
SPELLCHECKERS 
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This chapter is an extended version of an earlier paper (Mitton, 2010), by kind 

permission of the editor. 

 

By the standards of the computing industry, spellchecking has a long history. It began 

in the late fifties – the days of mainframes and punched paper tape; an oft-cited paper 

is (Damerau, 1964). Accounts of various approaches can be found in (Kukich, 1992; 

Mitton, 1996; Jurafsky and Martin, 2000). 

 

Most of the methods used a dictionary (meaning, in this context, simply a list of 

correct spellings) but some did not. One system (Morris and Cherry, 1975), when 

presented with a text for checking, split it up into three-letter sequences (trigrams), 

counted the number of each, and then calculated an “index of peculiarity” for each 

word, based on the frequency of the trigrams it contained, finally drawing the user’s 

attention to the more peculiar-looking ones. The typo <exmination>, for example, 

contains <exm> and <xmi>, trigrams probably not shared by any other word in the 

text, so it would be rated as peculiar and would appear near the top of the list. Of 

course the user still had the job of spotting the errors in this list, and many 

misspellings do not contain unusual trigrams and so would not figure in the list at all, 

but it often succeeded in highlighting a typo. And, being dictionary-free, it would 

work just as well for, say, Spanish or Greek. 

 

(In the earlier work, the term “trigram” usually refers to a sequence of three letters, 

but, in work of the last two decades, it more often means a sequence of three words; 

the same applies to “unigram”, “bigram” and “n-gram”.) 

 

Using a dictionary 

 

Most systems checked a text by looking up all the words in a dictionary. Publishers 

were beginning to make use of computer technology, and dictionaries for 

spellchecking could be extracted from the machine-readable versions of the published 

ones. A big problem, even into the eighties, was the small size of computer memories. 

Holding an entire dictionary in main memory (the rapid-access part of the computer’s 

storage) was out of the question. The dictionary had to be held on disc and small 

portions of it read into main memory as required. Consequently much ingenuity went 

into compressing the dictionary. 

 

One technique used was affix-stripping (McIlroy, 1982). Instead of storing 

<computes>, <computed>, <computing>, <computer>, <computers>, <computable>, 

<computability>, <computation>, <computational>, you stored just <compute>, and 

had a set of rules that stripped suffixes and adjusted the stem if necessary. Having 

derived <compute> from, say, <computability>, and having found <compute> in the 

dictionary, you concluded that <computability> was an acceptable word. You could 

do the same with prefixes, deriving <civil> from <uncivil>. 

 

There needed to be some ordering of the rules, to accept <undoubtedly> but not 

<undoubtlyed> and some way of handling words that look as if they have affixes but 
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don’t, such as <whimper>, <seabed> and <farthing> (compare <jumper>, 

<combed> and <seething>). Though effective for the checking part of a 

spellchecker’s task, this was less useful for suggesting the correct spelling, since 

simply adding affixes to a stem runs the risk of generating non-existent words – 

<doubtedly>? <undoubting>?  

 

Another consequence of holding the dictionary on disc was to make the checking a 

slow process (by computer standards) since a disc access is thousands of times slower 

than a main-memory access. A partial solution was to hold, in main memory, a list of 

the most frequent words in the language. If a spellchecker was checking the first 

sentence of this paragraph, and it held just the most frequent one hundred words of 

written English in main memory, it would find <of>, <the>, <on>, <was>, <to>, <a>, 

<by>, <is> and <than> (i.e. two-fifths of the tokens) without having to consult the 

main dictionary; if it held the next few hundred, it would find <another>, <make>, 

<since> and <main> (Leech et al., 2001). 

 

There was some debate about whether a spellchecker’s dictionary should be large or 

small. “The larger, the better,” might be one’s first reaction. But it was pointed out 

that mistyping a short word can often produce another word (Peterson, 1986), and that 

people sometimes write one word for another – ‘bigger then me’, ‘the principle 

function’, ‘the teacher tort us’ (Mitton, 1987). Spellcheckers relied on dictionary 

look-up to detect errors. A spellchecker that had <tort> in its dictionary would not 

spot the error in ‘the teacher tort us’. But if we removed <tort> from its dictionary, it 

would.  So perhaps we should remove rare words from the dictionary? Perhaps a 

spellchecker would work better with a smaller dictionary? 

