
SPELLCHECKERS

Roger Mitton

This chapter is an extended version of an earlier paper (Mitton, 2010), by kind

permission of the editor.

By the standards of the computing industry, spellchecking has a long history. It began

in the late fifties – the days of mainframes and punched paper tape; an oft-cited paper

is (Damerau, 1964). Accounts of various approaches can be found in (Kukich, 1992;

Mitton, 1996; Jurafsky and Martin, 2000).

Most of the methods used a dictionary (meaning, in this context, simply a list of

correct spellings) but some did not. One system (Morris and Cherry, 1975), when

presented with a text for checking, split it up into three-letter sequences (trigrams),

counted the number of each, and then calculated an “index of peculiarity” for each

word, based on the frequency of the trigrams it contained, finally drawing the user’s

attention to the more peculiar-looking ones. The typo <exmination>, for example,

contains <exm> and <xmi>, trigrams probably not shared by any other word in the

text, so it would be rated as peculiar and would appear near the top of the list. Of

course the user still had the job of spotting the errors in this list, and many

misspellings do not contain unusual trigrams and so would not figure in the list at all,

but it often succeeded in highlighting a typo. And, being dictionary-free, it would

work just as well for, say, Spanish or Greek.

(In the earlier work, the term “trigram” usually refers to a sequence of three letters,

but, in work of the last two decades, it more often means a sequence of three words;

the same applies to “unigram”, “bigram” and “n-gram”.)

Using a dictionary

Most systems checked a text by looking up all the words in a dictionary. Publishers

were beginning to make use of computer technology, and dictionaries for

spellchecking could be extracted from the machine-readable versions of the published

ones. A big problem, even into the eighties, was the small size of computer memories.

Holding an entire dictionary in main memory (the rapid-access part of the computer’s

storage) was out of the question. The dictionary had to be held on disc and small

portions of it read into main memory as required. Consequently much ingenuity went

into compressing the dictionary.

One technique used was affix-stripping (McIlroy, 1982). Instead of storing

<computes>, <computed>, <computing>, <computer>, <computers>, <computable>,

<computability>, <computation>, <computational>, you stored just <compute>, and

had a set of rules that stripped suffixes and adjusted the stem if necessary. Having

derived <compute> from, say, <computability>, and having found <compute> in the

dictionary, you concluded that <computability> was an acceptable word. You could

do the same with prefixes, deriving <civil> from <uncivil>.

There needed to be some ordering of the rules, to accept <undoubtedly> but not

<undoubtlyed> and some way of handling words that look as if they have affixes but

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/42134092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

don’t, such as <whimper>, <seabed> and <farthing> (compare <jumper>,

<combed> and <seething>). Though effective for the checking part of a

spellchecker’s task, this was less useful for suggesting the correct spelling, since

simply adding affixes to a stem runs the risk of generating non-existent words –

<doubtedly>? <undoubting>?

Another consequence of holding the dictionary on disc was to make the checking a

slow process (by computer standards) since a disc access is thousands of times slower

than a main-memory access. A partial solution was to hold, in main memory, a list of

the most frequent words in the language. If a spellchecker was checking the first

sentence of this paragraph, and it held just the most frequent one hundred words of

written English in main memory, it would find <of>, <the>, <on>, <was>, <to>, <a>,

<by>, <is> and <than> (i.e. two-fifths of the tokens) without having to consult the

main dictionary; if it held the next few hundred, it would find <another>, <make>,

<since> and <main> (Leech et al., 2001).

There was some debate about whether a spellchecker’s dictionary should be large or

small. “The larger, the better,” might be one’s first reaction. But it was pointed out

that mistyping a short word can often produce another word (Peterson, 1986), and that

people sometimes write one word for another – ‘bigger then me’, ‘the principle

function’, ‘the teacher tort us’ (Mitton, 1987). Spellcheckers relied on dictionary

look-up to detect errors. A spellchecker that had <tort> in its dictionary would not

spot the error in ‘the teacher tort us’. But if we removed <tort> from its dictionary, it

would. So perhaps we should remove rare words from the dictionary? Perhaps a

spellchecker would work better with a smaller dictionary?

A study of this problem established, however, that, when people use a rare word, it is

more likely to be a correct spelling than an error; a spellchecker with a small

dictionary, while it might occasionally detect a real-word error, would more often be

raising false alarms over correctly spelt, rare words (Damerau and Mays, 1989).

While this is clearly true for a large proportion of rare words – it’s unlikely that

someone who writes <okapi> did not mean <okapi> – there is a subset of rare words

that bear a strong resemblance to common words, and the occurrence of one of these

words is in fact more likely to be an error. <Calender> (with an <e>), for example, is

in the dictionary (it’s a machine for smoothing cloth or paper), and it occurs fourteen

times in the British National Corpus, but all fourteen are misspellings of <calendar>

(though one of the two occurrences of <calenders> (plural) is correct) (Mitton et al.,

2007). Similarly, <withe> (<with>), <ail> (<all>), <tor> (<for>), <canvasses>

(<canvases>), <posses> (<possess>), <polices> (<policies>), <abut> (<about>),

<wold> (<world/would/wild>) and <rime> (<time>). So, while a larger dictionary is

generally preferable, rare words that resemble common words should be treated as

potential errors.

