
Ordering Selection Operators Under Partial Ignorance

Khaled H. Alyoubi
∗

Dept. of Computer Science
and Information Systems

Birkbeck, University of London
London WC1E 7HX, UK

khaled@dcs.bbk.ac.uk

Sven Helmer
Faculty of Computer Science

Free University of
Bozen-Bolzano

39100 Bolzano BZ, Italy
shelmer@inf.unibz.it

Peter T. Wood
Dept. of Computer Science
and Information Systems

Birkbeck, University of London
London WC1E 7HX, UK
ptw@dcs.bbk.ac.uk

ABSTRACT
Optimising queries in real-world situations under imperfect condi-
tions is still a problem that has not been fully solved. We consider
finding the optimal order in which to execute a given set of selection
operators under partial ignorance of their selectivities. The selectivi-
ties are modelled as intervals rather than exact values and we apply
a concept from decision theory, the minimisation of the maximum
regret, as a measure of optimality. The associated decision problem
turns out to be NP-hard, which renders a brute-force approach to
solving it impractical. Nevertheless, by investigating properties of
the problem and identifying special cases which can be solved in
polynomial time, we gain insight that we use to develop a novel
heuristic for solving the general problem. We also evaluate minmax
regret query optimisation experimentally, showing that it outper-
forms a currently employed strategy of optimisers that uses mean
values for uncertain parameters.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management—Systems

Keywords
query optimisation, decision theory, minmax regret

1. INTRODUCTION
Although query optimisation in database management systems

(DBMSs) has been a topic of research for decades, there are still im-
portant unresolved issues. In his recent blog post [20], Guy Lohman
highlights errors made in estimating cardinalities as a crucial factor.
These kinds of errors cause optimisers to generate query execution
plans that are way off the target in terms of efficiency. Consequently,
an optimiser should try to avoid potentially bad plans rather than
strive for an optimal plan based on unreliable information.

For typical workloads, a DBMS can compile statistical data over
time to obtain a fairly accurate picture. For instance, estimating the
selectivities of simple predicates on base relations in a relational

∗Khaled H. Alyoubi was supported by a grant from King Abdulaziz
University, Jeddah, Saudi Arabia.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CIKM’15, October 19–23, 2015, Melbourne, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3794-6/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2806416.2806446 .

database is fairly well understood and can be done quite accurately
[12, 14]. However, the situation changes once systems are con-
fronted with very unevenly distributed data values or predicates that
are complex.

Trying to estimate selectivities in dynamic settings, such as data
streams [28], or in non-relational contexts, such as XML databases
[26, 30], also poses challenges. It may even be impossible to obtain
any statistical data, because the query is running on remote servers
[29]. Detailed information may also not be available because a user
issues an atypical ad-hoc query or utilises parameter markers in
a query. We propose to use techniques from decision theory for
making decisions under ignorance1, meaning that we know what
the alternatives and their outcomes are, but we are unable to assign
concrete probabilities to them [25].

In our approach we propose to build a robust query optimiser that
is aware of the unreliability of database statistics and considers this
during optimisation. When executing a query, the DBMS encounters
a particular instance of concrete parameter values: we call this
a scenario. The problem is that, during the prior optimisation
step, the optimiser does not know which scenario the DBMS will
face during plan execution. Additionally, it is highly unlikely that
there is a single execution plan that will yield the optimal cost for
every potential scenario. Consequently, our goal is to choose a
query execution plan that performs reasonably well regardless of
the scenario it encounters. More specifically, we try to minimise the
difference between the cost of a plan p and the cost of the optimal
plan when p is executed under its worst-case scenario. This is
called minmax regret optimisation (MRO), which is a well-known
technique for making decisions under ignorance. Previous work on
query optimisation has considered measures of robustness for query
plans [3, 4, 21], but not in terms of MRO.

In this paper, we focus on the selection operator σ, an operator
common to many data querying languages. Selection is sometimes
called a filter operator in contexts such as data stream processing
[2, 5] and sensor networks [10], where there is renewed interest
in improving the efficiency of processing these operators. A very
common setting is determining the order in which to apply a set of
commutative filters to a stream or a set of data items, e.g. tuples of a
relation, so as to keep the processing costs to a minimum.

There are well-known techniques for ordering selection operators
to filter out as many tuples as possible as early as possible at the
lowest possible cost [13]. However, these techniques rely on having
accurate values for the operators’ selectivities, i.e., the percentage of
tuples passing a filter, and their processing costs (per tuple). Getting

1Sometimes these are also called decisions under uncertainty. We
refer to them as decisions under ignorance to distinguish them from
probability-based methods.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/42134263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the estimation of selectivities (and/or costs) wrong can lead to high
overall costs for the pipelined execution.

Our technique is based on using intervals rather than exact values
for describing selectivities, aiming at generating query plans that
are minmax regret optimal. However, identifying such plans, even
for selection ordering, turns out to be NP-hard. As a result, we leave
the investigation of further operators for future work and focus first
on finding a good heuristic for MRO selection ordering.

Intervals can provide a useful way to model selectivities when
exact values are unknown or hard to compute. For example, Babu
et al. [4] compute intervals from single-point estimates in order
to model levels of uncertainty regarding the accuracy of estimates,
based on how such estimates were derived. Moerkotte et al. [23]
consider histograms which guarantee a maximum multiplicative
error (called the q-error) for cardinality estimates. Given such an
estimate, the true cardinality (selectivity) can easily be modelled by
an interval, as we show in Section 2.

For another situation in which interval selectivities arise, con-
sider estimating the selectivities of string predicates which perform
substring matching using SQL like, a problem known to be dif-
ficult [6]. As an example, let us consider a database in which
email messages are stored in a relation emails, with attributes
such as sender, subject and body (the textual contents of the
email). Assume that many queries use selection predicates such
as subject like ‘%invest%’, so the database maintains in-
dexes on words and on 2-grams (say) of words which allow it also
to provide selectivities for these.

Although the database maintains an index on words, the selectiv-
ity for the word ‘invest’ will be an underestimate for the selectivity of
subject like ‘%invest%’ since the strings ‘reinvest’ and
‘investigation’ (and many others) also match this predicate. Even
if we are able to enumerate all words containing the string ‘invest’,
we do not know how to combine their individual selectivities into
a single selectivity. Instead we can use an interval selectivity with
the exact match as a lower estimate. As the upper estimate, we can
use the minimum selectivity of all the 2-grams of ‘invest’ since any
string containing ‘invest’ must contain all of its 2-grams as well.

EXAMPLE 1. As a concrete example, consider the following
query on the Enron email data2:

select sender
from emails
where body like ‘%action%’ and

body like ‘%like%’ and
subject like ‘%use%’;

Let us denote the three predicates by A, L and U (for ‘action’, ‘like’
and ‘use’). The interval selectivities for the three predicates, as
computed using the method proposed above and explained in more
detail in Section 7, are [0.03, 0.68] for A, [0.17, 0.27] for L and
[0.0008, 0.06] for U . Even if we consider only the upper and lower
bounds of these intervals, they give rise to 8 possible scenarios. No
single plan (order) is optimal for all 8 scenarios, so the best we can
do is find the plan which minimises the maximum regret. This plan
corresponds to the order UAL. The maximum regret for this plan
arises in the scenario when U has its maximum selectivity, while A
and L have their minimum selectivities (in this case, the predicates
U and A should be swapped to get the optimal order).