 

A study of this problem established, however, that, when people use a rare word, it is 

more likely to be a correct spelling than an error; a spellchecker with a small 

dictionary, while it might occasionally detect a real-word error, would more often be 

raising false alarms over correctly spelt, rare words (Damerau and Mays, 1989). 

While this is clearly true for a large proportion of rare words – it’s unlikely that 

someone who writes <okapi> did not mean <okapi> – there is a subset of rare words 

that bear a strong resemblance to common words, and the occurrence of one of these 

words is in fact more likely to be an error. <Calender> (with an <e>), for example, is 

in the dictionary (it’s a machine for smoothing cloth or paper), and it occurs fourteen 

times in the British National Corpus, but all fourteen are misspellings of <calendar> 

(though one of the two occurrences of <calenders> (plural) is correct) (Mitton et al., 

2007). Similarly, <withe> (<with>), <ail> (<all>), <tor> (<for>), <canvasses> 

(<canvases>), <posses> (<possess>), <polices> (<policies>), <abut> (<about>), 

<wold> (<world/would/wild>) and <rime> (<time>). So, while a larger dictionary is 

generally preferable, rare words that resemble common words should be treated as 

potential errors. 

 

Suggesting corrections 

 

Correction, as opposed to the detection, of errors consisted of generating a list of 

words that somewhat resembled the error. An early algorithm, described in (Peterson, 

1980), aimed to reverse any of the possible processes that might have given rise to a 

single-letter typo. Take, for example, the misspelling <pord>. The typist might have 

inserted an extra letter, so look up <ord>, <prd>, <pod> and <por>. Or the typist 



might have transposed two adjacent letters, so look up <oprd>, <prod> and <podr>. 

Perhaps one letter was substituted for another, so try every letter  of the alphabet in 

place of each of the letters of <pord>, from <aord>, <bord>, <cord> and so on, 

through <pard>, <pbrd> etc. eventually down to <pory> and <porz>. And finally, do 

something similar on the assumption that the typist omitted a letter, trying every letter 

inserted at every position, from <apord> down to <pordz>. If any of these variations 

turn out to be in the dictionary, you offer them to the user: <pod>, <prod>, <cord>, 

<ford>, <lord>, <word>, <pond>, <pore>, <pork>, <porn>, <port>, <pored>. (There 

are more efficient ways of achieving the same result – see, for example Oflazer 

(1996) or Mihov and Schulz (2004).) 

 

This list is in no particular order – there is no “best guess” – and it is restricted, 

obviously, to single-letter errors. This is not too serious for mistyped words, the great 

majority of which contain just one single-letter error (Pollock and Zamora, 1984), but 

it is less useful for misspellings; it would not offer the right word for ‘Mother pord the 

tea.’ 

 

Before the arrival of the PC in the early eighties, wordprocessors were mostly used by 

secretaries, who were sent on training courses to learn how to use them, so the 

spellcheckers of the time were designed for people whose spelling was assumed to be 

pretty good. Generating a long list of suggestions, possibly containing some very 

obscure words, was seen as more important than ordering the list in a helpful way. 

The earlier PC-based spellcheckers continued this policy. When offered <cort>, for 

example, in, say, ‘I’ve cort a cold,’ WordPerfect 5.1 (circa 1985) responded with a list 

of 69 offerings, including <corf>, <corti>, <carate>, <ceroid>, <chert>, <choreoid>, 

<karate>, <keyword>, <scirrhoid> and <scurried>, but not, sadly, <caught>. 

 

Real-word errors 

 

The complaints that most people had with spellcheckers, however, were not with the 

lists of suggestions but with shortcomings in error detection. On the one hand, the 

spellchecker would flag names, newly coined words and technical terms as errors – 

this could be ameliorated by allowing users to build up private supplements to the 

spellchecker’s main dictionary. On the other hand, the spellchecker failed to flag real-

word errors, where the error is a dictionary word but not the right one (<there> for 

<their>, and the like). This was a serious defect since errors of this kind are 

surprisingly common – several studies, admittedly of handwritten text, found that a 

quarter to a third of all misspelt words were real-word errors (Wing and Baddeley, 

1980; Sterling, 1983; Mitton, 1987; Brooks et al., 1993). Hence a little poem that was 

in circulation, in different versions: 

 

 I have a spelling chequer; it came with my pea sea. 