Suggesting corrections

Correction, as opposed to the detection, of errors consisted of generating a list of

words that somewhat resembled the error. An early algorithm, described in (Peterson,

1980), aimed to reverse any of the possible processes that might have given rise to a

single-letter typo. Take, for example, the misspelling <pord>. The typist might have

inserted an extra letter, so look up <ord>, <prd>, <pod> and <por>. Or the typist

might have transposed two adjacent letters, so look up <oprd>, <prod> and <podr>.

Perhaps one letter was substituted for another, so try every letter of the alphabet in

place of each of the letters of <pord>, from <aord>, <bord>, <cord> and so on,

through <pard>, <pbrd> etc. eventually down to <pory> and <porz>. And finally, do

something similar on the assumption that the typist omitted a letter, trying every letter

inserted at every position, from <apord> down to <pordz>. If any of these variations

turn out to be in the dictionary, you offer them to the user: <pod>, <prod>, <cord>,

<ford>, <lord>, <word>, <pond>, <pore>, <pork>, <porn>, <port>, <pored>. (There

are more efficient ways of achieving the same result – see, for example Oflazer

(1996) or Mihov and Schulz (2004).)

This list is in no particular order – there is no “best guess” – and it is restricted,

obviously, to single-letter errors. This is not too serious for mistyped words, the great

majority of which contain just one single-letter error (Pollock and Zamora, 1984), but

it is less useful for misspellings; it would not offer the right word for ‘Mother pord the

tea.’

Before the arrival of the PC in the early eighties, wordprocessors were mostly used by

secretaries, who were sent on training courses to learn how to use them, so the

spellcheckers of the time were designed for people whose spelling was assumed to be

pretty good. Generating a long list of suggestions, possibly containing some very

obscure words, was seen as more important than ordering the list in a helpful way.

The earlier PC-based spellcheckers continued this policy. When offered <cort>, for

example, in, say, ‘I’ve cort a cold,’ WordPerfect 5.1 (circa 1985) responded with a list

of 69 offerings, including <corf>, <corti>, <carate>, <ceroid>, <chert>, <choreoid>,

<karate>, <keyword>, <scirrhoid> and <scurried>, but not, sadly, <caught>.

Real-word errors

The complaints that most people had with spellcheckers, however, were not with the

lists of suggestions but with shortcomings in error detection. On the one hand, the

spellchecker would flag names, newly coined words and technical terms as errors –

this could be ameliorated by allowing users to build up private supplements to the

spellchecker’s main dictionary. On the other hand, the spellchecker failed to flag real-

word errors, where the error is a dictionary word but not the right one (<there> for

<their>, and the like). This was a serious defect since errors of this kind are

surprisingly common – several studies, admittedly of handwritten text, found that a

quarter to a third of all misspelt words were real-word errors (Wing and Baddeley,

1980; Sterling, 1983; Mitton, 1987; Brooks et al., 1993). Hence a little poem that was

in circulation, in different versions:

 I have a spelling chequer; it came with my pea sea.

 It plainly marques for my revue miss takes eye cannot sea.

 I’ve run this poem threw it, I’m sure yore pleased two no.

 It’s letter perfect in its weigh – my chequer tolled me sew.

An early approach to this problem (Atwell and Elliott, 1987) homed in on the

grammatical anomalies that were often produced by real-word errors. For example,

the sentence, ‘Please complete the from in capitals,’ would be flagged because the

sequence Definite Article-Preposition-Preposition is very unlikely. It had some

success in spotting real-word errors but tended to raise too many false alarms,

querying sentences where the syntax was unusual but not incorrect (Leech et al.,

1986). And of course it could do nothing with such sentences as, ‘We had thirty

minuets for lunch,’ where the anomaly is semantic, not syntactic.

Another early approach (Mays et al., 1991) used a table of word-sequence

probabilities. Given any two words from its 20,000 word dictionary, the table would

give the probability of any other occurring next. Suppose their spellchecker was

checking ‘The thief licked the lock.’ Having consulted the table for the probability of

<licked> after ‘The thief’, <the> after ‘thief licked’, and so on, it was able to calculate

the probability of the whole sentence. It also calculated the probability of all the

sentences that differed from the first by a single typo. In this case, it would try

<liked>, <kicked>, <picked> and so on in place of <licked>, and also <rock>, <sock>

etc in place of <lock>. If any of these variant sentences was significantly more

probable than the original, the modified word (perhaps <picked> instead of <licked>)

would be offered as a correction.

The next assault on real-word errors made use of confusion sets (Golding, 1995;

Golding and Roth, 1999). A confusion set is a small set of words – usually two but

sometimes three or four – that are likely to be confused with one another, such as

{<there>, <their>, <they’re>} or {<principle>, <principal>}. You provide the

spellchecker with a list of confusion sets. It then scans the text, looking for any of the

words in the list. Let’s say the text contains the sentence, ‘The sand eel is the principle

food for many birds.’ Having found an occurrence of <principle>, it assesses whether

any of the other members of the confusion set (here just <principal>) would be more

appropriate in that position. It might make this assessment on the basis of syntax,

semantics, collocation or any other information it might have. If it decided that

<principal> would be more appropriate here, it would flag <principle> as an error and

propose <principal> as a correction.