In the case of the above query, our heuristic finds the minmax
regret optimal solution. By way of contrast, an alternative heuristic
such as that which takes the midpoints of the intervals and produces
an optimal ordering based on those, produces the plan ULA. This
2http://www.cs.cmu.edu/~./enron/

plan has a maximum regret which is 44% worse than the minmax
regret optimal plan. 3

We should mention that the technique of using intervals can be
applied to other approximate or error-tolerant queries as well. All
we need is the selectivity for an exact query as the lower bound and
the selectivity for a query that determines a candidate set with false
positives as the upper bound.

Our contributions in this paper are as follows:

• We formalise the problem of optimal selection ordering under
partial ignorance, i.e., when selectivities are given as intervals.

• We identify a number of properties of the problem, including
that (i) only extreme scenarios (i.e., in which each operator
takes on its minimum or maximum selectivity) need to be
considered, (ii) operators which dominate others (i.e., both
their maximum and minimum selectivities are smaller) must
appear before the dominated ones in any optimal plan, and
(iii) the decision version of the problem is NP-hard.

• We investigate a number of special cases in which selection
ordering under partial ignorance can be solved in polyno-
mial time. Along the way, we also identify other important
properties of scenarios in MRO selection ordering.

• Based on our findings we develop efficient optimisation heuris-
tics, which we evaluate experimentally, using synthetic data,
the Enron email data, and the Star Schema Benchmark (SSB)
[27]. The experiments demonstrate the benefit of using min-
max regret optimisation, in some cases halving the deviation
from the optimal plan compared to conventional techniques.

The remainder of this paper is organised as follows. We start
by reviewing related work on selection ordering and optimisation
techniques in the next section. In Section 3, we formalise the prob-
lem of selection ordering under partial ignorance, using minmax
regret optimisation as the criterion for optimality. Various properties
of the problem, including NP-hardness, are identified in Section 4.
Section 5 presents some special cases of the problem which can
be solved in polynomial time. Our heuristic algorithm is given in
Section 6, with its experimental evaluation presented in Section 7.
Finally, we conclude in Section 8.

2. BACKGROUND AND RELATED WORK
We assume we are given a set S = {σ1, σ2, . . . , σn} of selection

operators, or equivalently a conjunctive predicate p1 ∧ p2 ∧ · · · pn.
The selectivity si of operator σi or predicate pi is the fraction of
tuples that satisfy the operator or predicate. Associated with each
operator si is also a cost ci, which is the cost per tuple of evaluating
the operator.

Most database systems keep statistics allowing them to estimate
the selectivity for single attributes fairly accurately. For the joint
selectivity of multiple attributes, much early work and many systems
make the attribute value independence (AVI) assumption. This
assumes that the selectivity of a set of operators {σi1 , σi2 . . . σim}
is equal to si1 × si2 × · · · × sim . If instead a system stores (some)
joint selectivities (it is infeasible for it to store all of them), we can
use the AVI assumption to “fill in the gaps” or use the estimation
approach advocated in [22].

2.1 Selection Ordering
Assuming we have accurate values for the selectivity si and cost

ci of selection operator σi, we can calculate the rank ri of σi:

ri = (si − 1)/ci (1)

Given a set of selection operators, sorting and executing them in
non-decreasing order of their ranks results in the minimal expected
pipelined processing cost [18] under the AVI assumption. Clearly,
the computation of the ranks and the sorting can be done in polyno-
mial time. A similar argument applies if a query uses a conjunction
of predicates on the same relation, and query evaluation uses a sim-
ple table scan. In such a case, the optimiser should test the predicates
in the order which minimises the total number of tests. Basically,
ordering selection operators optimally is a solved problem, but only
when given exact values for the si and ci.

Similar optimisation problems have been studied in the context
of sequential testing. Here the goal is to find faulty components as
quickly as possible by testing them one by one. Each component has
a probability of working correctly and a cost for testing it. One of
the earliest proposed solutions [15] relies on ranking the components
and then ordering them by their ranks, very similar to the selection
ordering described above.

2.2 Optimising under Uncertainty
In the following, we review different approaches for dealing

with uncertain parameters during query optimisation. A common
approach of many optimisers is to use the mean or modal value
of the parameters and then find the plan with least cost under the
assumption that this value remains constant during query execution,
an approach called Least Specific Cost (LSC) in [7]. As Chu et al.
point out in [7], if the parameters vary significantly, this does not
guarantee finding the plan of least expected cost.

An alternative is to use probabilistic information about the pa-
rameters fed into the database optimiser, an approach known as
Least Expected Cost (LEC) [7]. (A discussion regarding the cir-
cumstances under which LEC or LSC is best appears in [8].) In
decision-theoretic terms, we are making decisions under risk, max-
imising the expected utility. However, probability distributions for
the possible parameter values are needed to make this approach
work, whereas in our case we do not have these prerequisites.

In parametric query optimisation several plans can be precom-
piled and then, depending on the query parameters, be selected for
execution [11]. However, if there is a large number of optimal plans,
each covering a small region of the parameter space, this becomes
problematic. First of all, we have to store all these plans. In addi-
tion, constantly switching from one plan to another in a dynamic
environment (such as stream processing) just because we have small
changes in the parameters introduces a considerable overhead. In
order to amend this, researchers have proposed reducing the number
of plans at the cost of slightly decreasing the quality of the query
execution [9]. Our approach can be seen as an extreme form of
parametric query optimisation by finding a single plan that covers
the whole parameter space.

Another approach to deal with the lack of reliable statistics is adap-
tive query processing, in which an execution plan is re-optimised
while it is running [2, 4, 16, 21]. It is far from trivial to determine at
which point to re-optimise and adaptive query processing may also
involve materialising large intermediate results. More importantly,
this means modifying the whole query engine; in our approach no
modifications of the actual query processing are needed. A gentler
approach is the incremental execution of a query plan [24]. Decid-
ing on how to decompose a plan into fragments and putting them
together is still a complex task, though.

Estimates based on intervals arise explicitly in [4] and implic-
itly in [23]. As mentioned in the Introduction, Babu et al. [4] use
intervals to model uncertainty in the accuracy of a single-point esti-
mate. Uncertainty is represented by a value from 0 (none) to 6 (very
high). Upper and lower bounds for the single-point estimate are

then calculated using the estimate and the uncertainty value. During
optimisation, only three scenarios, those using the low estimates, the
exact estimates and the high estimates, are considered, rather than all
scenarios as in our approach. Moerkotte et al. [23] study histograms
which provide so-called q-error guarantees. Given an estimate ŝ for
s, the q-error of ŝ is max(s/ŝ, ŝ/s). An estimate is q-acceptable
if its q-error is at most q. So if an estimate ŝ is q-acceptable, the
true value s lies in the interval 1/q× ŝ ≤ s ≤ q× ŝ, but there is no
knowledge about any distribution within the interval. The authors
of [23] show that these histograms can be implemented efficiently
in real-world systems such as SAP HANA.

Notions of robustness in query optimisation have been considered
in [3, 4, 21]. Babcock and Chaudhuri [3] use probability distribu-
tions derived from sampling as well as user preferences in order to
tune the predictability (or robustness) of query plans versus their
performance. For Markl et al. [21], robustness means not continuing
to execute to completion a query plan which is found to be subop-
timal during evaluation; instead re-optimisation is performed. On
the other hand, Babu et al. [4] consider a plan to be robust only if
its cost is within e.g. 20% of the cost of the optimal plan. None of
these papers consider robustness in the sense of MRO. Moreover,
these techniques need additional statistical information to work.

