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Abstract. In sport and education contexts, children are divided into age-groups which are 

arbitrary constructions based on the admission dates. This age-group system is thought to 

determine differences in maturity between pupils within the same group, that is, relative age 

(RA). In turn, these within-age-group maturity differences produce performance gaps, that is, 

relative age effects (RAE), which might persist and affect the labor market outcome. I analyze 

the RAE on labor market outcomes using a unique dataset providing information on a 

particular group of high skilled workers: soccer players in the Italian major soccer league. In 

line with previous studies, evidence on the existence of RAE in terms of representativeness is 

found, meaning that players born relatively early in the age-group are over-represented, while 

players born relatively late are under-represented, even accounting for specific population 

trends. Moreover, players born relatively late in the age-group receive lower gross wages than 

players born relatively early. This wage gap seems to increase with age and in the quantile of 

the wage distribution. 
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1 Introduction 

There is large empirical evidence that children born late in the education and sport admission 

year are systematically disadvantaged throughout childhood up to the late teens. Scholars 

from different disciplines justify this evidence with the existence of the so called relative age 

effect. This concept has recently gained popularity even outside academy (e.g., Gladwell, 

2008; Levitt & Dubner, 2010). 

The relative age effect is given by similar complex mechanisms in education and 

sports. In both contexts, age-groups are formed using arbitrary admission dates which 

determine some children to be older than others within the same age-group. This 

chronological difference, called relative age (henceforth RA), is responsible for early 

differences in maturity (e.g., Bedard & Dhuey, 2006; Musch & Hay, 1999), which cause a 

performance gap, that is, the relative age effect (henceforth RAE),
1
 and affect children’s 

achievements. Because of its nature, this effect is expected to dissipate with age and 

eventually to disappear. However, it might persist, and even widen, because of some 

characteristics of the human capital accumulation process, which lead to “path dependence” 

(Bryson et al., 2014, p.12). It means that children born early in the admission year are more 

likely to be perceived as talented (e.g., Allen & Barnsley, 1993), and thus they are given more 

chances to develop their skills (e.g., teachers and parents motivate them more, or children 

could be provided with superior educational quality).   

Although there is large consensus about the negative RAE on relatively young 

children’s achievements, no equivalent consensus exists on the RAE on labor market 

                                                 
1
 Consider the case where all children who turn 6 in a given calendar year are expected to start the first grade of 

primary school in that year (i.e., the admission date is the 1
st
 of January; note that the beginning of the school 

year is irrelevant). In the same class, there might be children who turn 6 in January and children who turn 6 in 

December; relatively old pupils born in January are 17% older than relatively young pupils born in December. 

This chronological difference is the RA, which causes differences in terms of maturity, leading to a performance 

gap; this performance difference is the RAE. 
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outcomes (Ponzo & Scoppa, 2014). Whether there is such a long-run effect is a compelling 

economic question (e.g., Allen & Barnsley, 1993; Bedard & Dhuey, 2006). 

One of the possible reasons for the lack of consensus is the presence of two important 

confounders which affects scholars’ analyses: “season-of-birth effects” and heterogeneous 

ages within age-groups. The “season-of-birth effects” are confounding factors because they 

are unrelated to within-age-group maturity differences, and are due to climatic, 

environmental, sociocultural and biological factors (Musch & Grondin, 2001). The season of 

birth explains the performance gaps between children born in the same calendar year with the 

position of their birthdates within the calendar year; whereas the RAE explains the 

performance gaps between children born in the same admission year with the maturity gap 

caused by the relative position of their birthdates within the admission year. On one hand, 

when the beginning of the admission year coincides with a period of the calendar year which 

conveys advantages due to seasonal effects, the estimate of the RAE might likely be upward 

biased.
2
 On the other hand, the estimate could be downward biased if later months of the 

selection year coincide with a period of the calendar year which conveys advantages to 

children born within that period.
3, 4

 Also the presence of heterogeneous ages within age-

groups may bias the results from analyses on RAE. Consider the education context, when 

children born late in the admission year, that is, relatively young children, are held back one 

year, that is, they either repeat a grade or they enter primary school one year later, they end up 

in an age-group where typical children are younger, and, thus, they become relatively old 

