
HaPoC 2015 [Type here] [Type here]

Epistemic Opacity, Confirmation Holism and Technical Debt: Computer

Simulation in the light of Empirical Software Engineering

Julian Newman

Birkbeck College, University of London

The output of a simulation model does not, prima facie, appear to have an objective status

comparable with data captured by observation or experiment. Counter to this Winsberg,

Humphreys and others emphasise parallels between experiment and simulation in practices

which are said to “carry with them their own credentials” (Winsberg, 2010). Humphreys

holds that that the physical implementation of computer models places constraints on

simulation methods not present in traditional mathematics, creating essential epistemic

opacity. By this he means that it is impossible for a cognitive agent, given its characteristics,

to know all of the epistemically relevant elements of a computational process. Humphreys

views essential epistemic opacity as reflecting the limitations not of the simulation method

itself but of the human agent, and thus as evidence for a “non-anthropocentric epistemology”

recognising computational tools as a superior epistemic authority.

The possibility of testing a highly parameterised simulation model via the

hypothetico-deductive method can indeed be open to doubt; moreover empirical

measurements are often not available on the scale needed to evaluate model outputs. Even

were appropriate data available, Lenhard & Winsberg (2010) argue that climate simulation

models face epistemological challenges associated with a novel kind of “confirmation

holism”: it is impossible to locate the sources of the failure of any complex simulation to

match known data, so that it must stand or fall as a whole. This is because of three

interrelated characteristics which they regard as intrinsic to the practice of complex systems

modelling – “fuzzy modularity”, “kludging” and “generative entrenchment”.

 In “fuzzy modularity”, different modules simulating different parts of the

complex system are in continual interaction, thus it is difficult to define clean

interfaces between the components of the model.

 A kludge is an inelegant, ‘botched together’ piece of program, very complex,

unprincipled in its design, ill-understood, hard to prove complete or sound and

therefore having unknown limitations, and hard to maintain or extend.

 Generative entrenchment refers to the historical inheritance of hard-to-alter

features from predecessor models.

Is confirmation holism

(1) essential to and unavoidable in complex systems modelling?

(2) embedded in specific disciplinary practices of climate science?

or

(3) does it exemplify a failure to observe, recognise and apply available and well-

established sound Software Engineering practices when developing simulation

software (as promoted, for example, by the Sustainable Software Institute)?

Belief in the essential epistemic opacity of computational science points to (1) but we shall

argue for (3) on two main grounds.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/42134109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HaPoC 2015 [Type here] [Type here]

 Firstly, where a large software system is epistemically opaque with respect to

a human agent, this opacity is not an essential characteristic arising from its

size but is contingent upon development practices and in particular upon

architectural design. A software architecture captures basic design decisions

which address such issues as performance, reliability, security, maintainability

and interoperation. Decomposition into manageable components is an

essential architectural strategy for managing complexity. Failure to perform

such decomposition at the design stage will certainly make the software itself

epistemically opaque, but it would be perverse to regard this as endowing the

results with superior authority or the capacity to carry its own credentials.

 Secondly, credulity towards simulation software runs entirely counter to the

institutionalised local scepticism common to both experimental science and

software engineering practice.

 The Engineering Science oriented towards underpinning and evaluating Software

Engineering practice is widely known as “Empirical Software Engineering”. An important

subject of recent empirical research is that of “Architectural Defects” in large software

systems. As remarked above, a kludge is code which is ill-understood and (therefore) hard to

maintain: it is a software defect waiting to manifest itself. A study of defects in a long-lived

large software system, which had undergone multiple versions and releases, found that

defects which span more than one software component required more than 20 times as many

changes to correct, compared to single-component defects, and were 6 to 8 times more likely

to persist from one release to another (Li et al, 2011). A further line of research concerns the

consequences of making early programming decisions on a purely pragmatic basis (e.g. in

order to get the system working); it has been shown that such short cuts create “Technical

Debt” on which interest will accrue in the form of error and maintenance costs throughout the

lifecycle of the software product (Kruchten et al, 2012).

In software engineering practice, defects are expected: human activity is error-prone.

Yet well architected software is not epistemically opaque: its modular structure will facilitate

reduction of initial errors, recognition and correction of those errors that are perpetrated, and

later systematic integration of new software components. Nothing intrinsic to complex

simulation modelling prevents the application of these principles, but kludging in the early

stages of model building will create “Technical Debt” which will be charged in the form of

actual (not essential) epistemic opacity. Simulation software is epistemically opaque (when it

is) not because of the inability of human agents to check through every possible execution

path from beginning to end (an impossible feat, but unnecessary in well architected software),

but because of a failure of model builders to adopt the practices which are known to promote

surveyability and effective error management. A simulation model must be understood as a

tool which can play a part, along with other resources, in a scientific argument; such an

argument depends upon human judgement which, fallible though it may be, cannot

legitimately be replaced by an allegedly superior epistemic authority. The argument from the

essential epistemic opacity of computational science to a non-anthropocentric epistemology

runs counter to best practice in software engineering and to empirical results of software

engineering science. In this respect it is self-defeating.

References

P. Kruchten, R.L. Nord, I. Ozkaya “Technical debt: from metaphor to theory and

practice”, IEEE Software, v. 29 n. 6, 2012, pp. 18-21.

HaPoC 2015 [Type here] [Type here]

P. Humphreys “The Philosophical Novelty of Computer Simulation Methods”, Synthèse, v.

169, 2009, pp. 615-626.

Z. Li et al., “Characteristics of Multiple-component Defects and Architectural Hotspots: A

large system case study” Empirical Software Engineering v. 16, 2011, pp. 667-702.

J. Lenhard, E. Winsberg, “Holism, entrenchment and the future of climate model pluralism”,

Studies Hist. Phil. Mod. Physics, v. 41, 2010, pp. 253-263.

E. Winsberg, Science in the Age of Computer Simulation, Chicago University Press, 2010.