2.3 Optimising under Ignorance
Minmax regret optimisation (MRO) has been applied to a num-

ber of optimisation problems where some of the parameters are
(partially) unknown [1]. The complexity of the MRO version of a
problem is often higher than that of the original problem. Many
optimisation problems with polynomial-time solutions turn out to
be NP-hard in their MRO versions [1].

One example is minimising the total flow time (TFT), in which n
jobs are scheduled on a single machine [17]. The flow time of a job is
the sum of its processing time and the time it has had to wait before
starting execution. The total flow time is the sum of the flow times
of all n jobs. This scheduling problem can be solved in polynomial
time given exact job lengths (by sorting the jobs in non-decreasing
order of their processing times [19]), but becomes NP-hard in its
MRO variant [19]. Researchers have developed approximation algo-
rithms for the problem; for example, a 2-approximation algorithm,
bounding the approximate solution to be no more than twice the
optimal solution, is proposed in [17].

Among all MRO problems, TFT is the one closest to the problem
we are investigating. However, there are substantial differences: the
formula for computing the cost of a schedule is much simpler for
TFT, and the approach chosen to obtain a 2-approximation does
not guarantee a bound for MRO selection ordering, as we show in
Section 4.

3. SELECTION ORDERING MRO
In this section we give a formal definition of the generalised

selection ordering problem with partially defined selectivities. The
exact costs of selection operators can also be unknown, but for the
moment we restrict ourselves to partially defined selectivities.

3.1 Basic Definitions
We start out with definitions for selection operators with interval

selectivities and basic properties.

DEFINITION 1. Given a set S = {σ1, σ2, . . . , σn} of selection
operators, each has a selectivity si and a cost ci. Each selectivity
is defined by a closed interval: for 1 ≤ i ≤ n, si = [si, si] with
si, si ∈ [0, 1] and si ≤ si. For 1 ≤ i ≤ n, ci ∈ R+ represents the
cost of σi for processing an input tuple.

Depending on their selectivity intervals selection operators may
relate to each other in a special way. Later on we exploit this
property in order to optimise selection orders.

DEFINITION 2. Given two selection operators σi, σj ∈ S, we
say that σi dominates σj if si ≤ sj and si ≤ sj . The set S of
operators is called dominant if for each pair σi, σj ∈ S it is the
case that either σi dominates σj or σj dominates σi.

Later on, it will be helpful to consider a special case of dominant
sets of operators.

DEFINITION 3. Given two selection operators σi, σj ∈ S, we
say that σi strictly dominates σj if si ≤ sj . A strictly dominant set
is defined analogously to a dominant set.

If for two selection operators σi, σj ∈ S, neither σi dominates σj
nor σj dominates σi, then σi and σj form a nested pair of operators.
So, operator σi is nested in σj if sj < si and si < sj .

EXAMPLE 2. Let S = {σ1, σ2, σ3} be a set of selection opera-
tors, with selectivities s1 = [.2, .8], s2 = [.3, .5] and s3 = [.1, .4].
Operator σ3 dominates both σ1 and σ2, but does not strictly dom-
inate either of them. Because σ2 is nested in σ1, the set S is not
dominant. 3

DEFINITION 4. An assignment of a concrete value to each of
the n selectivities is called a scenario and is defined by a vector
x = (s1, s2, . . . , sn), with si ∈ [si, si].

Every time we actually run a query, we encounter one scenario.
However, during the optimisation step we are unaware of which
scenario we will face. The set of all possible scenarios can be
described by X = {x | x ∈ [s1, s1] × [s2, s2] × · · · × [sn, sn]}.
There are certain scenarios we are particularly interested in:

DEFINITION 5. A scenario xext = (s1, s2, . . . , sn) is called
an extreme scenario if, for each 1 ≤ i ≤ n, si is equal to either si
or si.

Let πn be the set of all possible permutations over 1, 2, . . . , n.
For πj ∈ πn, πj(i) denotes the i-th element of πj .

DEFINITION 6. A query execution plan pj is a permutation
σπj(1), σπj(2), . . . , σπj(n) of the n selection operators. The set
of all possible query execution plans is given by

P = {p | p = σπ(1), σπ(2), . . . , σπ(n) such that π ∈ πn}.

The cost of evaluating plan pj under a given scenario x is

Cost(pj , x) = Ω(cπ(1) + sπ(1)cπ(2) + sπ(1)sπ(2)cπ(3)

+ · · · +

n−1∏
i=1

sπ(i)cπ(n))

= Ω

(
n∑
i=1

(
i−1∏
j=1

sπ(j)

)
cπ(i)

)
(2)

Ω is the cardinality of the relation on which we execute the selection
operators. Currently we make the AVI assumption that the selection
predicates are stochastically independent. Extending our approach
to situations in which (some) joint selectivities are known is a topic
for future work.

EXAMPLE 3. Recall the set S = {σ1, σ2, σ3} of selection oper-
ators from Example 2, with selectivities s1 = [.2, .8], s2 = [.3, .5]
and s3 = [.1, .4]. There are 8 extreme scenarios for this example,
one being given by scenario x1 = (s1, s2, s3) = (.2, .3, .1). One
the the 6 possible plans for S is given by plan p1 = σ1σ2σ3. As-
suming that Ω and each cost ci is set to 1, we can calculate the cost
of plan p1 under scenario x1, Cost(p1, x1), using Equation (2) as
follows:

Cost(p1, x1) = (1 + .2 + .2× .3) = 1.26

3

Let popt(x) stand for the query execution plan having the minimal
cost for scenario x, and let πopt(x) be the permutation of the selec-
tion operators for this plan. Since we are facing multiple scenarios,
the criterion for evaluating the optimality of a plan pj is different to
the one used in the classical selection ordering problem. We utilise
minmax regret optimisation to determine the quality of a plan.

3.2 Minmax Regret Optimisation
Below we define the regret for a plan given a scenario, the maxi-

mal regret for a plan, and finally the problem of finding a plan that
minimises the maximal regret.

DEFINITION 7. Given a plan p and a scenario x, the absolute
regret γ(p, x) of p for x is:

γ(p, x) = Cost(p, x)− Cost(popt(x), x) (3)

where popt(x) is the optimal plan for scenario x. The maximal
regret of a plan is the regret for its worst-case scenario and is simply
defined as maxx∈X(γ(p, x)).

DEFINITION 8. Given the set P of all possible execution plans
and the set X of all possible scenarios, minimising the maximal
regret is done as follows (where R(P,X) is the optimal regret):

R(P,X) = minp∈P (maxx∈X(γ(p, x)))

Given a set S of selection operators, let P (S) denote the set of
possible plans for S and X(S) denote the set of possible scenar-
ios for S. Then the minmax regret optimisation problem for S,
which we denote MRO(S), is to find a plan whose maximum re-
gret matches R(P (S), X(S)). For simplicity and when there is no
confusion, we also use MRO(S) to denote a plan which minimises
R(P (S), X(S)).