                                                 
2
 Consider the case when the school admission year coincides with that of sport, and the researcher was 

interested only in the RAE from either education or sport, not in their combined effect. The estimates would be 

biased (Musch & Hay, 1999; Helsen et al., 2012). 
3
 If the admission date was shifted by a few months, e.g., shift the admission date in the example in Footnote 2 

by 6 months, the estimated RAE would be downward biased. Also, if households with high socio-economic 

status tend to give birth in months that do not coincide with the beginning of the admission year, as in the US 

(Bound & Jaeger, 2001) and in Sweden (Carlsson et al., forthcoming), the estimate of RAE from education 

would be downward biased. 
4
 The seminal paper by Angrist and Kruger (1992) might be interpreted as a particular case where the estimate of 

the RAE could be downward biased because of the school leaving age. The authors find that pupils born at the 

beginning of the admission year attain less schooling than their younger peers, since they are legally allowed to 

leave school before to graduate. 
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children in their new age-group (Bedard & Duhey, 2006). In this case the estimate of the RAE 

might be downward biased.
5
 Moreover, as Bedard and Duhey (2006) suggest, in countries 

where pre-school institutes are not free, the possibility of redshirting, that is, enter primary 

school one year later, might affect the estimates of the RAE also via the socio-economic 

status. In countries as the US, high socio-economic status parents are more likely to afford 

one extra year of pre-school. In this case the estimate of the RAE might likely be even more 

downward biased. 

The goal of this study is threefold. First, this paper adds to the existing economic 

literature by investigating different aspects of the RAE on labor market outcomes, including 

the long-run RAE. The focus is on a particular group of high skilled workers: professional 

soccer players from the Italian major league, that is, Serie A. Second, this paper aims at 

providing a descriptive general framework to the RAE, bringing to the attention of the reader 

articles from different disciplines. The literature review in this article stresses the importance 

of different mechanisms and of different evidence on RAE sometimes neglected in economic 

studies. Third, this article proposes the use of the quantile regression to gain more insights on 

the long-run economic RAE. 

What is the reason for analyzing soccer players? The first reason for studying this 

particular group of workers is that season-of-birth effects seem to play a minor role in the 

soccer domain. There is evidence that seasonal effects have only an attenuate—if not null—

effect on the mechanisms leading to RAE in professional soccer. Munch and Hay (1999) 

explain that, at the end of the 80s, in the major soccer leagues of Germany, Brazil, Australia 

and Japan, soccer players born early in the admission year were consistently over-represented. 

This result is consistent with the RAE: throughout the years of sports activity more early-born 

                                                 
5
 In a similar manner the RAE in sport might be nullified. As documented in Parent-Harvey et al. (2013) and 

Böheim and Lackner (2012), when the selection of the athletes into professional competitions is based on a draft 

system, relatively young athletes might delay the entry into professional sport by one year to overcome 

developmental differences. 
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soccer players were considered more talented and thus reached the top leagues. This result is 

obtained despite a number of differences between these four countries: admission dates, 

reversed seasons, typical climate, biological characteristics, and socio-cultural factors. Also 

studies on the effect of a shift in the admission date provide results consistent with the RAE, 

ruling out alternative explanations. Munch and Hay (1999) show that a shift of the Australian 

admission date by a few months led to a corresponding reduction in the players’ birthrate for 

the early months under the previous admission date. Helsen et al. (2000) study the effect of a 

similar shift in the admission date occurred in Belgium, and find a corresponding adjustment. 

Seasonal effects may also hardly offer the explanation to performance gaps between players 

born in two adjacent months, where one month is before and one after the admission date 

(e.g., Barnsley & Thompson, 1988; Ponzo & Scoppa, 2014).  

