48 and Item 3 of the definition of a strong sequence (Definition 34), on input F ,
Algorithm 3 returns a critical tuple (Block,Good,Bad), such that

∑
j∈Z

2j ·
(
uncov

(
BF
Bad(j) ∪B

F
Block(j)\{j}, B

F
j

)
− uncov

(
BF
Good(j)\{j}, B

F
j

))
≥

LOPT
(
BF

Λ

)
225 · log log rank (F) .

By Item 4 of Lemma 47, for every i ∈ Z, we have that Good(i), Bad(i) and Block(i) are subsets of Λ
and in Block(i) is a subset of a set in Partition(H). Thus, by Observation 38, (Block,Good,Bad)
satisfies the second item of theorem and the whole theorem follows.

7 Main Result

The proof of the main result combines the algorithmic, probabilistic and structural theorems. We
start by combining the probabilistic and structural theorems. The structural theorem is proved
for subsets of V aluable, which depends on F . The probabilistic part is proved for a set of Bucket
indices, that is called Super, is defined next and depends solely on the matroid.

29

Definition 50 [Super] We define Super to be the set of all i ≥ 1 + LOPT (U) − 2 log rank (U)
such that rank (Bi) ≥ max

{
1,
√

LOPT (U)
2i+12

}
.

The following lemma states, among other things, a condition in which V aluable ⊆ Super. We
show later on that this condition is met with high probability and hence, with high probability, the
probabilistic part applies to all subsets of V aluable.

Lemma 51

1. for every i ∈ Super, rank (Bi) ≥ 2232,

2. if LOPT (F) ≥ 1
8 · LOPT (U), then V aluable ⊆ Super,

3. LOPT (BSuper) ≥ 7
8 · LOPT (U) and

4. if rank (F) > 28, then LOPT
(
BF
V aluable

)
> 1

2 · LOPT (F) .

The proof of the preceding lemma is in Appendix C.1. The following theorem merges all the
probabilistic parts of this result.

Theorem 52 With probability at least 3
4 , for every k ∈ Super, J ⊆ Super, j ∈ J , critical tuple

(Block,Good,Bad) and i ∈
⋃
`∗∈ZBlock(`∗) the following holds: if for every ` ∈ Z, we have that

Good(`), Bad(`) and Block(`) are subsets of Super, then

1. uncov
(
B
U\F
J\{j}, B

U\F
j

)
≥ uncov

(
BF
J\{j}, B

F
j

)
− 4 · rank

(
BF
J

) 3
4 ,

2.
uncov

(
BF
Bad(i) ∪B

U\F
Block(i)\{i}, B

U\F
i

)
≥

uncov
(
BF
Bad(i) ∪B

F
Block(i)\{i}, B

F
i

)
− 4 · rank

(
BF
Good(i)

) 3
4

3. loss
(
BF
Good(i), B

U\F
i

)
≤ uncov

(
BF
Good(i)\{i}, B

F
i

)
+ 2 · rank

(
BF
Good(i)

) 5
6 .

4. for every ` ∈ Super, we have rank
(
BF
`

)
≥ 1

4 · rank (B`) and

5. LOPT (F) ≥ 1
5 · LOPT (U) .

The proof of the preceding theorem is in Appendix B. The next proposition is used in order to
bound the influence of the rightmost terms of the inequalities in the first three items of the preceding
theorem.

Proposition 53 Let K ⊆ V aluable. If rank (F) ≥ 1
4 · 2

232, LOPT
(
BF
K

)
> 1

16 · LOPT (U) and
K < logLOPT (F)− 64 · log log rank (F), then

LOPT
(
BF
K

)
225 · log log rank (F) − 8 ·

∑
i∈K

2i · rank
(
BF
i

) 10
11 ≥ OPT (U)

230 · log log rank (U) .

30

The proof of the preceding proposition is in Appendix C.2. The following theorem combines the
probabilistic and structural parts of the result.