EXAMPLE 4. Recall once again the set S = {σ1, σ2, σ3} of
selection operators from Examples 2 and 3, with selectivities s1 =
[.2, .8], s2 = [.3, .5] and s3 = [.1, .4]. For simplicity, assume
that all operators have the same cost 1 and that the relation has
cardinality Ω = 1 (so to get the real costs, the numbers in Table 1
just have to be multiplied by the true cardinality). To find the plan
which minimises the maximum regret, we can perform an exhaustive
enumeration of all possible execution plans under every possible
scenario. We show later in Theorem 1 that it is sufficient to consider
only the extreme scenarios since the worst case scenario for any
plan is always an extreme one. Hence, if there are n operators,
we need to consider n! different execution plans under each of 2n

extreme scenarios. For our example, Table 1 shows the 48 regret
values for the 6 possible plans under each of 8 extreme scenarios.

For example, recall from Example 3 that the cost of the first
plan p1 = σ1σ2σ3 under scenario x1 = (s1, s2, s3) = (.2, .3, .1)
is 1.26. The optimal plan popt(x) for any scenario x is one in
which the operators are in non-decreasing order of their selectivities.

s1 s1 s1 s1 s1 s1 s1 s1 Max
s2 s2 s2 s2 s2 s2 s2 s2 Reg-
s3 s3 s3 s3 s3 s3 s3 s3 ret

σ1σ2σ3 0.14 0 0.18 0.02 0.91 0.62 1.05 0.6 1.05
σ1σ3σ2 0.1 0.02 0.1 0 0.75 0.7 0.73 0.52 0.75
σ2σ1σ3 0.24 0.1 0.48 0.32 0.41 0.12 0.75 0.3 0.75
σ2σ3σ1 0.21 0.16 0.43 0.42 0.2 0 0.4 0.1 0.43
σ3σ1σ2 0 0.22 0 0.2 0.05 0.3 0.03 0.12 0.3
σ3σ2σ1 0.01 0.26 0.03 0.32 0 0.1 0 0 0.32

Table 1: The regret for each plan under each scenario in Exam-
ple 4.

Therefore, the optimal plan for scenario x1 is popt(x1) = σ3σ1σ2

and its cost is:

Cost(popt(x1), x1) = (1 + .1 + .1× .2) = 1.12

The regret of plan p1 under scenario x1 using Equation (3) is:

γ(p1, x1) = Cost(p1, x1)− Cost(popt(x1), x1)

= 1.26− 1.12 = 0.14

In order to find the minmax regret solution, the maximum regret of
each plan needs to be found. For plan p1, the maximum regret is
1.05 which occurs in scenario (s1, s2, s3), its worst-case scenario.
The maximum regret for each plan is shown in bold face in Table 1.

Finally, we are looking for the plan with the smallest maximum
regret (i.e., the smallest value in the last column of Table 1). As a
result the minmax regret solution,MRO(S), is plan σ3σ1σ2, which
has the best performance among all plans when confronted with
their worst-case scenarios. 3

In the above example, it is interesting to consider which scenario
gives rise to the maximum regret for each plan. Note that for each
plan its worst-case scenario is one in which the operators in some
initial sequence in the plan each take on their maximum selectiv-
ity followed by the remaining operators taking on their minimum
selectivity. We call such a scenario a max-min scenario.

DEFINITION 9. Let p be the plan σπ(1), σπ(2), . . . , σπ(n). A
scenario for p is called a max-min scenario if there is a 0 ≤ k ≤ n
such that for all 1 ≤ i ≤ k, sπ(i) = sπ(i), and for all k+1 ≤ i ≤ n,
sπ(i) = sπ(i).

So the first k operators in p take on their maximum selectivity,
while the rest take on the minimum. Note that for a plan p with n
operators, there are n+1 max-min scenarios. Max-min scenarios are
the only scenarios considered by the max-min heuristic we develop
in this paper. However, it is important to state that, in general, the
worst-case scenario for a plan may not be a max-min scenario.

4. PROPERTIES OF MRO
Before presenting algorithms for solving the MRO selection or-

dering problem, we identify some of its important properties3.
In order to determine the worst-case scenario of a plan, i.e., the

scenario for which a plan exhibits its largest regret, we only have to
check extreme scenarios.

THEOREM 1. The worst-case scenario for any query plan p is
always an extreme scenario.
3The proofs of results in this section and the next are published in a
technical report available at http://arxiv.org/abs/1507.
08257.

We can determine the relative order two operators have to be in
to minimise the maximal regret if one operator dominates the other.

THEOREM 2. If σa dominates σb, then there exists a plan p
minimising the maximal regret in which σa precedes σb.

EXAMPLE 5. Recall from Example 4 the set S = {σ1, σ2, σ3}
of selection operators, with selectivities s1 = [.2, .8], s2 = [.3, .5]
and s3 = [.1, .4]. Because σ3 dominates σ1 and σ2, in the minmax
regret solution, i.e. plan σ3σ1σ2, σ3 precedes σ1 and σ2. As a result
of domination, in this example we would only have to consider two
plans when searching for the minmax regret solution. 3

For the TFT problem, Kasperski used the simple heuristic of
sorting jobs in non-decreasing order according to the midpoints of
their intervals, yielding a 2-approximation [17]. This approach does
not guarantee a bound for MRO selection ordering; as shown below,
the quality of the solution can become arbitrarily bad.

Given 2n+ 1 operators, the first n operators have the selectivities
si = 0 and si = 1 (1 ≤ i ≤ n), while the next n operators have the
selectivities si = si = 0.5 + ε (n+ 1 ≤ i ≤ 2n) for some small ε.
The final operator has a constant selectivity of 1 to guarantee that it
will always be in last position, meaning that its selectivity will not
impact any further steps.

The midpoint heuristic will order the operators in exactly this
way, from 1 to 2n+ 1. Clearly, the worst-case scenario for this plan
is when si is set to 1 for 1 ≤ si ≤ n. In the optimal plan for this
scenario, the operators σi with n + 1 ≤ i ≤ 2n will be executed
first.

The regret of this plan is computed as follows:
1 + 12 . . . + 1n + f(n)

− (0.5 + ε) − (0.5 + ε)2 . . . − (0.5 + ε)n − g(n)

where f(n) and g(n) stand for the cost of the remaining operators
in the plan. A lower bound for this expression is the following, since
f(n) ≥ g(n) (see Lemma 3 below):

n− n(0.5 + ε)

With increasing n and small values for ε, this expression can get
arbitrarily large.

LEMMA 3. Given a query plan p and a scenario x, we have
the following relationship between the summands in Cost(p, x) and
Cost(popt(x), x), where popt(x) is the optimal plan for scenario x:

k∏
j=1

sπ(j) ≥
k∏
j=1

sπopt(x)(j)
for all k with 1 ≤ k ≤ n− 1

In common with other MRO problems, we can show that the
decision problem for general MRO(S), which we call MINMAX
REGRET, is NP-hard. In this version, we are given a set S =
{σ1, σ2, . . . , σn} of selection operators each having unit cost, as
well as a set X = {X1, X2, . . . , Xm} of scenarios, where each
scenarioXj specifies a selectivity sij for each operator σi, 1 ≤ j ≤
m and 1 ≤ i ≤ n.

MINMAX REGRET: given a set S of n selection operators, a setX of
m scenarios, and a real number R, is there a plan whose maximum
regret is less than R?

We can show that MINMAX REGRET is NP-hard by reducing a
version of SET COVER to it.

THEOREM 4. MINMAX REGRET is NP-hard.