A second reason is that the presence of age-groups with heterogeneous ages is limited 

in soccer. In Italy, which is the context of this analysis, the age-group system for soccer is 

very strict, so that the bias given by heterogeneous ages within age-groups should be less of 

an issue.
6
 Moreover, related to this point, the effect of the household socio-economic status 

via redshirting is avoided a priori, since redshirting is not possible; also, there are reasons to 

believe that it would not matter anyway. For what reason would someone assume that only 

households with high socio-economic status can afford to have their children starting to play 

soccer later? In conclusion, no particular identification strategy has to be adopted to address 

the bias caused by age-groups with heterogeneous ages.
7
 

A third reason to study the RAE in the soccer players’ labor market is the quality of 

the available data. As Kahn (2000) writes, within the sport field data are very detailed. For 

                                                 
6
 According to rules set by the Italian Football Federation (FIGC), only in the last juvenile category a team may 

deploy one overage player in regular matches, and only in this last category as well as in one intermediate 

category a team may deploy underage players. 
7
 For instance, because of the possibility to postpone or anticipate the entry into school, Bedard and Duhey 

(2006) as well as Ponzo and Scoppa (2014) adopt an instrumental variable estimation strategy, where they 

instrument the students’ actual age with the so called expected age, that is, the age children should have at the 

moment their performance is measured based on both their month of birth and the admission month used in the 

schooling system. 
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instance, data on employees’ performances and compensations are accessible, data on 

employees can be easily matched to those of their employers throughout the career and can be 

more accurate and detailed than usual microdata (Kahn, 2000).  

Based on the previous literature, the first hypothesis tested in this paper is the presence 

of RAE in terms of representativeness. In presence of RAE the observed amount of Italian 

players born at the beginning of the admission year should be larger than the expected 

amount, based on the birthrate of the general population; the contrary should be true for those 

players born at the end of the admission year.
8
 The RAE mechanism suggests that relatively 

old players are often perceived as talented in early ages, they are (more or less formally) 

streamed (Allen & Barnsley, 1993), and reach Serie A more frequently than relatively young 

peers.  

The results provide evidence for the existence of RAE in terms of representativeness 

in Serie A among Italian players. Moreover, an additional analysis suggests the presence of a 

specific trend explainable with the RAE: the over-representation decreases and turns into 

under-representation as the end of the admission year is approached. 

The RAE in terms of wage gaps is also analyzed. The RA framework suggests three 

different possible results. Traditionally, the RA suggests that on average relatively old players 

should perform better (Allen & Barnsley, 1993) and thus should receive larger wages, as they 

have had a relative advantage throughout the pre-labor market period. The opposite result is 

illustrated in Ashworth and Heyndels (2007), Gibbs et al. (2012), and Bryson et al. (2014). 

Positive selection and peer effects could positively affect relatively young players’ 

performances and lead to higher wages. The best relatively young children manage to 

overcome the difficulties and eventually benefit from learning and training with stronger 

                                                 
8
 Moreover, in presence of RAE, players born in January would be over-represented in the sample, players born 

in March would still be over-represented but to a lower extent, players born in October would be under-

represented, players born in December would be the most under-represented. This would be true even when 

trends in the general population birthrate are accounted for. 
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peers.
9
 Differently, recent studies suggest that the performance gap disappears in the labor 

market, as the discriminatory streaming criteria which affect per-labor market achievements 

cease to be relevant (Crawford et al., 2013). To the best of my knowledge only three other 

studies investigate RAE on wages for high skilled workers: Kniffin and Hanks (2013) for PhD 

students, Böheim and Lackner (2012) for American football players, along with Ashworth 

and Heyndels (2007) for German soccer players. 

The main set of results provide statistically significant evidence that relatively young 

players earn lower wages, supporting the theory according to which the RAE negatively 

affects the performances also in the long-run (Allen & Barnsley, 1993). Additional analyses 

suggest that this wage gap might be the largest at the entry of the labor market, while in the 

remainder of the career the wage gap is smaller and tends to increase toward the end of the 

career. This particular development of the wage gap could be due to players’ career choices. 