 It plainly marques for my revue miss takes eye cannot sea. 

 I’ve run this poem threw it, I’m sure yore pleased two no. 

 It’s letter perfect in its weigh – my chequer tolled me sew. 

 

An early approach to this problem (Atwell and Elliott, 1987) homed in on the 

grammatical anomalies that were often produced by real-word errors. For example, 

the sentence, ‘Please complete the from in capitals,’ would be flagged because the 

sequence Definite Article-Preposition-Preposition is very unlikely. It had some 



success in spotting real-word errors but tended to raise too many false alarms, 

querying sentences where the syntax was unusual but not incorrect (Leech et al., 

1986). And of course it could do nothing with such sentences as, ‘We had thirty 

minuets for lunch,’ where the anomaly is semantic, not syntactic. 

 

Another early approach (Mays et al., 1991) used a table of word-sequence 

probabilities. Given any two words from its 20,000 word dictionary, the table would 

give the probability of any other occurring next. Suppose their spellchecker was 

checking ‘The thief licked the lock.’ Having consulted the table for the probability of 

<licked> after ‘The thief’, <the> after ‘thief licked’, and so on, it was able to calculate 

the probability of the whole sentence. It also calculated the probability of all the 

sentences that differed from the first by a single typo. In this case, it would try 

<liked>, <kicked>, <picked> and so on in place of <licked>, and also <rock>, <sock> 

etc in place of <lock>. If any of these variant sentences was significantly more 

probable than the original, the modified word (perhaps <picked> instead of <licked>) 

would be offered as a correction. 

 

The next assault on real-word errors made use of confusion sets (Golding, 1995; 

Golding and Roth, 1999). A confusion set is a small set of words – usually two but 

sometimes three or four – that are likely to be confused with one another, such as 

{<there>, <their>, <they’re>} or {<principle>, <principal>}. You provide the 

spellchecker with a list of confusion sets. It then scans the text, looking for any of the 

words in the list. Let’s say the text contains the sentence, ‘The sand eel is the principle 

food for many birds.’ Having found an occurrence of <principle>, it assesses whether 

any of the other members of the confusion set (here just <principal>) would be more 

appropriate in that position. It might make this assessment on the basis of syntax, 

semantics, collocation or any other information it might have. If it decided that 

<principal> would be more appropriate here, it would flag <principle> as an error and 

propose <principal> as a correction.  

 

It is important to find a way to calibrate these assessments and only to flag an error if 

the spellchecker is confident, since the great majority of occurrences of the words in 

confusion sets are in fact correct, and a spellchecker that was constantly raising false 

alarms would be irritating and effectively unusable. 

 

The early research with this technique used a list of confusion sets that was both short 

(18 sets in (Golding, 1995)) and with only a small representation of function-word 

confusions (such as {<he>, <her>} or {<to>, < too>}) that account for a high 

proportion of genuine real-word errors (Mitton, 1996). Though the list was sufficient 

for proof of concept – and Golding makes no grander claim for it – this was 

unfortunate in retrospect since most of the subsequent experiments used the same list, 

to preserve comparability with earlier work, though (Carlson et al., 2001) scaled it up 

to 265. More recently an attempt has been made to produce a list sufficiently large to 

tackle unrestricted text (Pedler and Mitton, 2010), but experiments with a test corpus 

of errors collected from student essays, online bulletin boards and so on, suggest that, 

even with their list of about 6,000 confusion sets, around 30% of the real-word errors 

would remain undetected. 