It is important to find a way to calibrate these assessments and only to flag an error if

the spellchecker is confident, since the great majority of occurrences of the words in

confusion sets are in fact correct, and a spellchecker that was constantly raising false

alarms would be irritating and effectively unusable.

The early research with this technique used a list of confusion sets that was both short

(18 sets in (Golding, 1995)) and with only a small representation of function-word

confusions (such as {<he>, <her>} or {<to>, < too>}) that account for a high

proportion of genuine real-word errors (Mitton, 1996). Though the list was sufficient

for proof of concept – and Golding makes no grander claim for it – this was

unfortunate in retrospect since most of the subsequent experiments used the same list,

to preserve comparability with earlier work, though (Carlson et al., 2001) scaled it up

to 265. More recently an attempt has been made to produce a list sufficiently large to

tackle unrestricted text (Pedler and Mitton, 2010), but experiments with a test corpus

of errors collected from student essays, online bulletin boards and so on, suggest that,

even with their list of about 6,000 confusion sets, around 30% of the real-word errors

would remain undetected.

Might it not be possible to get a computer to detect real-word errors in the same way

as humans do, by seeing that the errors don’t make sense in the context? An attempt

to do this was implemented by (Hirst and Budanitsky, 2005). Take the sentence, ‘We

had thirty minuets for lunch.’ Their system would check whether any of the meanings

of <minuet> (dance, music) were close to the meanings of any other word in the

paragraph. If none of them were, and if there was a word very similar to <minuets>

(here <minutes>), and if this other word did have meanings that were close to the

meanings of some others in the vicinity (perhaps <midday> or <timetable> occur

elsewhere in the paragraph), it would propose <minutes> as a correction for

<minuets>. It collected the meanings from WordNet (Miller, 1995; Fellbaum, 1998,

2005), a large lexical database that lists the meanings of around 100,000 English

words and indicates the relationships between their meanings (synonyms, hyponyms

etc.). The notion of closeness between the meanings of words in WordNet is a

slippery one; there are several definitions and they have different results – see, for

example (Budanitsky and Hirst, 2006).

Though this semantic approach showed some promise, it has been largely put aside in

favour of experiments with the very large amounts of text that have become available

by harvesting the world-wide web – see below under “Big data”.

Ordering the list of suggestions: assembling candidates

The rapid take-up of PCs in the eighties meant that the use of computers, and

particularly of wordprocessors, was no longer confined to professionals. Users could

no longer be assumed to be good spellers; in fact they increasingly looked to the

spellchecker to help them with their spelling. Poor spellers do not want a list of fifty

suggestions, with the required word buried (or possibly not) somewhere in the middle;

they want a list of about half a dozen with the required word preferably at the top.

To produce such a list, a spellchecker can begin by assembling a set of candidate

corrections; these are words that somewhat resemble the error – perhaps five to fifty

of them, perhaps some hundreds, depending on the system. But how to pick out these

candidates without trawling through the entire dictionary every time?

One way is to create a key for each word in the dictionary, which will retain the

prominent features of the spelling, the features which you hope misspellings of that

word are likely to retain. Faced with a misspelling, you compute a key for the

misspelling and retrieve all the dictionary words that have the same key.

One such key, called Soundex (Odell and Russell, 1918, 1922), was devised decades

before computers. It was invented to address the problems caused by names having

variant spellings – a clerk might be searching for someone’s record in a card index

without being sure how their name is spelt, or someone might appear under one

spelling in one file and under a different spelling in another. A Soundex key (for

details see, for example, (Mitton, 1996)) retains the first letter of the name followed

by a few digits representing the consonant structure. For example, <Johnson>,

<Jonson> and <Johansson> all have the Soundex key J525. (The system is still used

in genealogical searches; see, for example (US National Archives, 2007).)

Whereas Soundex was designed for human beings to use, more recent

implementations of the same idea have been designed for computers and can therefore

be more complicated. An example of this is Metaphone (Philips, 1990), and its

successors (Philips, 2000, 2009). They differ from Soundex in having more, and more

detailed, rules; for example, if a word begins with <pn> (e.g. <pneumatic>), the

computed key begins with N, not P.

The same basic idea underpins the “People Search” services on the web. In (Udupa

and Kumar, 2010), for example, a key is created for each name in a directory of

possibly millions of names. When the user types in a guess at a name, perhaps

misspelled or in the wrong order or with parts missing (<Tim Berners>, <Tom

Barnard Lea>, <Tim Lee Burners>, etc) a key is derived from the user’s guess, and all

the names are retrieved that have the same key, or something close to it.