As a further contribution to the economic literature, this paper analyzes whether the RAE on 

wages differs by wage quantile. To the best of my knowledge, none of the existing studies 

analyzes the wage gap with a quantile regression. This analysis is important when 

investigating a labor market characterized by a strongly positively skewed wage distribution 

and when the researchers hypothesize the existence of peer effects or positive selection. The 

results point to the possibility that the wage gap could increase in the quantile of the wage 

distribution; in turn, this result could imply the absence of positive peer effects and selection 

for relatively young players. 

The remainder of the paper proceeds as follows. Section II presents a summary of the 

literature review on RAE in education and sport; Section III discusses the data and presents 

descriptive statistics; Section IV present the empirical methodology; Section V illustrate the 

results; Section V concludes. 

                                                 
9
 In alternative, Williams (2010) hypothesizes that in the long-run relatively young players might outperform 

their relatively older peers, because relatively young athletes have a complete training, while their relatively 

older peers put less emphasis on skills development, as they are primarily selected upon their physical attributes. 
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2 The Relative Age Effect: Mechanisms and Evidence 

 Mechanisms 2.1

RAEs in education and sport contexts appear to be similar in their mechanisms and 

consequences on people achievements. The similarities between these two contexts are 

emphasized when a competitive streaming process takes place.  

In education, RAE is initially caused by differences in children’s cognitive 

development. These differences trigger misjudgments on pupils’ talent and, eventually, more 

or less flexible streaming (Bedard & Dhuey, 2006). In case of formal streaming, some 

children are assigned to vocational schools and others to academic schools, or they are 

divided between ability-based reading groups (Bedard & Dhuey, 2006). When there is no 

formal streaming, social interactions between children, parents, and educators play a 

prominent role (Hancock et al., 2013), since stronger students are encouraged to progress 

while weaker students are allowed to lag behind (Bedard & Dhuey, 2006). An example of 

social interaction effect is the Pygmalion effect, which predicts that teachers’, trainers’, and 

parents’ expectations on children’s ability trigger self-fulfilling prophecies (Musch & 

Grondin, 2001; Hancock et al., 2013). Another example is the Galatea effect, which predicts 

that children’s expectations on themselves trigger self-fulfilling prophecies (Hancock et al., 

2013). 

RAE in sport differs from that in education with respect to at least three aspects. First, 

RAE in sport is caused by initial differences in children’s cognitive and physical development 

(Allen & Barnsley, 1993), conveying an additional edge to relatively old children. Second, 

competition might be tougher from the early stages of youth sports. The competition level is 

determined by a number of factors, such as the amount of teams within a county, the amount 

of available spots per team, and the amount of children who eventually can compete regularly 

(Allen & Barnsley, 1993; Musch & Grondin, 2001). Let’s consider the general case in soccer, 
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where the amount of teams per county and the amounts of available spots per team are not 

binding, and kids enter a team simply by buying a subscription. Only a limited amount of 

children per team eventually gets to play often in regular matches; the children in the starting 

team plus the substitutes, who actually enter the pitch, will cumulate experience and skills 

more rapidly. Since relatively old children are more mature, they perform better, and improve 

more rapidly. In case the amount of teams and the amount of available spots per team were 

binding, competition might be fiercer, and teams could select children based on their 

perceived talent, increasing the effect of competition; for instance, in national youth summer 

camps (Glamser & Vincent, 2004), or youth national teams (Williams, 2010).
10

 Third, in sport 

children may drop out (Barnsley & Thompson, 1988; Helsen et al., 1998).
11

 While school is 

compulsory in early ages and it is possible to drop out only during late years of high school or 

during university, sport is based on voluntary participation (Musch & Hay, 1999; Musch & 

Grondin, 2001). 

 

 

 

 

 

 

 

                                                 
10

 To the best of my knowledge, only one study investigates the RAE in soccer academies (Carling et. al, 2009). 