 

Might it not be possible to get a computer to detect real-word errors in the same way 

as humans do, by seeing that the errors don’t make sense in the context? An attempt 



to do this was implemented by (Hirst and Budanitsky, 2005). Take the sentence, ‘We 

had thirty minuets for lunch.’ Their system would check whether any of the meanings 

of <minuet> (dance, music) were close to the meanings of any other word in the 

paragraph. If none of them were, and if there was a word very similar to <minuets> 

(here <minutes>), and if this other word did have meanings that were close to the 

meanings of some others in the vicinity (perhaps <midday> or <timetable> occur 

elsewhere in the paragraph), it would propose <minutes> as a correction for 

<minuets>. It collected the meanings from WordNet (Miller, 1995; Fellbaum, 1998, 

2005), a large lexical database that lists the meanings of around 100,000 English 

words and indicates the relationships between their meanings (synonyms, hyponyms 

etc.). The notion of closeness between the meanings of words in WordNet is a 

slippery one; there are several definitions and they have different results – see, for 

example (Budanitsky and Hirst, 2006). 

 

Though this semantic approach showed some promise, it has been largely put aside in 

favour of experiments with the very large amounts of text that have become available 

by harvesting the world-wide web – see below under “Big data”. 

 

Ordering the list of suggestions: assembling candidates 

 

The rapid take-up of PCs in the eighties meant that the use of computers, and 

particularly of wordprocessors, was no longer confined to professionals. Users could 

no longer be assumed to be good spellers; in fact they increasingly looked to the 

spellchecker to help them with their spelling. Poor spellers do not want a list of fifty 

suggestions, with the required word buried (or possibly not) somewhere in the middle; 

they want a list of about half a dozen with the required word preferably at the top. 

 

To produce such a list, a spellchecker can begin by assembling a set of candidate 

corrections; these are words that somewhat resemble the error – perhaps five to fifty 

of them, perhaps some hundreds, depending on the system. But how to pick out these 

candidates without trawling through the entire dictionary every time? 

 

One way is to create a key for each word in the dictionary, which will retain the 

prominent features of the spelling, the features which you hope misspellings of that 

word are likely to retain. Faced with a misspelling, you compute a key for the 

misspelling and retrieve all the dictionary words that have the same key. 

 

One such key, called Soundex (Odell and Russell, 1918, 1922), was devised decades 

before computers. It was invented to address the problems caused by names having 

variant spellings – a clerk might be searching for someone’s record in a card index 

without being sure how their name is spelt, or someone might appear under one 

spelling in one file and under a different spelling in another. A Soundex key (for 

details see, for example, (Mitton, 1996)) retains the first letter of the name followed 

by a few digits representing the consonant structure. For example, <Johnson>, 

<Jonson> and <Johansson> all have the Soundex key J525. (The system is still used 

in genealogical searches; see, for example (US National Archives, 2007).) 

 

Whereas Soundex was designed for human beings to use, more recent 

implementations of the same idea have been designed for computers and can therefore 

be more complicated. An example of this is Metaphone (Philips, 1990), and its 



successors (Philips, 2000, 2009). They differ from Soundex in having more, and more 

detailed, rules; for example, if a word begins with <pn> (e.g. <pneumatic>), the 

computed key begins with N, not P.  

 

The same basic idea underpins the “People Search” services on the web. In (Udupa 

and Kumar, 2010), for example, a key is created for each name in a directory of 

possibly millions of names. When the user types in a guess at a name, perhaps 

misspelled or in the wrong order or with parts missing (<Tim Berners>, <Tom 

Barnard Lea>, <Tim Lee Burners>, etc) a key is derived from the user’s guess, and all 

the names are retrieved that have the same key, or something close to it. 

 

These key systems in spellchecking mostly belong to a time when computer memories 

were too small to hold a complete dictionary, but capacity has increased to the point 

where it is possible to hold a complete dictionary in main memory, and data structures 

and algorithms have been developed to take advantage of this. It is now possible to 

retrieve all the words that differ in a well-defined way from the misspelling, perhaps 

words of the same length as the misspelling that differ in a certain number of 

character positions (Bentley and Sedgewick, 1997) or words that differ from the 

misspelling by a given edit-distance (Mihov and Schulz, 2004); the concept of edit-

distance is explained below. 