These key systems in spellchecking mostly belong to a time when computer memories

were too small to hold a complete dictionary, but capacity has increased to the point

where it is possible to hold a complete dictionary in main memory, and data structures

and algorithms have been developed to take advantage of this. It is now possible to

retrieve all the words that differ in a well-defined way from the misspelling, perhaps

words of the same length as the misspelling that differ in a certain number of

character positions (Bentley and Sedgewick, 1997) or words that differ from the

misspelling by a given edit-distance (Mihov and Schulz, 2004); the concept of edit-

distance is explained below.

Ordering the list of suggestions: string-matching

One way or another, a list is generated of candidates that somewhat resemble the

misspelling. Each of these candidates is then compared with the error, using some

string-matching algorithm. Many algorithms have been proposed, but a simple one

would be to count the number of letters or letter-pairs that the candidate has in

common with the misspelling. This provides a kind of measurement of how close

each of the candidates is to the misspelling, and the spellchecker offers the best few to

the user.

A simple system like this works quite well for a large proportion of misspellings,

matching <bicycle> to, say, <bycicyle>. But it works less well for the misspellings of

poor spellers; for <cort>, it would favour <court>, <cert> or <corm>, though

<caught> might be the target.

Another string-matching algorithm is based on the notion of edit-distance

(Levenshtein, 1966; Wagner and Fischer, 1974). In its simplest form, you take the

misspelling on the one hand and one of the candidates on the other, and you work out

how many single-letter changes are required to change the one into the other, where a

single-letter change could be the insertion of a letter or the omission of a letter or the

changing of one letter into another. (In many systems, the transposition of two

adjacent letters is also counted as a single-letter change.) For example, if the

misspelling was <yot> and the candidate was <yoke>, you could get from <yoke> to

<yot> by changing the <k> to a <t> and omitting the <e> – two changes, so the edit-

distance is 2.

You calculate the edit-distance for each of the candidates and then present them in

order, lowest first. If, say, we had three candidates for <yot> – <yoke>, <pot> and

<yacht> – we would calculate their edit-distance to <yot> to be 2 for <yoke>, 1 for

<pot> and 3 for <yacht>, so we would present them in the order <pot>, <yoke>,

<yacht>.

In a more elaborate version of edit-distance (Veronis, 1988; Mitton, 1996, 2008), you

attach costs to each of the single-letter changes; a low cost would be attached to a

relatively trivial change, such as doubling a consonant (as in, say, <harrass> for

<harass>), but a high one to an unlikely change, such as changing a <p> to a <y>.

Let’s suppose we attached the following costs in our <yot> example:

pot <p> to <y> unlikely, say cost of 5 Total: 5

yoke <k> to <t> unlikely, say cost of 5; addition of

<e> not uncommon, say 2

Total: 7

yacht <a> to <o> not surprising given the

pronunciation, say 1; likewise the omission of

the <ch>, say 2

Total: 3

So we would present these candidates in the order <yacht>, <pot>, <yoke>.

The costs can be held in a table applicable to all words – you might decide that

changing a <p> to a <y> will always have a cost of 5, while changing a <c> to a <k>

will cost 3. Or they can take account of the immediate context; changing a <p> to an

<f>, for example, is normally improbable, say cost of 4 or 5, but if it’s the <p> in

<ph>, it’s a lot more likely, say cost of 2.

The costs can even be tailored for individual words – omitting the <t> from <mortal>

would attract a high cost, but omitting it from <mortgage> a much lower one. This

enables a spellchecker to anticipate the sort of misspellings that are caused by the

quirks of English orthography; it can make allowance for the <ch> of <yacht>, the

<c> of <scissors> or the <w> of <answer>. Although these examples arise from the

mismatch of spelling and pronunciation, as many misspellings do, the system can deal

with other sorts of misspelling. <Rember>, for example, is a common misspelling of

<remember>, so we attach a low cost to the omission of the . <Latest> is

sometimes written <lastest>, so we attach a low cost to the insertion of the first <s>.

An improvement on these rather arbitrary costs is to use probabilities. The system

described by (Kernighan at al., 1990), which was aimed at correcting errors that

contained just one typo, used a table derived from millions of words of typewritten

text, giving the probability that, say, an <e> would be substituted for an <o>, or a <t>

omitted after a <c>. So, given a misspelling <acress>, it would use this table to assess

the probability that the target was <across> or <actress>.

The system employed by (Brill and Moore, 2000) was similar except that it used

word-fragments rather than single letters. Their table, derived from a large collection

of misspellings, gave the probability of, for example, <ant> being written for <ent>.

More precisely it gave three probabilities – one if the substitution occurred at the start

of a word, one at the end and the third in between. It would use the word-final

<ant/ent> probability in assessing whether <presant> was a likely misspelling of

<present>.

A development of this system (Toutanova and Moore, 2002) used a similar table of

fragments, but this time of pronunciations rather than spellings. Given a misspelling,

it would make a guess at the pronunciation and compare this with pronunciations in

the dictionary. For example, whereas the spelling-based system, described in the last

paragraph, proposed <grizzle> for <grissel>, the pronunciation-based one correctly

proposed <gristle>.