The authors find that the relative age effect might not always determine significant performance gaps. This study 

analyzes only physical components of young players’ performances, however. 
11

 It does not mean that children drop sport activities in general; they could simply change sport, opting for one 

in which the admission date either has lower or no importance (Williams, 2010), or provides them with a 

positive RAE (Thompson et al., 1999) contributing to the RAE in that sport. 
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Overall, the RAE mechanism found in education and sport might be summarized by 

Figure 1.
12

 

 

Figure 1 

 

In t=0 we have a given admission date and a given birthdate, they cause the RA in t=1. The 

RA in t=1 creates the initial RAE in t=2, then there is a (more or less formal) streaming 

process which is affected by competition, and generates the final RAE. After the final RAE is 

created, the cycle begins all over again with a new initial RAE. In all periods from t=2 on, the 

initial RAE, the streaming process, the final RAE and competition affect, and are affected by, 

social interactions. Note that initial RAE and final RAE might differ because of the social 

interactions, even in absence of formal streaming process and competition. 

                                                 
12

 This is an original flowchart which I have produced based on the theories illustrated by articles from different 

disciplines. 
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The mechanism which leads professional athletes into the labor market is similar to 

the mechanism which leads high skilled workers into the labor market. Although initially they 

differ somewhat, in the last stages they share a number of characteristics: in both education 

and sports there is more or less formal streaming, the participation to the training / education 

is based on voluntary participation (e.g., in the last stages of secondary education and in the 

whole tertiary education) and there is high competition (e.g., in education there is competition 

for scholarships and for spots in programs with limited amount of seats). 

 Evidence from Previous Literature 2.2

The short-run evidence on RAE from education and sports reconciles. In education, for 

example, late-born children are more likely to be retained for an additional year in the same 

grade or to be assigned to remedial classes (Dixon, Horton, & Weir, 2011); they are more 

likely to be diagnosed with learning disability (Dhuey & Lipscomb, 2009); they are also more 

likely to be diagnosed with attention-deficit/hyperactivity disorder and be prescribed ad hoc 

stimulants (Zoëga et al., 2012); they are characterized by lower performances (Plug, 2001; 

Bedard & Dhuey, 2006; Ponzo & Scoppa, 2014),
13

 and they have a lower school attendance 

rate (Cobley et al., 2009). The sport context differs in terms of the type of evidence provided 

for the existence of the RAE. While in education RAE is prevalently measured in terms of 

actual performances, in sport it is measured in terms of representativeness. In fact, because of 

the tougher competition and the possibility to drop out, in each age-group early born athletes 

are over-represented and late born athletes are under-represented with respect to the general 

population. This result is similar to that from the education context: since the best performers 

keep on practicing sport (e.g., they do not drop out or are selected into higher tiers) and a 

                                                 
13

 Two articles find opposite results. Fredriksson and Öckert (2005) find that absolute age when starting school, 

in lieu of relative age, is responsible for different school performances. Cascio and Schanzenbach (2007) find the 

positive peer effects benefit relatively young pupils. 
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larger percentage of these performers is born early in the admission year, it follows that 

relatively old children should on average outperform relatively young children. 

 Conclusions on the long-run RAE are ambiguous in both education and sports. In 

university, the RAE might turn in favor of relatively young students in terms of academic 

performances, although at the cost of lower social skills (Pellizzari & Billari, 2012).
14

 

Differently, relatively young students seem to earn the Ph.D. at the same age of relatively old 

students and seem to earn the same salary in postdoc positions (Kniffin & Hanks, 2013). On 

the general labor market, some other studies provide evidence for null RAE in terms of 

wages. Perhaps, different performances reflect only chronological age differences (Larsen & 

Solli, 2012), so that overall there is a null RAE on life earnings. There might even be no wage 

gap at all, if employers reward employees’ productivity irrespectively of their educational 

achievements, biased in favor of relatively old students (Crawford et al., 2013). Du et al. 