Theorem 54 There exists an algorithm that, with probability at least 3
4 over the choice of F , will

return one of the following:

1. J ⊂ Z, where
∑
j∈J 2j · uncov

(
B
U\F
J\{j}, B

U\F
j

)
≥ OPT (U)

230·log log rank(U) and

2. a critical tuple (Block,Good,Bad) such that∑
j∈
⋃

i∈ZBlock(i)

2j ·
(
uncov

(
BF
Bad(j) ∪B

U\F
Block(j)\{j}, B

U\F
j

)
− loss

(
BF
Good(j), B

U\F
j

))
≥ OPT (U)

230 · log log rank (U) .

Proof. We prove that conditioned on the events of Thm 52 the assertion of the theorem holds
with probability 1. Since the events of Theorem 52 hold, with probability at least 3

4 , the theorem
follows.

By Item 5 of Theorem 52 and Item 2 of Lemma 51, V aluable ⊆ Super and hence, by Item 1 of
Lemma 51,

for every i ∈ V aluable, rank (F) ≥ rank
(
BF
i

)
≥ 1

4 · 2
232
. (20)

Let {K1,K2} be a partition of V aluable such that K1 ≥ logLOPT (F) − 64 · log log rank (F)
and K2 < K1. We observe that |K1| ≤ 64 · log log rank (F) since, by definition max V aluable ≤
logLOPT (F).

Suppose that LOPT
(
BF
K1

)
≥ 1

8 · LOPT (F). Since |K1| ≤ 64 · log log rank (F), by the Pi-
geon Hole Principle and the definition of LOPT (Definition 9), there exists k ∈ K1 such that
LOPT

(
BF
k

)
≥ LOPT (F)

222·log log rank(F) . Hence, LOPT
(
B
U\F
k

)
≥ OPT (U)

230·log log rank(U) , by (20) and Item 4 of
Theorem 52. Consequently, J = {k} satisfies the first item of the theorem.

Suppose that LOPT
(
BF
K1

)
< 1

8 · LOPT (F). By Item 4 of Lemma 51, LOPT
(
BF
V aluable

)
>

1
2 · LOPT (F) and hence, according to Item 5 of Theorem 52,

LOPT
(
BF
K2

)
>

3
8 · LOPT (F) > 1

16 · LOPT (U) . (21)

Since K2 ⊆ V aluable and (20), by the assumption that the items of Theorem 52 hold, at least
one of the following exists:

1. a set J ⊆ K2 of bucket indices such that

∑
j∈J

2i · uncov
(
B
U\F
J\{j}, B

U\F
j

)
≥

LOPT
(
BF
K2

)
219 · log log rank (F) − 8 ·

∑
j∈J

2j · rank
(
BF
j

) 9
11

2. a critical tuple (Block,Good,Bad), where for every ` ∈ Z, Good(`), Bad(`) and Block(`) are

31

subsets of K2, such that

∑
j∈
⋃

i∈ZBlock(i) 2j ·
(
uncov

(
BF
Bad(j) ∪B

U\F
Block(j)\{j}, B

U\F
j

)
− loss

(
BF
Good(j), B

U\F
j

))
≥

LOPT

(
BF

K2

)
225·log log rank(F) − 8 ·

∑
j∈
⋃

i∈ZBlock(i) 2j · rank
(
BF
j

) 10
11

.

Since K2 is finite, whichever of the above exists, it can be found and returned, using only exhaustive
search and the knowledge obtained about the elements of F via the oracle. This together with (20),
(21), and Proposition 53 implies the theorem.

The following theorem is the main result of this paper.

Theorem 55 The Main Algorithm is Order-Oblivious, Known-Cardinality and has a competitive-
ratio of O(log log rank (U)).

Proof. Suppose first that max{val(e) | e ∈ U} ≥ 2−234 · OPT (U). By Observation 1, with
probability 1

4 , F has the element with the second largest value among the elements of U (or largest
if U has more than a single element with value max{val(e) | e ∈ U}) and U \ F has an element of
value max{val(e) | e ∈ U}. Thus, with probability at least 1

4 , the value of the element selected is
max{val(e) | e ∈ U}. Since, with probability 1/2, max{val(e) | e ∈ F}, is the input to Stage 3 of
Main Algorithm, the competitive-ratio holds in this case.