5. SOME POLYNOMIAL-TIME CASES
In this section we show that, for sets of selection operators S

satisfying certain properties, MRO(S) can be found in polynomial
time. In particular, we look at dominant operators, which can easily
be ordered correctly, and their combination with constant operators,
i.e., operators for which we can obtain exact selectivity values. As
before, we assume that the cost of each operator is one.

Let S be a set of selection operators such that the selectivity of
each operator can be estimated accurately (i.e., each selectivity is
constant). Then, as mentioned in Section 2.1, MRO(S) can be
found by sorting the operators in non-decreasing order of their rank
given by Equation (1). Given our assumption that each operator
has cost one, finding MRO(S) reduces to sorting the operators in
non-decreasing order of their selectivity alone.

Recall from Section 3.1 the definition of a dominant set S of
operators. Given a dominant set S of operators, it follows from The-
orem 2 that the minmax regret solution is one where the operators
are sorted in non-decreasing order according to their minimum (or
maximum) selectivity value. (Note that a set of constant operators
is a special case of a dominant set of operators.) We therefore have:

COROLLARY 1. If S is a dominant set of n operators, then
MRO(S) can be solved in O(n logn) time.

When we include nested operators (recall the definition from
Section 3.1), the problem becomes much more difficult. As a step
in the direction of solving the general problem, we consider below
the simple case of a strictly dominant set of operators (also defined
in Section 3.1) along with a single constant operator nested within
one of the non-constant operators. If S is a strictly dominant set
of operators, then the plan MRO(S) has zero regret under all
scenarios. This is because all operators in MRO(S) will be in
the same position as in the corresponding optimal plan under all
scenarios.

Let S be a strictly dominant set which includes a constant operator
σc nested within one of the non-constant operators, say σi. In this
case, we know how to place the dominant operators relative to
each other in MRO(S) but we need to determine the position of
σc in MRO(S). Since si ≤ sc ≤ si, the constant operator σc
should be either immediately before or immediately after σi in
MRO(S). Interestingly, the correct position for σc depends only
on the midpoint of the selectivity si of σi.

PROPOSITION 1. Let S be a strictly dominant set of n operators
such that MRO(S) = (σ1, . . . , σn). Let σc be an operator with
constant selectivity sc such that si ≤ sc ≤ si, for some 1 ≤ i ≤ n,
and S′ = S ∪ {sc}. In MRO(S′), σc is placed between (1) σi−1

and σi if sc ≤ (si + si)/2, or (2) σi and σi+1 if sc ≥ (si + si)/2.

Note that if sc = (si + si)/2, then σc can be placed either
between σi−1 and σi or between σi and σi+1 in MRO(S′).

Proposition 1 can be generalised to the case in which each non-
constant operator has at most one constant operator nested within it.
An interesting observation about the situation described in Proposi-
tion 1 is that the worst-case scenario is a max-min scenario.

PROPOSITION 2. Let S be a strictly dominant set of n operators
such that MRO(S) = (σ1, . . . , σn). Let σc be an operator with
constant selectivity sc such that si ≤ sc ≤ si, for some 1 ≤ i ≤ n,
and S′ = S ∪ {sc}. The scenario (s1, . . . , sj−1, sc, sj , . . . , sn),
in which either σj−1 or σj is equal to σi, is a worst-case scenario
for MRO(S′).

6. MAX-MIN HEURISTIC
Computing the regret of every selection ordering for every possi-

ble scenario makes the brute-force algorithm infeasible, since there
are n! different orderings and 2n scenarios, given n operators. So in
order to find an efficient heuristic, we have to significantly reduce
the number of orderings and scenarios. While doing so, we want to
leverage the insights gained from our theoretical investigation.

Let us first look at the number of possible scenarios. As we have
seen in the previous section, max-min scenarios seem to play a
special role when it comes to the maximum regret of a given plan
p. Intuitively this makes sense, as in an optimal plan many of the
operators σi located towards the beginning of p with selectivities si
will trade places with operators σj located towards the end of p with
selectivities sj . Consequently, there tends to be a large difference
between the plan p and an optimal plan for a max-min scenario,
leading to a substantial (if not maximal) regret for p. So in our
heuristic we aim to generate plans that perform well for max-min
scenarios. This reduces the number of scenarios we have to consider
from 2n to n+ 1.

We now turn to determining the order of the selection operators.
There are two well-known basic methods for doing this (efficiently).
The first one is constructing a plan by combining partial plans
in a way that leads to an optimised execution order. Very often
putting the partial plans together requires using a heuristic to solve
a combinatorial problem. The second method is to quickly create
a complete plan (e.g., by using a simple heuristic) and then try to
improve the plan by rewriting it (e.g., by swapping or removing
and re-inserting operators). In our approach we wanted to have
both options available, so we decided to develop different variants.
The complexity of our heuristic shows slight differences depending
on the variant we use; however, the algorithms we apply all have
polynomial complexity.

Our max-min heuristic algorithm, H(p, q), which is in fact a
template for a number of algorithms, is shown as Algorithm 1. It
is parameterised by two inputs: p, a (possibly empty) starting plan,
and q, an order in which to process operators. Clearly, to generate a
complete plan the union of p and q has to contain all the operators.
If the intersection of p and q is empty, our algorithm is similar to
insertion sort: in turn, we consider each operator in q and place it
into p at the position that minimises the regret over all max-min
scenarios. If an operator in q is already present in p, then we remove
it from p before re-inserting it. This is equivalent to moving an
operator to a different position. Again we determine the position
minimising the regret over all max-min scenarios.

Algorithm 1: H(p, q)

1 foreach operator t from the sequence q do
2 if t is in p then remove t from pAssume p currently

comprises i operators;
3 foreach position j, 1 ≤ j ≤ i+ 1, in p do
4 Temporarily insert t in position j in p;
5 foreach max-min scenario for p do
6 Calculate the regret of plan p;
7 Store the maximum regret for position j;

8 Choose as the final position for t in p that which minimises
the maximum regret;

9 Return p;

It is clear that the max-min heuristic runs in polynomial-time. For
each partial plan comprising i operators, we consider i+ 1 possible
positions for the next operator. In each of these positions, we con-

sider i+ 2 max-min scenarios. Calculating the regret of a plan with
n operators can be done in time O(n logn). Hence the algorithm
described above has an overall complexity of O(n4 logn) (in the
worst case i = n for every execution of the outer loop). However,
by computing costs incrementally when an operator moves position
and one max-min scenario moves to the next, we can implement the
heuristic to run in time O(n3).

EXAMPLE 6. Recall from Example 5 the set S = {σ1, σ2, σ3}
of selection operators, with selectivities s1 = [.2, .8], s2 = [.3, .5]
and s3 = [.1, .4]. Consider our max-min heuristic algorithm,
H(p, q), with initial plan p = σ3σ1 and remaining operator q = σ2.
Since p consists of two operators, σ2 should be checked in three
positions: before σ3, after σ1 and between them. For each posi-
tion and resulting plan, the regret is calculated under all max-min
scenarios, of which there are four in this example.

As an example, consider the plan in which σ2 is placed be-
tween σ3 and σ1. The regret will be calculated for the scenarios
(s3, s2, s1), (s3, s2, s1), (s3, s2, s1) and (s3, s2, s1). The maxi-
mum regret for this plan is 0.3 which occurs in scenario (s3, s2, s1).