(2012) find instead a negative RAE, in terms of representativeness in the labor market; they 

study a sample with the CEOs from the 500 S&P firms, and find that relatively old CEOs are 

over-represented. Muller-Daumann and Page (2014) find an equivalent result among US 

congressmen. Finally, Black et al. (2011) and Plug (2001) find a wage gap in favor of 

relatively old workers. In sport, Ashworth and Heyndels (2007) find reverse RAE in terms of 

wages, with relatively young athletes receiving higher wages, and RAE in terms of 

representativeness, with relatively old athletes being over-represented. Also reverse RAE in 

terms of representativeness among the very best hockey and soccer players has been found,
15

 

with relatively young players being over-represented (Gibbs et al., 2011; Bryson et al. 2014). 

Whereas usually, over-representation of relatively old players is found among other 

professional athletes; for example, in soccer (e.g., Musch & Hay, 1999) and in tennis (Edgar 

                                                 
14

 Examples of lower social skills are leadership skills (Dhuey & Lipscomb, 2008), self-esteem (Thompson et al., 

2004), and poorer social lives (Pellizzari & Billari, 2012). 
15

 Players selected for the all-stars and for Olympic team rosters in hockey, and teams captains in soccer. 
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& O’Donoghue, 2005), in both summer and winter Olympic games (Joyner, et al., 2013), and 

in NFL (Böheim & Lackner, 2012). 

Concluding, on one hand, the literature shows that in both contexts the short-run 

RAEs on children’s achievements are qualitatively similar. This comes as no surprise since 

the RAE is generated through similar mechanisms in sports and education. On the other hand, 

the evidence on long-run RAE is mixed in both contexts. 

3 Institutional Context and Data 

The empirical setting of our analysis is the Italian soccer major league, called Serie A. It is 

currently composed by 20 teams, but these teams do not permanently play in the major 

league; the Italian soccer has a tiered structure, with promotions and relegations at the end of 

each season. The last three teams in the ranking are relegated to the second national division, 

that is, Serie B, which is composed by 22 teams; the top three teams from this second league 

are promoted to Serie A. 

In Italy, the age-group system for soccer is strictly regulated. The 1
st
 of January is the 

relevant admission date applied to each age-group, although specific age-groups have slightly 

different rules. There are seven age-groups in youth competitions; some of them are one-year 

age-groups, while others are two-year age-groups. In the latter case, children with different 

ages might play in separate games, despite training together, if the rules specify so. In general, 

children have to train and play in the assigned age-group.
16

 The minimum age requirement to 

                                                 
16

 The lowest age category is for children from 5 to 7 years; they are put in the same age-group, called “Piccoli 

Amici” (i.e., Small Friends), for both training and competing. In the next two categories, children of different 

ages are still grouped together for training, but they are divided based on year of birth for competing. These 

categories are “Pulcini” (i.e., Chicks), for children under 11 years of age, and “Esordienti” (i.e., Newcomers), for 

children under 13 years of age. Up to three underage players may play in “Esordienti” matches. In the next 

categories, teenagers with different ages are put together for both training and competing. These categories are 

“Giovanissimi” (i.e., Very Young), for players under 15 years of age; “Allievi” (i.e., Cadets), for players under 

17 years of age; and finally “Primavera” (i.e., Spring), for players between 15 and 20 years of age. In all these 

categories excluded the last one, no overage is allowed; in “Primavera” only one overage player per team may 

participate to the matches. The rules do not seem to set restrictions on whether children are free to train in an 

age-group different from the one to which they are assigned, and eventually to play official games in their 

assigned age-group. More information on the Italian players age-grouping system can be found on the official 

web-site of the Italian Football Game Federation (FIGC). 
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play for a professional soccer team is 14 (art. 33, Internal Organization Rules FIGC);
17

 

however, it is possible to sign a contract with a team in a professional league only from 16 

years of age (art. 33, Internal Organization Rules FIGC). 