Assume that max{val(e) | e ∈ U} < 2−234 · OPT (U) and max{val(e) | e ∈ F}, is not the
input to Stage 3 of Main Algorithm. According to Theorem 54, there exists an algorithm that,
with probability at least 3

4 , finds a J ⊂ Z, that satisfies the first item of Theorem 54 or a critical
tuple (Block,Good,Bad) that satisfies the second item of Theorem 54. If the algorithm returns
a finite set J as above then, by Theorem 21, the required competitive-ratio is achieved. If the
algorithm returned a critical tuple (Block,Good,Bad) as above then, by Theorem 22, the required
competitive-ratio is achieved.

We note that the Main Algorithm is Known-Cardinality, since (i) the computation in Gathering
stage is independent of the matroid elements; (ii) the computation in the Preprocessing stage; and
(iii) the Selection stage uses only elements of the matroid that have been revealed.

We also note that the Main Algorithm is Order-Oblivious, because by construction it follows
definition 13 and the analysis depends on the elements in the sets F and U \ F but not on their
order.

References

[1] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley, 2000.

[2] Pablo D Azar, Robert Kleinberg, and S Matthew Weinberg. Prophet inequalities with limited
information. In Proceedings of the 45th symposium on Theory of Computing, pages 123–136.
ACM, 2013.

[3] Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. A knapsack secretary
problem with applications. In APPROX/RANDOM, pages 16–28, 2007.

32

[4] Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. Matroids, secretary problems, and
online mechanisms. In SODA, pages 434–443, 2007.

[5] Siddharth Barman, Seeun Umboh, Shuchi Chawla, and David L. Malec. Secretary problems
with convex costs. In ICALP (1), pages 75–87, 2012.

[6] MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Morteza Zadimoghaddam. Sub-
modular secretary problem and extensions. ACM Transactions on Algorithms (TALG), 9(4):32,
2013.

[7] Niv Buchbinder, Kamal Jain, and Mohit Singh. Secretary problems via linear programming.
Mathematics of Operations Research, 2013.

[8] Sourav Chakraborty and Oded Lachish. Improved competitive ratio for the matroid secretary
problem. In SODA, pages 1702–1712, 2012.

[9] Nedialko B Dimitrov and C Greg Plaxton. Competitive weighted matching in transversal
matroids. Algorithmica, 62(1-2):333–348, 2012.

[10] Michael Dinitz. Recent advances on the matroid secretary problem. ACM SIGACT News,
44(2):126–142, 2013.

[11] Michael Dinitz and Guy Kortsarz. Matroid secretary for regular and decomposable matroids.
In SODA, pages 108–117. SIAM, 2013.

[12] E. B. Dynkin. The optimum choice of the instant for stopping a markov process. Sov. Math.
Dokl., 4, 1963.

[13] M. Feldman, J. Naor, and R. Schwartz. Improved competitive ratios for submodular secretary
problems. Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 218–229, 2011.

[14] P. R. Freeman. The secretary problem and its extensions: a review. Internat. Statist. Rev.,
51(2):189–206, 1983.

[15] Shayan Oveis Gharan and Jan Vondrák. On variants of the matroid secretary problem. Algo-
rithmica, 67(4):472–497, 2013.

[16] Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. Constrained non-
monotone submodular maximization: offline and secretary algorithms. In WINE, pages 246–
257, 2010.

[17] Sungjin Im and Yajun Wang. Secretary problems: Laminar matroid and interval scheduling.
In SODA, pages 1265–1274, 2005.

[18] Patrick Jaillet, José A. Soto, and Rico Zenklusen. Advances on matroid secretary problems:
Free order model and laminar case. CoRR, abs/1207.1333, 2012.

33

[19] Robert Kleinberg. A multiple-choice secretary algorithm with applications to online auctions.
In SODA, pages 630–631, 2005.

[20] Nitish Korula and Martin Pál. Algorithms for secretary problems on graphs and hypergraphs.
In ICALP, pages 508–520, 2009.