The “Cupertino”

Spellcheckers became good at offering the required word at the head of the list, and

this, paradoxically, gave rise to a new sort of misspelling – the Cupertino. Whether

from an excess of faith or a lack of attention, people sometimes choose the first

suggestion from the spellchecker’s list without looking very closely, thus producing

sentences such as, ‘The Wine Bar Company is opening a chain of brassieres,’ or, ‘The

nightwatchman threw the switch and eliminated the backyard.’ They are called

Cupertinos because a version of Microsoft Word did not have the spelling

<cooperation> in its dictionary, only the hyphenated <co-operation>. If someone

typed <cooperation>, it would, bizarrely, offer <Cupertino>, the name of a suburban

city in California, as its first suggestion. There are documents on the web containing

phrases such as ‘agreement on bilateral Cupertino’.

Big data

When describing the confusion-set approach to the correction of real-word errors (see

above), I was rather vague about how exactly the spellchecker, having encountered an

occurrence of, say, <principle>, decides whether <principal> would be more

appropriate in that context. A technique often employed for this problem (and,

incidentally, for a number of other problems in natural-language analysis) is to take a

large corpus of text and to contrast the sort of contexts in which <principle> appears

with those in which <principal> appears. Armed with the results of this analysis, the

spellchecker tries to decide whether the current context resembles the <principle> sort

or the <principal> sort.

Typically a researcher would divide the large corpus of text into a training corpus,

which provided the basis for calculating the statistics that would underpin these

decisions, and a test corpus on which experiments would be carried out to see how

well the spellchecker corrected the errors (or left the correct uses untouched, as the

case may be).

For many years the corpus of text on which these analyses were based was the Brown

Corpus (Kucera and Francis, 1967), a million words of American English text from

the early 1960’s, sampled to contain representations of various genres. Given the

corpus-building technology of the time, a million-word corpus was large, and

subsequent corpora tended to be about this size, such as a British-English version

(Leech et al., 1976). Effort went into enhancing the corpora, for example by tagging

each word with its part-of-speech, rather than making them larger, though a corpus

based on the Wall Street Journal (Charniak at al., 1989) reached thirty million words

and the British National Corpus (Burnard, 1995) reached one hundred million.

In real-word error checking, researchers had tended to concentrate on the types of

statistics they derived from the training set and the ways they used them in deciding

between confusion-set members. But it was pointed out (Banko and Brill, 2001) that

there was more progress to be made simply from using larger training sets, and that

larger (much larger) corpora could now be obtained by harvesting text from the

world-wide web. By using error-checking techniques that had already been developed,

but training them on corpora of various sizes between one million and a billion words,

they showed that performance got better and better with the size of the training set,

regardless of the techniques used, and showed no sign of levelling off even at a billion.

In the oft-quoted words of the American researcher R.L. Mercer – see (Jelinek, 2004),

“There’s no data like more data.”

Over the next decade, many experiments were carried out, taking advantage of very

large corpora. One of these (Strohmaier et al, 2003) set out to improve the correction

of output from an optical character reader (OCR). These machines are prone to make

confusions at the character level, such as misreading <rn> as <m>, which obviously

result in misspelt words, so they are equipped with spellcheckers that attempt to

correct their output. The authors pointed out that a text tends to be about a particular

topic; the OCR’s dictionary, even if it is a large one, will be a general one, possibly

weak on the specialist vocabulary of the topic in question. They selected six topics

and put a test text on each through an OCR, which they endeavoured to correct using

either a large, general dictionary or a specialised dictionary which they created by

putting queries with specialist terms to a search engine and then harvesting words

from web pages, using the suggested sites as starting points and following links –

“web crawling”. For each of the test texts, the OCR’s correction was better with the

web-crawled dictionary than with the large, static one.

The use of large corpora for spellchecking was given a boost by the publication in

2006 of the Google n-grams (Brants and Franz, 2006). This was a collection of word

sequences, each with its frequency, from a corpus of around one trillion words of text

taken from the web. The n-grams vary in length from unigrams (single words) to five-

grams; for example, the three-grams contain “ceramics collected by : 52” and

“ceramics consist of : 92”; the four-grams include “serve as the independent : 794”

and “serve as the initial : 5331”. Words that occurred less than 200 times are replaced

by <UNK> and n-grams that occurred less than 40 times are not included.

One experiment to use this resource was (Carlson and Fette, 2007). Suppose their

spellchecker came across ‘The sand eel is the principle food for many birds.’ Using

the familiar list of 18 confusion sets (Golding, 1995), which included {<principle>,

<principal>}, it would check whether <principle> was correct. It would collect the

frequencies of ‘sand eel is the principle’, ‘eel is the principle food’, ‘is the principle

food for’, ‘the principle food for many’, and ‘principle food for many birds’. Then it

would do the same for <principal>. After comparing the counts for <principle> versus

<principal>, it would decide whether to accept <principle> or to suggest <principal>

instead. If the five-grams proved unhelpful, it would try four-grams, and so on, down

to unigrams if necessary (in which case it would simply be choosing the more

frequent of the two words).