 

Ordering the list of suggestions: string-matching 

 

One way or another, a list is generated of candidates that somewhat resemble the 

misspelling. Each of these candidates is then compared with the error, using some 

string-matching algorithm. Many algorithms have been proposed, but a simple one 

would be to count the number of letters or letter-pairs that the candidate has in 

common with the misspelling. This provides a kind of measurement of how close 

each of the candidates is to the misspelling, and the spellchecker offers the best few to 

the user. 

 

A simple system like this works quite well for a large proportion of misspellings, 

matching <bicycle> to, say, <bycicyle>. But it works less well for the misspellings of 

poor spellers; for <cort>, it would favour <court>, <cert> or <corm>, though 

<caught> might be the target. 

 

Another string-matching algorithm is based on the notion of edit-distance 

(Levenshtein, 1966; Wagner and Fischer, 1974). In its simplest form, you take the 

misspelling on the one hand and one of the candidates on the other, and you work out 

how many single-letter changes are required to change the one into the other, where a 

single-letter change could be the insertion of a letter or the omission of a letter or the 

changing of one letter into another. (In many systems, the transposition of two 

adjacent letters is also counted as a single-letter change.) For example, if the 

misspelling was <yot> and the candidate was <yoke>, you could get from <yoke> to 

<yot> by changing the <k> to a <t> and omitting the <e> – two changes, so the edit-

distance is 2. 

 

You calculate the edit-distance for each of the candidates and then present them in 

order, lowest first. If, say, we had three candidates for <yot> – <yoke>, <pot> and 

<yacht> – we would calculate their edit-distance to <yot> to be 2 for <yoke>, 1 for 



<pot> and 3 for <yacht>, so we would present them in the order <pot>, <yoke>, 

<yacht>. 

 

In a more elaborate version of edit-distance (Veronis, 1988; Mitton, 1996, 2008), you 

attach costs to each of the single-letter changes; a low cost would be attached to a 

relatively trivial change, such as doubling a consonant (as in, say, <harrass> for 

<harass>), but a high one to an unlikely change, such as changing a <p> to a <y>. 

Let’s suppose we attached the following costs in our <yot> example: 

 

pot <p> to <y> unlikely, say cost of 5 Total: 5 

yoke <k> to <t> unlikely, say cost of 5; addition of 

<e> not uncommon, say 2 

Total: 7 

yacht <a> to <o> not surprising given the 

pronunciation, say 1; likewise the omission of 

the <ch>, say 2 

Total: 3 

 

So we would present these candidates in the order <yacht>, <pot>, <yoke>. 

 

The costs can be held in a table applicable to all words – you might decide that 

changing a <p> to a <y> will always have a cost of 5, while changing a <c> to a <k> 

will cost 3.  Or they can take account of the immediate context; changing a <p> to an 

<f>, for example, is normally improbable, say cost of 4 or 5, but if it’s the <p> in 

<ph>, it’s a lot more likely, say cost of 2.  

 

The costs can even be tailored for individual words – omitting the <t> from <mortal> 

would attract a high cost, but omitting it from <mortgage> a much lower one. This 

enables a spellchecker to anticipate the sort of misspellings that are caused by the 

quirks of English orthography; it can make allowance for the <ch> of <yacht>, the 

<c> of <scissors> or the <w> of <answer>. Although these examples arise from the 

mismatch of spelling and pronunciation, as many misspellings do, the system can deal 

with other sorts of misspelling. <Rember>, for example, is a common misspelling of 

<remember>, so we attach a low cost to the omission of the <em>. <Latest> is 

sometimes written <lastest>, so we attach a low cost to the insertion of the first <s>. 

 

An improvement on these rather arbitrary costs is to use probabilities. The system 

described by (Kernighan at al., 1990), which was aimed at correcting errors that 

contained just one typo, used a table derived from millions of words of typewritten 

text, giving the probability that, say, an <e> would be substituted for an <o>, or a <t> 

omitted after a <c>. So, given a misspelling <acress>, it would use this table to assess 

the probability that the target was <across> or <actress>. 

 

The system employed by (Brill and Moore, 2000) was similar except that it used 

word-fragments rather than single letters. Their table, derived from a large collection 

of misspellings, gave the probability of, for example, <ant> being written for <ent>. 