Finally, the solution will be the plan with the smallest maximum
regret, which happens to be σ3σ2σ1. As a matter of fact, the solution
returned by the max-min heuristic is the same as the actual minmax
regret solution, as was shown in Example 4. 3

In the following two subsections, we consider various criteria for
choosing an initial plan and for ordering the remaining operators.

6.1 Choosing an Initial Plan
Even though we can run our heuristic with an empty initial plan p,

i.e., building a solution by inserting all operators one by one, often
it makes sense to start with a prebuilt partial plan.

One particular and important case is that of dominant operators.
Given a set S of operators, if we can identify a subset S′ ⊆ S of
dominant operators, we know that we can find an optimal solution
p′ for S′ quickly and that the relative order of the operators in p′

will not change in any optimal plan for S (see Theorem 2). Thus,
taking p′ as the initial plan when calling H(p, q) makes good sense.
However, there may be different ways to choose S′, as in general
there may be more than one such dominant set. If we have more
than one option, we can use the following criteria to make a deci-
sion: choose the subset S′ (1) with the maximum cardinality or (2)
whose operators have the largest total width. While the intuition in
choosing the largest subset is clear, the motivation for maximising
the width may not be so evident: the wider an interval, the more
impact it has on the solution, so it is more important to slot wide
intervals into the correct positions. As we often encountered several
subsets sharing the same maximum cardinality, we introduced a
tie-breaker: choose the subset S′ (3) with the maximum cardinality
whose total width is greatest. In our experiments, we found that this
third approach gave the best overall results.

EXAMPLE 7. Recall from Example 6 the set S = {σ1, σ2, σ3}
of selection operators, with selectivities s1 = [.2, .8], s2 = [.3, .5]
and s3 = [.1, .4]. Set S has two dominant subsets: S1 = {σ1, σ3}
and S2 = {σ2, σ3}. Both obviously satisfy criterion (1) above,
being of maximum cardinality. However, if we use criterion (2),
namely the set which has operators with the largest total selectivity
width, then we will choose S1 since its total width is 0.9 while that
of S2 is 0.5. S1 would also be chosen according to criterion (3).

After choosing the preferable subset, we need to produce initial
plan p by sorting the operators in nondecreasing order of their
minimum (or maximum) selectivities. Therefore, p = σ3σ1 when S1

is chosen, while p = σ3σ2 if S2 is chosen. 3

Having an initial plan allows us to combine our algorithm with
other heuristics. We can take the output of another algorithm as our
initial plan p and then refine this result by running H(p, q) on it.
Moreover, we can use the output of H(p, q) as input for another
iteration of our own heuristic.

6.2 Ordering Criteria
Since our algorithm makes only a single pass over all the operators

when (re-)inserting them into the plan, the order in which operators
are considered may have a significant impact on the final outcome.
For example, when inserting selections into an empty initial plan,
operators considered earlier are tested in fewer positions relative to
each other compared to those considered later.

We have considered two different ordering criteria in our ex-
periments: interval midpoint (denoted by M) and interval width
(denoted by W). Given a selectivity interval s = [s, s], the mid-
point of s is (s + s)/2 while the width of s is s − s. In each
case, operators can be ordered by non-decreasing (denoted +) or
non-increasing (denoted −) values. Overall, the ordering criteria
are denoted by M+, M−, W+ and W−. So, for example, W+
stands for operators being considered in non-decreasing order of
their selectivity interval width.

7. EXPERIMENTAL RESULTS
We evaluated the max-min heuristic experimentally, measuring

the impact of different parameters on its performance. We also
implemented the brute-force algorithm for finding optimal solutions
in order to evaluate how well the heuristic performs.

A commodity PC, with 8 GB RAM, Intel Core i5 processor
running at 3.19 GHz and Windows 7 Enterprise (64-bit), was used to
perform the experiments. The minmax regret brute-force algorithm
and max-min heuristic were implemented in Java and compiled with
the Eclipse IDE (Juno release), which is JDK compliant and uses the
JavaSE-1.7 execution environment. The Star Schema Benchmark
(SSB) queries were run on a simulation platform written in Ruby
1.9.3.

7.1 Generating Test Data
We first generated a synthetic data set to investigate the perfor-

mance of our heuristic. Each test case corresponded to a set of k
selection operators, with k ranging from 2 to 10, and for each k we
generated a hundred different sets. While k = 2 is not hard to solve,
it was included for verification purposes (any heuristic has to be
able to find the optimal plan for this simple case). Ten operators was
the upper limit we were able to solve optimally, checking 10! · 210

(≈ 3.7 billion) different costs for each test case. For each set of
selection operators we determined the lower and upper bounds of
their selectivity intervals by generating 2k uniformly distributed
random numbers between 0 and 1.

For real-world data, we used the Enron email data set, as intro-
duced in Example 1. Once again, test queries used from 2 to 10
operators/predicates. For each n ∈ [2, 10], 20 queries were gener-
ated, each with one predicate on subject and n− 1 predicates on
body. The 20 queries were generated by randomly selecting from
40 keywords for subject and 45 keywords for body, and were
checked to ensure that each returned a nonempty answer.

We also evaluated minmax regret optimisation using a version
of SSB with data skew [27] (SSB itself is a variation of the TPC-H
benchmark). We generated benchmark data with a scaling factor of
1, meaning that the central facts table, lineorder, contains 6,000,197
tuples, and joined all dimensional tables to the lineorder table. We
then randomly picked from two to ten attributes from a subset of all
available attributes to generate queries. Queries basically consist of

a conjunctive predicate whose clauses are made up of the selected
attributes compared to a random value taken from the attribute’s
domain, using a less-than or greater-than operator. The following
predicate is an example generated in our experiments:
orderKey < 2964443 and linenumber > 5
and quantity < 29.

7.2 Parameters
For the synthetic and Enron data sets, we looked at the effects of

the ordering criteria and the choice of initial plan on the quality of
our heuristic. Additionally, we investigated the impact of running
our heuristic multiple times, using the output of one phase as the
initial plan of the next phase.

We measure the performance of our heuristic by defining the
regret ratio λ(S), which is the regret computed by H(p, q) divided
by the optimal regret. More formally, given a set S of selection
operators, let us denote the set of possible plans by P (S) and the
set of possible scenarios by X(S). Recall from Section 3.1 that
R(P (S), X(S)) then denotes the optimal regret. Then

λ(S) =
R(H(p, q), X(S))

R(P (S), X(S))

We only calculate λ(S) using the above formula when the optimal
minmax regret is non-zero. As mentioned in Section 5, the optimal
minmax regret is zero only when S forms a strictly dominating
set. For such cases, our max-min heuristic always finds the optimal
minmax regret solution, so we define λ(S) to be one.

In view of having multiple test cases per number of selection
operators, we calculate the average regret ratio and the worst regret
ratio (simply the maximum value of λ(S)).

For the Enron data, we calculated selectivity intervals for the
like predicates as described in the Introduction. For each selected
keyword, we ran queries to find the minimum selectivity (given by
exact matches of the keyword) and the maximum selectivity (given
by the minimum selectivity of all 2-grams of the keyword). This
gave rise to a range of intervals: those with small values such as
[0.0004, 0.01] for keyword ‘progress’ in the subject, those with
larger values such as [0.6, 0.7] for ‘you’ in the body, and those
with a big range such as [0.07, 0.6] for ‘price’ in the body.