N-grams can also be used in the correction of non-word errors (Carlson and Fette,

2007; Flor, 2012). Once a list of candidate corrections has been assembled, they can

be scored on how frequently they appear in exactly the same context as the

misspelling, and the list reordered accordingly.

A particularly striking use of the web (Whitelaw et al, 2009) implements

spellchecking without any dictionary at all. They begin by taking a sample of over a

billion web pages of English text, listing all the words that occur in them and retaining

the most frequent ten million. This will include most of the correctly spelled words of

English, but a large number of misspellings also (and other odd items such as

numbers, names and web addresses).

To make a guess at which words are misspellings, and of which target words, they

first take each word in turn and pair it up with all the other words that differ from it by

the insertion, deletion or substitution of just one letter (they make no attempt at

misspellings that differ from their target by more than this). If one member of a pair is

at least ten times more frequent than the other, the less frequent is considered to be a

possible misspelling of the more frequent. They then consider all the three-word

contexts in which either of the words occurs. Where the contexts are the same, they

guess that the less frequent is a misspelling of the more frequent, in that context.

Where the contexts differ, they consider them to be distinct words.

For example, the non-word <accidential> is paired with <accidental>, the latter being

much the more frequent. The majority of the contexts are the same, so <accidential>

is taken to be, in most of its occurrences, a misspelling of <accidental>. The system

can also spot real-word errors. <Occidental>, for example, is also paired with

<accidental>, and, where the contexts are the same, it is taken to be a misspelling of

<accidental> (a real-word error). But most of the contexts are different, and in all

those contexts it is taken to be a separate word.

At the end of this process, they have over 100 million triples of the form: (C, M, n)

where C is the (assumed to be) correct spelling, M is a (probable) misspelling, and n

is the number of times they appeared in the same context. This dataset is far from

perfect – there are many obvious misspellings that are not paired with their correction

– but it provides a large training set from which the system proceeds to extract

statistics on how likely it is that some word-fragment x in a misspelling corresponds

to a fragment y in a correction. When the spellchecker checks a text, these statistics

form the basis for putting into order of likelihood the list of suggestions for a

misspelling.

There is insufficient space here to describe the further steps that go into the

production of this spellchecker. Suffice it to say that, despite the amount of noise in

the original data and the level of guesswork that goes into the spellchecker’s creation,

not to mention the complete absence of any human checking or correcting, the

performance of the final product bears comparison to that of Aspell, a well-known

open-source spellchecker (Atkinson, 2011). And this has been achieved without any

dictionary or any other hand-crafted data source, such as annotated lists of selected

misspellings. For that reason, the system can be applied to produce spellcheckers for

other languages, and the authors demonstrate this by producing versions for German,

Russian and Arabic.

Spellchecking search-engine queries

When I began my research into spellchecking in the 1980’s, I gave a presentation on

my ideas to my academic colleagues, and they asked why I did not adopt the simple

and direct approach of assembling a very large database of misspellings and mapping

each one onto its target word. When you found a misspelling in the text you were

checking, you would just look it up in this database and find the target word that it

was matched with. I replied that no such collection of misspellings existed, that it

would be an enormous job to create one and, given the inventiveness that people bring

to the creation of misspellings, it would be an unmanageably huge database. Thirty

years on and something very like this database now exists, thanks to the internet and

the big search engines.

The search engine companies – Google, Yahoo and the rest – keep a log of all the

queries that people key in, and, since they have been doing this for several years and

since millions of people use these engines, the log files are enormous. Many of the

queries, of course, contain misspellings. There is, therefore, the possibility of

implementing my colleagues’ suggestion, or something like it.

The spellchecking task that faces a search engine is not the same as that faced by a

regular spellchecker. Rather than checking a text of at least a few sentences, the

search engine is trying to correct a query consisting of just a few words. The range of

possible target words is much wider than for a regular spellchecker, including names

of people, places, companies and products. Consequently the dictionary, central to

traditional spellchecking, is less useful for query checking; someone who types in

<Limp Biscuit> is probably not interested in biscuits but is trying to find out about the

rock group Limp Bizkit.

One technique that has been described (Cucerzan and Brill, 2004) makes use of the

observation that, around each correct spelling, there is an extended family of potential

misspellings, some of them bearing a close resemblance to the target, others more

remote; the closer the family resemblance, the more common the misspelling. In other

words, near-misses are quite common, whereas weird misspellings, though there may

be a lot of them altogether, are individually quite rare. Out of a hundred secondary-

school attempts at <scissors>, there will be perhaps a dozen <sissors>; there will also

be lots of wilder variations, such as <cezzous>, <saciarres>, <sisions> or <sorriors>,

but only one or two of each (Mitton, 1996).