[21] D. V. Lindley. Dynamic programming and decision theory. Applied Statistics, 10:39–51, 1961.

[22] James G Oxley. Matroid theory, volume 3. Oxford university press, 2006.

[23] José A Soto. Matroid secretary problem in the random-assignment model. SIAM Journal on
Computing, 42(1):178–211, 2013.

A Graph Definitions and Notations

A directed graph is an ordered pair G = (V,E), where V is a set of vertices and E is a set of ordered
pairs of vertices of V called arcs. We use the notation V (G) for the set of vertices of G and E(G)
for the set of arcs of G. An arc (u, v) ∈ E(G) is an incoming-arc of the vertex v and an outgoing-arc
of the vertex u. The in-degree of a vertex v ∈ V (G) is the number of its incoming-arcs and its
out-degree is the number of its outgoing-arcs. A directed path P in G from u1 to uk is a tuple
(u1, u2, . . . , uk) ∈ V k of k distinct entries such that (ui, ui+1) ∈ E(G) for every i ∈ [k − 1]. The
length of P is k− 1. A directed cycle in G is a tuple (u1, u2, . . . , uk+1) ∈ V k+1 such that uk+1 = u1,
(uk, u1) ∈ E(G) and (u1, u2, . . . , uk) is a directed path. The distance from u to v in V (G) is the
minimum length of a path from u to v if such a path exists, and ∞ otherwise.

A binary tree is an ordered triple T = (V,E, r), where (V,E) is a directed graph that has exactly
three types of vertices: (i) r ∈ V (G), called the root of T , it has in-degree 0 and out-degree 2, (ii)
internal vertices, each having in degree 1 and out-degree 2 and (iii) leaves, each having in-degree
1 and out-degree 0. For every v ∈ V (T), we define the depth of v to be the distance from r to v.
We define the depth of an arc (u, v) ∈ E(T) to be the depth of u. A binary tree T = (V,E, r) is
balanced, if all leaves have the same depth. We say that u ∈ V (T) is the parent of v ∈ V (T) if
(u, v) ∈ E(T) and a child of v if (v, u) ∈ E(T).

B Proof of Theorem 52

The actual proof appears at the end of Appendix B.2. The succeeding subsection contains the
concentration inequalities, that are required for the proof.

B.1 Talagrand based concentrations

This subsection of the appendix is very similar to one that appears in [8], we add it for the sake of
completeness.

The following definition is an adaptation of the Lipschitz condition to our setting.

Definition 56 [Lipschitz] Let h ∈ N+ and f : U −→ N. If |f(S1) − f(S2)| ≤ c for every
S1, S2 ⊆ U such that |(S1 \ S2) ∪ (S2 \ S1)| = 1, then f is c-Lipschitz.

Definition 57 [Definition 3 of [1]] Let f : N −→ N. h is f -certifiable if whenever h(x) ≥ s

there exists I ⊆ {1, . . . , n} with |I| ≤ f(s) so that all y ∈ Ω that agree with x on the coordinates I
have h(y) ≥ s.

Observation 58 For every finite K ⊂ Z, the rank function over subsets of BK is 1-Lipschitz
and f -certifiable with f(s) = rank (BK).

Proof. The rank function is 1-Lipschitz, by the definition of the rank function (Definition 3).
By Item 2 of Proposition 4, for every S ⊆ R ⊆ BK , we have that rank (S) ≤ rank (R) ≤ rank (BK).
Thus, the rank function over subsets of BK is f -certifiable with f(s) = rank (BK).

The succeeding theorem is a direct result of Theorem 7.7.1 from [1].

Theorem 59 If h is Lipschitz and f certifiable, then for x selected uniformly from Ω and all b, t,
Pr[h(x) ≤ b− t

√
f(b)] · Pr[h(x) ≥ b] ≤ e−t2/4.