For the Star Schema Benchmark we created some very rudi-
mentary histograms by dividing the domain of an attribute into
equal-sized ranges, counting the number of tuples that fall into each
range. We do not keep any further information on the distribution
of tuples within each range of a histogram. For example, Figure 1
shows the histogram for the attribute ordtotalprice, consisting of 20
ranges each covering roughly 18,000 different values, e.g., bucket
#1 covers the range from 1 to 17,673.

Figure 1: Histogram for attribute ordtotalprice.

This basic information allows us to determine intervals for the
selectivities of selection operators. For a “less than” / “greater than”
operator, we know that all histogram ranges exclusively covering
smaller/larger values have to be included fully. However, for the
range the predicate value falls into, we do not know precisely how
many elements will be selected. In extreme cases, none or all of the
elements satisfy the predicate, giving us the lower and upper bound
for the selectivity. Example 8 illustrates this with concrete values.

EXAMPLE 8. Given the histogram for attribute X below and
the predicateX < 126, we can compute the lower bound and upper
bound for the selectivity as follows: lower bound = 200

1000
= 0.2,

upper bound = 200+100
1000

= 0.3. 3

Range # of elements
1-100 200

101-200 100
201-300 400
301-400 300

Many sophisticated query optimisation techniques, such as least
expected cost (LEC), assume that they have access to probability dis-
tributions of parameter values. LEC needs this to be able to compute
utilities [7]. However, in our case we only have very rudimentary
statistics, since we do not know anything about the distribution of
attribute values within a range. The best we can do is to fall back on
the assumption of uniform distribution, approximating the distribu-
tion using a mean value (this is also what least specific cost (LSC)
optimisation would do in this case). For example, applying this
method to the numbers given in Example 8 would yield a selectivity
of 0.225 for the predicate X < 126. We compare our minmax
regret optimisation technique to a mean-value-based approach using
SSB data. Additionally, we do a comparison with a simple midpoint
heuristic, i.e., sorting the intervals in non-decreasing order of their
midpoint.

7.3 Results
First we present the results obtained studying the different variants

of the max-min heuristic on the synthetic and Enron data, and then
move on to the Star Schema Benchmark results.

7.3.1 Synthetic and Enron Data Sets
We experimented with a number of operator ordering criteria and

initial plans for the max-min heuristic. These included starting with
an empty initial plan (∅), considering random operator ordering (U),
ordering by midpoint (M- and M+) and ordering by width (W- and
W+). We briefly summarise the findings of our experiments here.
Overall, the W+ ordering (non-decreasing width) performed best
with an overall average regret ratio of 1.03 and an overall worst
regret ratio of 1.94. W- was often even worse than a random order,
while M+ and M- sometimes generated plans whose regret ratio
was above 3. We also ran a midpoint heuristic that simply ordered
the intervals in non-decreasing order of their midpoints (not going
through all max-min scenarios). The midpoint heuristic was often
worse than running the max-min heuristic with a random order.

While W+ ordering performs better than the M+, M-, and W- max-
min heuristics and the midpoint heuristic, it is still not significantly
better than the random ordering. In a second phase of our evaluation
we seeded our heuristic with an initial plan. The results for initial
plan D:CW with operator ordering W+ were best (D:CW stands
for the largest subset of dominant operators, and, in case of a tie,
the one with the greatest total width of the operators) in terms of
the percentage of exact solutions and the average regret ratio. The

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

total number of operators%
of

ca
se

s
w

ith
ex

ac
ts

ol
ut

io
n

midpoint

(∅,U)

(D:CW,W+)

((D:CW,W+),W+)

(((D:CW,W+),W+),W+)

2 4 6 8 10

1

2

3

4

total number of operators

w
or

st
re

gr
et

ra
tio midpoint

(∅,U)

(D:CW,W+)

((D:CW,W+),W+)

(((D:CW,W+),W+),W+)

2 4 6 8 10

1

1.05

1.1

1.15

1.2

total number of operators

av
er

ag
e

re
gr

et
ra

tio midpoint

(∅,U)

(D:CW,W+)

((D:CW,W+),W+)

(((D:CW,W+),W+),W+)

(a) Percentage of exact solutions (b) Worst regret ratio (c) Average regret ratio

Figure 2: Results for synthetic data set.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

total number of operators%
of

ca
se

s
w

ith
ex

ac
ts

ol
ut

io
n

midpoint

(∅,U)

(D:CW,W+)

((D:CW,W+),W+)

(((D:CW,W+),W+),W+)

2 4 6 8 10

1

1.5

2

2.5

3

total number of operators

w
or

st
re

gr
et

ra
tio midpoint

(∅,U)

(D:CW,W+)

((D:CW,W+),W+)

(((D:CW,W+),W+),W+)

2 4 6 8 10

1

1.05

1.1

1.15

1.2

total number of operators

av
er

ag
e

re
gr

et
ra

tio midpoint

(∅,U)

(D:CW,W+)

((D:CW,W+),W+)

(((D:CW,W+),W+),W+)

(a) Percentage of exact solutions (b) Worst regret ratio (c) Average regret ratio

Figure 3: Results for Enron data set.

results for the worst case regret ratio were rather inconclusive, so we
tried to improve on this by running multiple phases of our heuristic.

Figures 2(a), (b) and (c) show the results for running our heuristic
multiple times. This means that we take the output of running one
phase of our heuristic and use it as the initial plan for the next phase.
The figures show the results for starting off by running (D:CW, W+)
first and then executing two more phases.

As can be seen, this variant clearly outperforms the baseline
algorithm (∅,U), the midpoint heuristic, and the other variants in all
respects. For example, for 10 operators, the worst regret ratio is less
than 1.23 and the average ratio is approximately 1.01, compared
to approximately 1.94 and 1.08, respectively, for running only a
single phase of the heuristic. Moreover, running one additional
phase improves the quality of the generated plan significantly, but
running another phase makes almost no difference.

The results on the Enron data set (Figure 3) showed similar trends,
but were more impressive in every respect. The two- and three-phase
variants of the max-min heuristic found the minmax optimal solution
in 84% of cases, had a worst regret ratio of only 1.05, and an average
regret ratio of less than 1.001. By contrast, the midpoint heuristic
had a worst regret ratio of over 1.49, an average of 1.06, and did not
find single minmax optimal solution with 10 operators.

To highlight how bad a poor choice of selectivity can be, we
also tested using the minimum selectivity values of the intervals (as
would be done if estimates were based simply on the selectivity of
the keywords themselves). This produced a worst case regret ratio
of almost 30 for only 5 operators.

Figure 4(a) shows the run time of the W+ ordering variant (sin-
gle and multiple phases) together with the baseline algorithm (∅,U)
when generating plans for up to 200 operators using the synthetic
data set (the run times on the Enron data set were similar). Unsur-
prisingly, the variants midpoint, (∅,U), and (D:CW,W+) have the
fastest run times, as they only sort a set of operators or execute a
single operator insertion phase. Furthermore, it can be clearly seen

that the additional run time of (((D:CW,W+),W+),W+) does not pay
off, since it produces plans that are only marginally better than those
of ((D:CW,W+),W+).

7.3.2 Star Schema Benchmark
We optimised the generated SSB queries using minmax regret

optimisation, a mean-value-based approach, and also computed the
optimal execution plan using exact selectivities, which means that
we are comparing actual query plan costs rather than regret ratios.