Given a misspelled query (i.e. it does not correspond to any of the search engine’s

index terms) – let’s call it Q1 – the query checker looks for a match, or a near match,

in the log of past queries. This may itself be a misspelled query – call it Q2 – in which

case the checker repeats the process, looking for a near-match to Q2 which has also

appeared more frequently in the log and is therefore likely to be a closer

approximation to the desired search term. This may need to be repeated two or three

times until the next nearest match is not another misspelling but a valid search term,

as in the following example:

Q1: anol scwartegger

Q2: arnold schwartnegger

Q3: arnold schwarznegger

Q4: arnold schwarzenegger (the required search term)

The future

Whether these big-data techniques can be transferred to your own computer depends

on the future of computing. You certainly could not accommodate gigantic files of

downloaded text on your laptop. But it may be that the personal computer of the

future will do very little processing in its own right but rather will act as your

connection into the huge computing power of the internet – an arrangement known as

“cloud computing” – so that the spellchecking of your documents, like the

spellchecking of your search-engine queries, will not actually take place inside your

own machine but will be carried out elsewhere, with your machine just showing you

the results.

So perhaps, when you make a spelling error and the correct spelling pops into your

computer, it may be that you will be benefiting not so much from the efforts of good

spellers who have gone before you, patiently creating dictionaries of correct spellings,

but from the efforts of bad ones, misspelling the same word in a thousand different

ways.

References

Atkinson, K. (2011). GNU Aspell. aspell.net.

Atwell, E. and Elliott, S. (1987) Dealing with ill-formed English text. In Garside,

Leech and Sampson (eds) The Computational Analysis of English: a corpus-based

approach. Longman, pp. 120-138.

Banco, M. and Brill, E. (2001).Scaling to very very large corpora for natural

language disambiguation. ACL ’01: Proceedings of the 39
th

 Annual Meeting of the

Association for Computational Linguistics: 26-33.

Bentley, J. and Sedgewick, R. (1997). Fast algorithms for sorting and searching

strings. SODA ’97: Proceedings of the Eighth Annual ACM-SIAM Symposium on

Discrete Algorithms: 360-369.

Brants, T., and Franz, A. (2006). Web 1T 5-gram Version 1, Linguistic Data

Consortium, Philadelphia.

Brill, E. and Moore, R.C. (2000). An improved error model for noisy channel

spelling correction. ACL ’00 Proceedings of the 38
th

 Annual Meeting of the

Association for Computational Linguistics, 286-293.

Brooks, G., Gorman, T. and Kendall, L. (1993). Spelling it out: the spelling

abilities of 11- and 15-year-olds. Slough: National Foundation for Educational

Research.

Budanitsky, A. and Hirst, G. (2006). Evaluating WordNet-based measures of lexical

semantic relatedness. Computational Linguistics 32 (1): 13-47.

Burnard, L. (1995). Ed. Users’ Reference Guide for the British National Corpus

version 1.0, Oxford: Oxford University Computing Services.

Carlson, A.J., Rosen, J., and Roth, D. (2001). Scaling up context-sensitive text

correction. In Proceedings of the 13
th

 Innovative Applications of Artificial Intelligence

Conference, Menlo Park, CA.: AAAI Press, 45-50.

Carlson, A.J. and Fette, I. (2007). Memory-based context-sensitive spelling

correction at web scale. ICMLA 2007 Sixth International Conference on Machine

Learning and Applications, 166-171.

Charniak, E., Blaheta, D., Ge, N., Hall, K., Hale, J., Johnson, M. (1989). BLLIP

1987-89 WSJ Corpus Release 1, Linguistic Data Consortium, Philadelphia.

Cucerzan, S. and Brill, E. (2004). Spelling correction as an iterative process that

exploits the collective knowledge of web users. In Proceedings of EMNLP 2004, 293-

300.

Damerau, F.J. (1964). A technique for computer detection and correction of spelling

errors. Communications of the A.C.M., 7: 171-176.

Damerau, F.J. and Mays, E. (1989). An examination of undetected typing errors.

Information Processing and Management, 25 (6): 659-664.

Fellbaum, C. (1998). WordNet: an Electronic Lexical Database. Cambridge MA:

MIT Press.

Fellbaum, C. (2005). WordNet and wordnets, in Brown, Keith et al (eds)

Encyclopedia of Language and Linguistics. Oxford : Elsevier, 665-670.

Flor, M. (2012). Four types of context for automatic spelling correction. Traitement

Automatique des Langues, 53 (3): 61-99.

Golding, A.R. (1995). A Bayesian hybrid method for context-sensitive spelling

correction. In Proceedings of the Third Workshop on Very Large Corpora, Cambridge,

MA : Massachusetts Institute of Technology, 39-53.

Golding, A.R. and Roth, D. (1999). A Winnow-based approach to context-sensitive

spelling correction. Machine Learning, 34: 107-130.

Hirst, G. and Budanitsky, A. (2005). Correcting real-word spelling errors by

restoring lexical cohesion. Natural Language Engineering 11 (1): 87-111.

Jelinek, F. (2004). Some of my best friends are linguists, Language Resources and

Evaluation Conference 2004 presentation.

Jurafsky, D. and Martin, J.M. (2000). Speech and Language Processing. New

Jersey: Prentice Hall.

Kernighan, M.D., Church, K.W. and Gale, W.A. (1990) A spelling correction

program based on a noisy channel model. In Karlgren, H. (ed.) COLING-90 13
th

International Conference on Computational Linguistics. Helsinki. 2: 205-210.