Lemma 60 Let t ≥ 2, K be a finite subset of Z, K ′ ⊆ K and

S = BF
K′ ∪B

U\F
K\K′ ,

then
prob

(∣∣∣rank (S)−med (rank (S))
∣∣∣ ≥ t ·√rank (BK)

)
≤ e2− t2

4 .

Proof. By Observation 58, the rank function is 1-Lipschitz and rank-certifiable. Hence, by
the union bound together with Theorem 59 once with b = med (rank (S)) + t ·

√
rank (BK) and

once with b = med (rank (S)), and by noting that prob (rank (S) ≥ med (rank (S))) ≥ 1
2 and

prob (rank (S) ≤ med (rank (S))) ≥ 1
2 , the lemma follows.

Because the random sets F and U \ F have exactly the same distribution and the buckets are
pairwise disjoint, the following observation holds.

Observation 61 For every K ⊂ Z, and subsets K1 and K2 of K, we have

med
(
BF
K1 ∪B

U\F
K\K1

)
= med

(
BF
K2 ∪B

U\F
K\K2

)
.

B.2 Union bound based results

Proposition 62 With probability less than

∑
K⊆Super

∑
K1⊆K

e4− 1
4 ·rank(BK)

1
2 ,

there exists K ⊆ Super, K1 ⊆ K and R1, R2 ∈ {F,U \ F}, such that |K| ≥ 2 and

|rank
(
BR1
K1
∪BR2

K\K1

)
−med

(
rank

(
BR1
K1
∪BR2

K\K1

))
| ≥ rank (BK)

3
4 .

Proof. Let K ⊆ Super, R1 ∈ {F,U \ F} , R2 ∈ {F,U \ F}, K1 ⊆ K,

S(K,K1, R1, R2) = BR1
K1
∪BR2

K\K1

35

and
s(K,K1, R1, R2) = med

(
rank

(
BR1
K1
∪BR2

K\K1

))
.

By Lemma 60,

prob

(∣∣∣rank (S(K,K1, R1, R2))− s(K,K1, R1, R2)| ≥ t ·
√
rank (BK)

)
≤ e2− t2

4 .

Since K ⊆ Super, by Assumption 14 and Item 1 of Lemma 51,

rank (BK) ≥ min {rank (Bi) | i ∈ Super} ≥ 16.

Consequently, by taking t = (rank (BK))
1
4 and using the union bound, the proposition follows.

Lemma 63 With probability at least 3
4 , for every K ⊆ Super, K∗ ⊆ K, R1, R2 ∈ {F,U \ F} and

k ∈ K, we have

|rank
(
BR1
K∗ ∪B

R2
K\K∗

)
−med

(
rank

(
BR1
K∗ ∪B

R2
K\K∗

))
| ≥ rank (BK)

3
4 .

and
loss

(
BF
K , B

U\F
k

)
≤ uncov

(
BF
K\{k}, B

F
k

)
+ rank (Bk)

2
3 .

Proof. By Propositions 62, Theorem 23 and the union bound, the probability, that the event
in the lemma does not occur, does not exceed η =

∑
K⊆Super

∑
K∗⊆K e

5− 1
4 ·rank(BK)

1
6 . Note that

we over count by using K∗ instead of k. By the definition of Super (Definition 50), rank (BK) ≥
rank (BminK) ≥

√
LOPT (U)
2min K+12 and therefore,

η <
∑

K⊆Super

∑
K∗⊆K

e
5− 1

4 ·
(

LOP T (U)
2min K+12

) 1
12

For every z ∈ Super, there are at most maxSuper − z members i ∈ Super such that i ≥ z.
Hence, there are at most 22(maxSuper−z) pairs K,K1 ⊆ Super such that K1 ⊆ K and minK = z.
Consequently by the above inequality,

η <
∑

z∈Super
22(maxSuper−z) · e5− 1

4 ·
(

LOP T (U)
2z+12

) 1
12
<

∑
z∈Super

22(maxSuper−z)+10− 1
4 ·
(

LOP T (U)
2z+12

) 1
12
.