More precisely it gave three probabilities – one if the substitution occurred at the start 

of a word, one at the end and the third in between. It would use the word-final 

<ant/ent> probability in assessing whether <presant> was a likely misspelling of 

<present>. 

 



A development of this system (Toutanova and Moore, 2002) used a similar table of 

fragments, but this time of pronunciations rather than spellings. Given a misspelling, 

it would make a guess at the pronunciation and compare this with pronunciations in 

the dictionary. For example, whereas the spelling-based system, described in the last 

paragraph, proposed <grizzle> for <grissel>, the pronunciation-based one correctly 

proposed <gristle>. 

 

 

The “Cupertino” 

 

Spellcheckers became good at offering the required word at the head of the list, and 

this, paradoxically, gave rise to a new sort of misspelling – the Cupertino. Whether 

from an excess of faith or a lack of attention, people sometimes choose the first 

suggestion from the spellchecker’s list without looking very closely, thus producing 

sentences such as, ‘The Wine Bar Company is opening a chain of brassieres,’ or, ‘The 

nightwatchman threw the switch and eliminated the backyard.’ They are called 

Cupertinos because a version of Microsoft Word did not have the spelling 

<cooperation> in its dictionary, only the hyphenated <co-operation>. If someone 

typed <cooperation>, it would, bizarrely, offer <Cupertino>, the name of a suburban 

city in California, as its first suggestion. There are documents on the web containing 

phrases such as ‘agreement on bilateral Cupertino’. 

 

Big data 

 

When describing the confusion-set approach to the correction of real-word errors (see 

above), I was rather vague about how exactly the spellchecker, having encountered an 

occurrence of, say, <principle>, decides whether <principal> would be more 

appropriate in that context. A technique often employed for this problem (and, 

incidentally, for a number of other problems in natural-language analysis) is to take a 

large corpus of text and to contrast the sort of contexts in which <principle> appears 

with those in which <principal> appears. Armed with the results of this analysis, the 

spellchecker tries to decide whether the current context resembles the <principle> sort 

or the <principal> sort. 

 

Typically a researcher would divide the large corpus of text into a training corpus, 

which provided the basis for calculating the statistics that would underpin these 

decisions, and a test corpus on which experiments would be carried out to see how 

well the spellchecker corrected the errors (or left the correct uses untouched, as the 

case may be). 

 

For many years the corpus of text on which these analyses were based was the Brown 

Corpus (Kucera and Francis, 1967), a million words of American English text from 

the early 1960’s, sampled to contain representations of various genres. Given the 

corpus-building technology of the time, a million-word corpus was large, and 

subsequent corpora tended to be about this size, such as a British-English version 

(Leech et al., 1976). Effort went into enhancing the corpora, for example by tagging 

each word with its part-of-speech, rather than making them larger, though a corpus 

based on the Wall Street Journal (Charniak at al., 1989) reached thirty million words 

and the British National Corpus (Burnard, 1995) reached one hundred million. 

 



In real-word error checking, researchers had tended to concentrate on the types of 

statistics they derived from the training set and the ways they used them in deciding 

between confusion-set members. But it was pointed out (Banko and Brill, 2001) that 

there was more progress to be made simply from using larger training sets, and that 

larger (much larger) corpora could now be obtained by harvesting text from the 

world-wide web. By using error-checking techniques that had already been developed, 

but training them on corpora of various sizes between one million and a billion words, 

they showed that performance got better and better with the size of the training set, 

regardless of the techniques used, and showed no sign of levelling off even at a billion. 

In the oft-quoted words of the American researcher R.L. Mercer – see (Jelinek, 2004), 

“There’s no data like more data.” 

 

Over the next decade, many experiments were carried out, taking advantage of very 

large corpora. One of these (Strohmaier et al, 2003) set out to improve the correction 

of output from an optical character reader (OCR). These machines are prone to make 

confusions at the character level, such as misreading <rn> as <m>, which obviously 

result in misspelt words, so they are equipped with spellcheckers that attempt to 

correct their output. The authors pointed out that a text tends to be about a particular 

topic; the OCR’s dictionary, even if it is a large one, will be a general one, possibly 

weak on the specialist vocabulary of the topic in question. They selected six topics 

and put a test text on each through an OCR, which they endeavoured to correct using 

either a large, general dictionary or a specialised dictionary which they created by 

putting queries with specialist terms to a search engine and then harvesting words 

from web pages, using the suggested sites as starting points and following links – 

“web crawling”. For each of the test texts, the OCR’s correction was better with the 

web-crawled dictionary than with the large, static one. 