Kucera, H. and Francis, W.N. (1967) The Computational Analysis of Present-Day

American English, Brown University Press.

Kukich, K. (1992). Techniques for automatically correcting words in text. Computing

Surveys, 24 (4): 377-439.

Leech, G., Johansson, S., Hofland, K. (1976). The LOB (Lancaster-Oslo-Bergen)

Corpus.

Leech, G.N., Garside, R.G. and Elliott, S.J. (1986) Development of a Context-

sensitive Textual Error Detector and Corrector: Final project report submitted to

International Computers Limited. Unit for Computer Research on the English

Language, Lancaster University.

Leech, G., Rayson, P. and Wilson, A. (2001). Word Frequencies in Written and

Spoken English. London: Longman.

Levenshtein, V.I. (1966). Binary codes capable of correcting deletions, insertions and

reversals. Soviet Physics – Doklady 10 (8): 707-710.

Mays, E., Damerau, F.J. and Mercer, R.L. (1991). Context based spelling

correction. Information Processing and Management, 27 (5): 517-522.

McIlroy, M.D. (1982). Development of a spelling list. IEEE Transactions on

Communications, COM-30 (1): 91-99.

Mihov, S. and Schulz, K.U. (2004). Fast approximate search in large dictionaries.

Computational Linguistics, 30 (4): 451-477.

Miller, G. A. (1995). WordNet: a lexical database for English. Communications of

the ACM, 38 (11): 39-41.

Mitton, R. (1987). Spelling checkers, spelling correctors and the misspellings of poor

spellers. Information Processing and Management, 23 (5): 495-505.

Mitton, R. (1996). English Spelling and the Computer. London: Longman.

Mitton, R. (2008). Ordering the suggestions of a spellchecker without using context.

Natural Language Engineering, 15 (2): 173-192.

Mitton, R. (2010). Fifty years of spellchecking. Writing Systems Research, 2 (1): 1-7.

Mitton, R., Harrison, D. and Pedler, J. (2007). BNC! Handle with care! Spelling

and tagging errors in the BNC. In Davies, M., Rayson, P., Hunston, S. and Danielsson,

P. (eds), Proceedings of the Corpus Linguistics Conference CL2007, University of

Birmingham, ucrel.lancs.ac.uk/publications/CL2007/.

Morris, R. and Cherry, L.L. (1975). Computer detection of typographical errors.

IEEE Transactions on Professional Communication, PC-18 (1): 54-64.

Odell, M.K. and Russell R.C. (1918, 1922). U.S.Patents 1261167, 1435663.

Oflazer, K. (1996). Error tolerant finite-state recognition with applications to

morphological analysis and spelling correction. Computational Linguistics, 22 (1):

73-89.

Pedler, J. and Mitton, R. (2010). A large list of confusion sets for spellchecking

assessed against a corpus of real-word errors. In Language Research and Evaluation

Conference LREC2010, Malta.

Peterson, J.L. (1980). Computer programs for detecting and correcting spelling

errors. Communications of the A.C.M., 23 (12): 676-687.

Peterson, J.L. (1986). A note on undetected typing errors. Communications of the

A.C.M., 29 (7): 633-637.

Philips, L. (1990). Hanging on the Metaphone, Computer Language, 7 (12): 38-44

Philips, L. (2000). The Double Metaphone search algorithm, C/C++ Users Journal

Philips, L. (2009). Metaphone 3, software product

Pollock, J.L. and Zamora, A. (1984). Automatic spelling correction in scientific and

scholarly text. Communications of the A.C.M., 27 (4): 358-368.

Sterling, C.M. (1983). Spelling errors in context. British Journal of Psychology, 74:

353-364.

Strohmaier, C.M., Ringlstetter, C., Schulz, K.U., Mihov, S. (2003). Lexical

postcorrection of OCR-results: the web as a dynamic secondary dictionary? ICDAR,

IEEE Computer Society, 1133-1137.

Toutanova, K. and Moore, R.C. (2002). Pronunciation modeling for improved

spelling correction. Proceedings of the 40
th

 Annual Meeting of the Association for

Computational Linguistics: 144-151.

Udupa, R. and Kumar, S. (2010). Hashing-based approaches to spelling correction

of personal names, Proceedings of the 2010 Conference on Empirical Methods in

Natural Language Processing (EMNLP2010): 1256-1265.

U.S.National Archives (2007). www.archives.gov/research/census/soundex.html

 Veronis, J. (1988). Computerized correction of phonographic errors. Computers and

the Humanities, 22: 43-56.

Wagner, R.A., and Fischer, M.J. (1974). The string-to-string correction problem.

Journal of the A.C.M., 21 (1): 168-173.

Whitelaw, C., Hutchinson, B., Chung, G.Y., Ellis, G. (2009). Using the web for

language independent spellchecking and autocorrection. Proceedings of the 2009

Conference on Empirical Methods in Natural Language Processing, 890-899.

Wing, A.M. and Baddeley, A.D. (1980). Spelling errors in handwriting: a corpus and

a distributional analysis. In Frith U. (ed.), Cognitive Processes in Spelling. London:

Academic Press, 251-285.