By Assumption 14, we have maxSuper < logLOPT (U)− 234 and therefore,

η <
∑
z∈N

22z+10− 1
4 ·
(

LOP T (U)
2max Super−z

) 1
12
<
∑
z∈N

2
2z+10− 1

4 ·
(

LOP T (U)

2log LOP T (U)−234+12−z

) 1
12

<
1
4 .

Theorem 52 (restated) With probability at least 3
4 , for every k ∈ Super, J ⊆ Super, j ∈ J ,

critical tuple (Block,Good,Bad) and i ∈
⋃
`∗∈ZBlock(`∗) the following holds: if for every ` ∈ Z,

36

we have that Good(`), Bad(`) and Block(`) are subsets of Super, then

1. uncov
(
B
U\F
J\{j}, B

U\F
j

)
≥ uncov

(
BF
J\{j}, B

F
j

)
− 4 · rank

(
BF
J

) 3
4 ,

2.
uncov

(
BF
Bad(i) ∪B

U\F
Block(i)\{i}, B

U\F
i

)
≥

uncov
(
BF
Bad(i) ∪B

F
Block(i)\{i}, B

F
i

)
− 4 · rank

(
BF
Good(i)

) 3
4

3. loss
(
BF
Good(i), B

U\F
i

)
≤ uncov

(
BF
Good(i)\{i}, B

F
i

)
+ 2 · rank

(
BF
Good(i)

) 5
6 .

4. for every ` ∈ Super, we have rank
(
BF
`

)
≥ 1

4 · rank (B`) and

5. LOPT (F) ≥ 1
5 · LOPT (U) .

Proof. Items 1, 2 and 3 follow from the definition of uncov (Definitions 15), Observation 61,
Lemma 63 and Item 4 of Proposition 4. Item 4 follows from Item 1 of Lemma 51 and the first
inequality of Lemma 63. According to Item 4, the definition of LOPT (Definition 9) and Item 3 of
Lemma 51.

LOPT (F) ≥ LOPT
(
BF
Super

)
≥ 1

4 · LOPT (BSuper) ≥
1
5 · LOPT (U) .

Thus, Item 5 holds and the theorem follows.

C Matroid structural results

C.1 Proof of Lemma 51

Each item of the lemma is asserted by a dedicated proposition. The following proposition implies
Item 1 of Lemma 51.

Proposition 64 For every i ∈ Super, rank (Bi) ≥ 2232.

Proof. Let i ∈ Super. By Assumption 5, val(e) = 2i, for every i ∈ Z and e ∈ Bi, therefore by
Assumption 14, 2i ≤ max{val(e) | e ∈ U} < 2−234 ·OPT (U) and hence,

i < logOPT (U)− 234 < logLOPT (U)− 234,

where the last inequality follows from Item 1 of Observation 10. By the definition of Super (Defi-
nition 50),

rank (Bi) >

√
LOPT (U)

2i+12 >

√
LOPT (U)

2logLOPT (U)−234+12 .

Thus, the proposition follows.
The next proposition implies Item 2 of Lemma 51.

Proposition 65 If LOPT (F) ≥ 1
8 · LOPT (U), then V aluable ⊆ Super.

37

Proof. By the definition of V aluable (Definition 16), for every i ∈ V aluable,

i ≥ 4 + logLOPT (F)− 2 log rank (F) ≥ 1 + logLOPT (U)− 2 log rank (U),

rank
(
BF
i

)
≥ 1 and

rank
(
BF
i

)
≥

√
LOPT (F)

2i+8 ≥

√
LOPT (U)

2i+11 >

√
LOPT (U)

2i+12 .

Thus, by the definition of Super (Definition 50), the proposition follows.
The next proposition implies Item 3 of Lemma 51.

Proposition 66 LOPT (BSuper) ≥ 7
8 · LOPT (U) .

Proof. Let J1 be the set of all integers smaller than 1 + logLOPT (U)− 2 log rank (U) and J2

be the set of all i ∈ Z such that 1 ≤ rank (Bi) <
√

LOPT (U)
2i+12 . Thus, by the definition of LOPT

(Definition 9),

LOPT (BJ2) < 2−6 ·
∑
i∈J2

2i ·

√
LOPT (U)

2i = 2−6 ·
∑
i∈J2

√
2i · LOPT (U).