 

The use of large corpora for spellchecking was given a boost by the publication in 

2006 of the Google n-grams (Brants and Franz, 2006). This was a collection of word 

sequences, each with its frequency, from a corpus of around one trillion words of text 

taken from the web. The n-grams vary in length from unigrams (single words) to five-

grams; for example, the three-grams contain “ceramics collected by : 52” and 

“ceramics consist of : 92”; the four-grams include “serve as the independent : 794” 

and “serve as the initial : 5331”. Words that occurred less than 200 times are replaced 

by <UNK> and n-grams that occurred less than 40 times are not included. 

 

One experiment to use this resource was (Carlson and Fette, 2007). Suppose their 

spellchecker came across ‘The sand eel is the principle food for many birds.’ Using 

the familiar list of 18 confusion sets (Golding, 1995), which included {<principle>, 

<principal>}, it would check whether <principle> was correct. It would collect the 

frequencies of ‘sand eel is the principle’, ‘eel is the principle food’, ‘is the principle 

food for’, ‘the principle food for many’, and ‘principle food for many birds’. Then it 

would do the same for <principal>. After comparing the counts for <principle> versus 

<principal>, it would decide whether to accept <principle> or to suggest <principal> 

instead. If the five-grams proved unhelpful, it would try four-grams, and so on, down 

to unigrams if necessary (in which case it would simply be choosing the more 

frequent of the two words). 

 

N-grams can also be used in the correction of non-word errors (Carlson and Fette, 

2007; Flor, 2012). Once a list of candidate corrections has been assembled, they can 



be scored on how frequently they appear in exactly the same context as the 

misspelling, and the list reordered accordingly. 

 

A particularly striking use of the web (Whitelaw et al, 2009) implements 

spellchecking without any dictionary at all. They begin by taking a sample of over a 

billion web pages of English text, listing all the words that occur in them and retaining 

the most frequent ten million. This will include most of the correctly spelled words of 

English, but a large number of misspellings also (and other odd items such as 

numbers, names and web addresses). 

 

To make a guess at which words are misspellings, and of which target words, they 

first take each word in turn and pair it up with all the other words that differ from it by 

the insertion, deletion or substitution of just one letter (they make no attempt at 

misspellings that differ from their target by more than this). If one member of a pair is 

at least ten times more frequent than the other, the less frequent is considered to be a 

possible misspelling of the more frequent. They then consider all the three-word 

contexts in which either of the words occurs. Where the contexts are the same, they 

guess that the less frequent is a misspelling of the more frequent, in that context. 

Where the contexts differ, they consider them to be distinct words. 

 

For example, the non-word <accidential> is paired with <accidental>, the latter being 

much the more frequent. The majority of the contexts are the same, so <accidential> 

is taken to be, in most of its occurrences, a misspelling of <accidental>. The system 

can also spot real-word errors. <Occidental>, for example, is also paired with 

<accidental>, and, where the contexts are the same, it is taken to be a misspelling of 

<accidental> (a real-word error). But most of the contexts are different, and in all 

those contexts it is taken to be a separate word. 

 

At the end of this process, they have over 100 million triples of the form: (C, M, n) 

where C is the (assumed to be) correct spelling, M is a (probable) misspelling, and n 

is the number of times they appeared in the same context. This dataset is far from 

perfect – there are many obvious misspellings that are not paired with their correction 

– but it provides a large training set from which the system proceeds to extract 

statistics on how likely it is that some word-fragment x in a misspelling corresponds 

to a fragment y in a correction. When the spellchecker checks a text, these statistics 

form the basis for putting into order of likelihood the list of suggestions for a 

misspelling. 