Figure 4(b) shows the results for the average difference in costs
between the query execution plans generated by different methods
and the optimal plan (every data point in the diagram averages the
measurement obtained by running 100 different queries). We only
include two variants of minmax regret optimisation, (D:CW,W+)
and the simple midpoint heuristic, as for SSB no major differences
were discernible between the different variants in terms of the quality
of the query plans. Surprisingly, the midpoint heuristic, although not
very good at optimising the regret ratio, seems to produce efficient
query execution plans. Considering the fact that all queries had an
average run time between 60 and 80 seconds, the numbers shown
in Figure 4(b) may not seem like a big difference. However, this
shows that minmax regret optimisation delivers better plans than a
mean-value-based approach.

More important is the robustness of the approaches, i.e., how
good are they in avoiding bad plans? Figure 4(c) shows the standard
deviation of the cost difference to the optimal plan, illustrating that
the mean-value-based approach is more erratic than minmax regret
optimisation. The most extreme case for all SSB queries was a mean-
value-optimised plan more than doubling the run time of the optimal
plan (from 60s to 135s), while for minmax regret optimisation the
very worst plan added roughly 50% more to the cost of the optimal
plan (from 60s to 92s).

0 100 200

0

0.5

1

1.5

·104

total number of operators

ru
n

tim
e

(s
ec

on
ds

)
(D:CW,W+)

midpoint

(∅,U)

((D:CW,W+),W+)

(((D:CW,W+),W+),W+)

2 4 6 8 10
0

1

2

3

total number of operators

av
er

ag
e

di
ff

in
se

cs mean value

(D:CW,W+)

midpoint

2 4 6 8 10
0

2

4

6

8

total number of operators

st
d

de
v

of
di

ff
in

se
cs

mean value

(D:CW,W+)

midpoint

(a) Run time of the heuristic (synthetic data set) (b) Average difference in cost to opt (c) Std dev of difference in cost to opt

Figure 4: Results on run time (synthetic data set) and difference in cost to optimal (SSB).

8. CONCLUSION
We have investigated query optimisation under partial ignorance,

in particular ordering selection operators optimally if their selec-
tivities are defined by an interval rather than an exact value. The
strategy we employed, minmax regret optimisation (MRO), is con-
sidered to be a pessimistic approach compared to other techniques
from decision theory. In our opinion this makes it well-suited to
query optimisation in database systems, which should be about
avoiding bad plans rather than finding the best one. There is one
major drawback, though: selection ordering under MRO becomes
NP-hard. However, we have shown that special cases can be solved
efficiently and that heuristics can quickly find good solutions.

For future work we plan to extend our approach to costs described
by intervals and relative regret, i.e., considering the ratio of the cost
of a plan to the optimal plan for a scenario rather than the difference.
Also interesting are other operators, such as joins, whose ordering is
heavily influenced by selectivities as well and suffers from similar
issues: it is hard to obtain exact values. Further topics we would like
to tackle are finding approximation algorithms with proven bounds
and modelling correlation of query predicates. Nevertheless, we
think this is an important first step in discovering new approaches
for making query optimisers more robust and one of our medium
term goals is to build a general framework for query optimisation
under partial ignorance.

9. REFERENCES
[1] H. Aissi et al. Min-max and min-max regret versions of

combinatorial optimization problems: A survey. European J.
of Operational Research, 197(2):427–438, 2009.

[2] R. Avnur and J. M. Hellerstein. Eddies: continuously adaptive
query processing. In SIGMOD, pages 261–272, 2000.

[3] B. Babcock and S. Chaudhuri. Towards a robust query
optimizer: a principled and practical approach. In SIGMOD,
pages 119–130, 2005.

[4] S. Babu, P. Bizarro, and D. DeWitt. Proactive re-optimization.
In SIGMOD, pages 107–118, 2005.

[5] S. Babu et al. Adaptive ordering of pipelined stream filters. In
SIGMOD, pages 407–418, 2004.

[6] S. Chaudhuri et al. Selectivity estimation for string predicates:
Overcoming the underestimation problem. In ICDE, pages
227–238, 2004.

[7] F. Chu et al. Least expected cost query optimization: an
exercise in utility. In PODS, pages 138–147, 1999.

[8] F. Chu et al. Least expected cost query optimization: what can
we expect? In PODS, pages 293–302, 2002.

[9] H. D, P. N. Darera, and J. R. Haritsa. On the production of
anorexic plan diagrams. In VLDB, pages 1081–1092, 2007.

[10] A. Deshpande et al. Exploiting correlated attributes in
acquisitional query processing. In ICDE, pages 143–154,
2005.

[11] S. Ganguly. Design and analysis of parametric query
optimization algorithms. In VLDB, pages 228–238, 1998.

[12] M. Garofalakis and P. B. Gibbons. Wavelet synopses with
error guarantees. In SIGMOD, pages 476–487, 2002.

[13] J. M. Hellerstein and M. Stonebraker. Predicate migration:
optimizing queries with expensive predicates. In SIGMOD,
pages 267–276, 1993.

[14] Y. Ioannidis. The history of histograms (abridged). In VLDB,
pages 19–30, 2003.

[15] S. M. Johnson. Optimal sequential testing. RAND Research
Memorandum RM1652, RAND Corporation, 1956.

[16] N. Kabra and D. J. DeWitt. Efficient mid-query
re-optimization of sub-optimal query execution plans. In
SIGMOD, pages 106–117, 1998.

[17] A. Kasperski. Discrete Optimization with Interval Data -
Minmax Regret and Fuzzy Approach. Springer, 2008.

[18] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of
nonrecursive queries. In VLDB, pages 128–137, 1986.

[19] V. Lebedev and I. Averbakh. Complexity of minimizing the
total flow time with interval data and minmax regret criterion.
Discrete Appl. Math., 154(15):2167–2177, Oct. 2006.

[20] G. Lohman. Is query optimization a “solved” problem?
http://wp.sigmod.org/?p=1075, 2014.

[21] V. Markl et al. Robust query processing through progressive
optimization. In SIGMOD, pages 659–670, 2004.

[22] V. Markl et al. Consistent selectivity estimation via maximum
entropy. The VLDB Journal, 16(1):55–76, Jan. 2007.

[23] G. Moerkotte et al. Exploiting ordered dictionaries to
efficiently construct histograms with q-error guarantees in
SAP HANA. In SIGMOD, pages 361–372, 2014.

[24] T. Neumann and C. A. Galindo-Legaria. Taking the edge off
cardinality estimation errors using incremental execution. In
BTW, pages 73–92, 2013.

[25] M. Peterson. An Introduction to Decision Theory. Cambridge
University Press, 2009.

[26] N. Polyzotis and M. Garofalakis. Statistical synopses for
graph-structured XML databases. In SIGMOD, pages
358–369, 2002.

[27] T. Rabl et al. Variations of the star schema benchmark to test
the effects of data skew on query performance. In ICPE, pages
361–372, 2013.

[28] U. Srivastava et al. Operator placement for in-network stream
query processing. In PODS, pages 250–258, 2005.

[29] V. Zadorozhny et al. Efficient evaluation of queries in a
mediator for websources. In SIGMOD, pages 85–96, 2002.

[30] N. Zhang et al. Statistical learning techniques for costing
XML queries. In VLDB, pages 289–300, 2005.