Recall that val(e) = 2i, for every i ∈ Z and e ∈ Bi, therefore, by Observation 10, 2i ≤ LOPT (U),
for every i ∈ J2. Consequently,

LOPT (BJ2) < 2−6 · LOPT (U) ·
∑
i∈N

2−
i
2 <

1
16 · LOPT (U) . (22)

According to the construction of J1 and the definition of LOPT (Definition 9),

LOPT (BJ1) =
∑
i∈J1

2i · rank (Bi) ≤
∑
i∈N

2−i · 2 · LOPT (U)
rank (U)2 · rank

(
BU
i

)

and hence, since, by Proposition 64, rank (U) > 2232 , we get

LOPT (BJ1) ≤ 4 · LOPT (U)
rank (U) <

1
16 · LOPT (U) . (23)

We note that Super ∪ J1 ∪ J2 contains all the indices of non-empty buckets. Consequently, by
(22), (23) and the definition of LOPT (Definition 9),

LOPT (BSuper) ≥ LOPT (U)−
∑
i∈[2]

LOPT (BJi) ≥
7
8 · LOPT (U) .

The next proposition implies Item 4 of Lemma 51.

Proposition 67 If rank (F) > 28, then LOPT
(
BF
V aluable

)
> 1

2 · LOPT (F) .

38

Proof. Let J1 be the set of all integers smaller than 4 + logLOPT (F)− 2 log rank (F) and J2

be the set of all integers i such that 1 ≤ rank
(
BF
i

)
<
√

LOPT (F)
2i+8 . Thus,

LOPT
(
BF
J2

)
< 2−4 ·

∑
i∈J2

2i ·

√
LOPT (F)

2i = 2−4 ·
∑
i∈J2

√
2i · LOPT (F).

Recall that val(e) = 2i, for every i ∈ Z and e ∈ BF
i , therefore, by Observation 10, 2i ≤ LOPT (F),

for every i ∈ J2. Hence,

LOPT
(
BF
J2

)
< 2−4 · LOPT (F) ·

∑
i∈N

2−
i
2 <

1
4 · LOPT (F) . (24)

According to the construction of J1 and the definition of LOPT (Definition 9),

LOPT
(
BF
J1

)
=
∑
i∈J1

2i · rank
(
BF
i

)
≤
∑
i∈N

2−i · 16 · LOPT (F)
rank (F)2 · rank

(
BF
i

)

and hence, because rank (F) > 28,

LOPT
(
BF
J1

)
≤ 32 · LOPT (F)

rank (F) <
1
4 · LOPT (F) , (25)

We note that V aluable ∪ J1 ∪ J2 contains all the indices of non-empty buckets. Consequently, by
(24), (25) and the definition of LOPT (Definition 9),

LOPT
(
BF
V aluable

)
≥ LOPT (F)−

∑
i∈[2]

LOPT
(
BF
Ji

)
>

1
2 · LOPT (F) .

C.2 Proof of Proposition 53

Proposition 53 (restated) Assume K ⊆ V aluable and rank (F) ≥ 1
4 · 2

232. If LOPT
(
BF
K

)
>

1
16 · LOPT (U) and K < logLOPT (F)− 64 · log log rank (F), then

LOPT
(
BF
K

)
225 · log log rank (F) − 8 ·

∑
i∈K

2i · rank
(
BF
i

) 10
11 ≥ OPT (U)

230 · log log rank (U) .

Proof. By Observation 10, LOPT
(
BF
K

)
> 1

16 ·OPT (U), and hence, it is sufficient to show that

8 ·
∑
i∈K

2i · rank
(
BF
i

) 10
11 <

OPT
(
BF
K

)
226 · log log rank (F) . (26)

Let k ∈ K be such that rank
(
BF
k

)
= min

{
rank

(
BF
i

)
| i ∈ K

}
. By using the definition of LOPT

39

(Definition 9), we get that

∑
i∈K

2i · rank
(
BF
i

) 10
11 ≤

∑
i∈K

2i · rank
(
BF
i

)
rank

(
BF
k

) 1
11

=
LOPT

(
BF
K

)
rank

(
BF
k

) 1
11

and hence, we only need to show that we have

1
8 · rank

(
BF
k

) 1
11 > 226 · log log rank (F).