 

There is insufficient space here to describe the further steps that go into the 

production of this spellchecker. Suffice it to say that, despite the amount of noise in 

the original data and the level of guesswork that goes into the spellchecker’s creation, 

not to mention the complete absence of any human checking or correcting, the 

performance of the final product bears comparison to that of Aspell, a well-known 

open-source spellchecker (Atkinson, 2011). And this has been achieved without any 

dictionary or any other hand-crafted data source, such as annotated lists of selected 

misspellings. For that reason, the system can be applied to produce spellcheckers for 

other languages, and the authors demonstrate this by producing versions for German, 

Russian and Arabic. 

 

Spellchecking search-engine queries 



 

When I began my research into spellchecking in the 1980’s, I gave a presentation on 

my ideas to my academic colleagues, and they asked why I did not adopt the simple 

and direct approach of assembling a very large database of misspellings and mapping 

each one onto its target word. When you found a misspelling in the text you were 

checking, you would just look it up in this database and find the target word that it 

was matched with. I replied that no such collection of misspellings existed, that it 

would be an enormous job to create one and, given the inventiveness that people bring 

to the creation of misspellings, it would be an unmanageably huge database. Thirty 

years on and something very like this database now exists, thanks to the internet and 

the big search engines. 

 

The search engine companies – Google, Yahoo and the rest – keep a log of all the 

queries that people key in, and, since they have been doing this for several years and 

since millions of people use these engines, the log files are enormous. Many of the 

queries, of course, contain misspellings. There is, therefore, the possibility of 

implementing my colleagues’ suggestion, or something like it. 

 

The spellchecking task that faces a search engine is not the same as that faced by a 

regular spellchecker. Rather than checking a text of at least a few sentences, the 

search engine is trying to correct a query consisting of just a few words. The range of 

possible target words is much wider than for a regular spellchecker, including names 

of people, places, companies and products. Consequently the dictionary, central to 

traditional spellchecking, is less useful for query checking; someone who types in 

<Limp Biscuit> is probably not interested in biscuits but is trying to find out about the 

rock group Limp Bizkit. 

 

One technique that has been described (Cucerzan and Brill, 2004) makes use of the 

observation that, around each correct spelling, there is an extended family of potential 

misspellings, some of them bearing a close resemblance to the target, others more 

remote; the closer the family resemblance, the more common the misspelling. In other 

words, near-misses are quite common, whereas weird misspellings, though there may 

be a lot of them altogether, are individually quite rare. Out of a hundred secondary-

school attempts at <scissors>, there will be perhaps a dozen <sissors>; there will also 

be lots of wilder variations, such as <cezzous>, <saciarres>, <sisions> or <sorriors>, 

but only one or two of each (Mitton, 1996). 

 

Given a misspelled query (i.e. it does not correspond to any of the search engine’s 

index terms) – let’s call it Q1 – the query checker looks for a match, or a near match, 

in the log of past queries. This may itself be a misspelled query – call it Q2 – in which 

case the checker repeats the process, looking for a near-match to Q2 which has also 

appeared more frequently in the log and is therefore likely to be a closer 

approximation to the desired search term. This may need to be repeated two or three 

times until the next nearest match is not another misspelling but a valid search term, 

as in the following example: 

 

Q1: anol scwartegger 

Q2: arnold schwartnegger 

Q3: arnold schwarznegger 

Q4: arnold schwarzenegger (the required search term) 



 

The future 

 

Whether these big-data techniques can be transferred to your own computer depends 

on the future of computing. You certainly could not accommodate gigantic files of 

downloaded text on your laptop. But it may be that the personal computer of the 

future will do very little processing in its own right but rather will act as your 

connection into the huge computing power of the internet – an arrangement known as 

“cloud computing” – so that the spellchecking of your documents, like the 

spellchecking of your search-engine queries, will not actually take place inside your 

own machine but will be carried out elsewhere, with your machine just showing you 

the results. 

 

So perhaps, when you make a spelling error and the correct spelling pops into your 

computer, it may be that you will be benefiting not so much from the efforts of good 

spellers who have gone before you, patiently creating dictionaries of correct spellings, 

but from the efforts of bad ones, misspelling the same word in a thousand different 

ways. 
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