Since k ∈ V aluable, by the definition of V aluable (Definition 16), rank
(
BF
k

) 1
11 ≥

(
LOPT (F)

2k+8

) 1
22 .

Hence, because k < logLOPT (F)− 64 · log log rank (F),

rank
(
BF
i

) 1
11 ≥

(
LOPT (F)

2logLOPT (F)−64·log log rank(F)+8

) 1
22
> (log rank (F))2.

Finally, since rank (F) ≥ 1
4 · 2

232 ,

1
8 · rank

(
BF
i

) 1
11 >

1
8 · (log rank (F))2 > 226 · log log rank (F),

and therefore, (26) holds and thus, the proposition follows.

C.3 Proof of Lemma 35

The proof, that is given at the end of this subsection, is almost a direct result of the following
proposition, which is purely number theoretic.

Proposition 68 Let w : Z −→ N, where {i | w(i) > 0} is finite, and m =
∑
j∈Zw(j) · 2j. Then,

there exists a strictly monotonically decreasing sequence of integers h1, h2, . . . , hk such that:

1. 0 < w(hi) ≤ 1
32 · w(hi+1), for every i ∈ [k′ − 1], and

2.
∑
i∈[k′]w(hi) · 2hi > m

18 .

Proof. Let `1, `2, . . . , `k′ ∈ Z be a maximal strictly decreasing sequence such that, `1 is maximum
so that w(`1) > 0 and for every j ∈ [k′ − 1], inductively, `j+1 is the maximum integer such that
`j+1 < `j and w(`j) ≤ 1

2 · w(`j+1). We note that `1, `2, . . . , `k′ satisfy,

for every i ∈ [k′ − 1], 0 < w(`i) ≤
1
2 · w(`i+1) (27)

Let Jk′ be the set of all integers x < `k′ and, for every i ∈ [k′−1], let Ji = {x ∈ Z | `i+1 < x < `i}.
According to construction, for every i ∈ [k′] and j ∈ Ji we have that w(`i) > 1

2 · w(j). Hence, for
every i ∈ [k′],

w(`i) · 2`i ≥ w(`i) ·
∑
j<`i

2j > 1
2 ·

∑
j∈Ji

w(j) · 2j

40

Consequently,

2 ·
k′∑
i=1

w(`i) · 2`i >
k′∑
i=1

∑
j∈Ji

w(j) · 2j .

According to construction, k′∑
i=1

w(`i) · 2`i
+

k′∑
i=1

∑
j∈Ji

w(j) · 2j = m.

This together with preceding inequality implies that∑
i∈[k′]

w(`i) · 2`i >
m

3 . (28)

For every i ∈ [6], define Ki = {`j | (j ∈ [k′]) ∧ (j = i mod 6}. Hence, by (27),

for every i ∈ [6], and j1, j2 ∈ Ki such that j1 > j2, 0 < w(j1) ≤ 1
32 · w(j2). (29)

Let q be such that ∑
j∈Kq

w(j) · 2j > m

3 · 6 = m

18 . (30)

By (28) and the pigeon hole principle, such a q exists. Let h1, h2, . . . , hk be the monotonically
decreasing sequence consisting of the elements of Kq. Thus, by (29) and (30), the proposition
follows.

Lemma 35 (restated) For every F ⊆ U and K ⊂ Z, there exists a strong sequence for BF
K .

Proof. Define, w : Z −→ N as follows: for every i ∈ Z, w(i) = rank
(
BF
i

)
if i ∈ K, and

otherwise w(i) = 0. Let m =
∑
j∈Zw(j) · 2j = LOPT

(
BF
K

)
. By Proposition 68 and Definition 34,

there exists a strong sequence for BF
K .

41