The dataset contains information on players from seven Serie A seasons, 2007-08 to 

2013-14. There are observations on 508 Italian soccer players, who played for at least one 

Serie A team over the seven seasons in analysis.
18

 In total, the unbalanced panel data contains 

1,704 Italian soccer-season observations. Most soccer players appear in our dataset for one or 

two seasons, 139 and 100 players respectively; 56 and 48 players are present for 3 and 4 

seasons respectively; 53 and 45 players are present for 5 and 6 seasons respectively; 45 

players are present in all the 7 seasons. Players may leave the dataset either permanently or 

temporarily: some players play in teams which are eventually relegated and may or may not 

be re-promoted to Serie A or sold / lent to a Serie A team; some players may be sold / lent to 

foreign teams, or to teams in lower leagues, and may or may not be transferred back to Serie 

A teams; some players may retire.
19

 

The empirical analyses use information on players’ wage, age, quarter and month of 

birth, current team, soccer season and role on the pitch. Variables description and descriptive 

statistics are presented in the Appendix A, respectively in Table A.1 and Table A.2. 

Figure 2 illustrates the histogram for Italian players’ birthrate per quarter.
20

 The 

division of the admission year into quartiles is a convention adopted within the relative age 

research (Wattie at al., 2015). The black rhombuses represent the average birthrate per quarter 

                                                 
17

 Norme Organizzative Interne Della FIGC. 
18

 The focus is on Italian players so to analyze a set of players who have trained under the same admission date. 

Moreover, the research of admission dates from other countries is a complex task: admission dates might differ 

between countries and within countries in different youth categories and different regions or states. 
19

 The impact of all these players’ movements on the estimates of RAE is not clear. Good Serie A players might 

move abroad attracted by better contractual conditions and / or greater visibility. However, this is true also for 

worse performers who may just want to play more often. This point is noted also by Ashworth and Heyndels 

(2007) who suggest that the amount of foreign players in the domestic league might affect the estimate of RAE, 

through increased competition. 
20

 Where 1 is the quarter January-March, 2 is the quarter April-June, 3 is the quarter July-September, and 4 is the 

quarter October-December. 



Hewlett-Packard Company 16 

 

in the Italian population, between 1993 and 1998; Italians’ birthrates for previous years are 

unavailable. Appendix B reports the amount of births per month, per year, in the general 

population. This figure suggests the presence of RAE in terms of representativeness, that is, 

the relatively young players born toward the end of the admission year are under-represented, 

while relatively old players are over-represented. Moreover, there seems to be a specific 

trend: Serie A players’ birthrate decreases with the distance from the admission date. 

 

Figure 2 

 

Figure 3 illustrates the players’ wage distribution.
21

 They are measured before taxation—

without either bonuses, image rights or other deals—and they are deflated at the 2013 price 

level, the annual coefficients are provided by Italian National Institute for Statistics (ISTAT). 

 

                                                 
21

 The information on wages is obtained from annual reports completed by the Italian sport dedicated 

newspapers. 
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Figure 3 

 

 

The original distribution of the gross wages is highly unequal, with a substantial positive 

skewedness, as it is expected in labor markets characterized by the presence of superstars 

(Lucifora & Simmons, 2003).
22

 The transformation of gross wages into natural logarithm 

returns a somewhat fairly normal distribution. 

First insights on possible wage gaps can be obtained comparing the distribution of the 

gross wages for relatively old and young players. Figure 4 compares the kernel density 

distributions of the gross wages for Italian players, divided by quarter of birth. Since players 

                                                 
22

 Superstar is the term used to refer to extreme wage outliers (e.g., Bryson, Rossi & Simmons, 2014; Kleven et 

al., 2013; Lucifora & Simmons, 2003; Adler, 1985; Rosen, 1981). These outliers are such that in a labor market 

there appears to be a convex relationship between wage and skills (Lucifora & Simmons, 2003). The main 

competing, yet not mutually exclusive, superstar theories are two: Rosen (1981) suggests that superstars enjoy 

huge salaries because of scarcity of talent, so that little additional talent translates into large additional earnings, 

whereas Adler (1985) suggests that huge salaries are caused by positive network externalities, which creates 

additional popularity, even in absence of talent. 
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can change team during the season, they are assigned the gross wage they receive from the 

team with which they start the season.
23

 

 

Figure 4 

 

Figure 4 shows that the wage distribution of players born in the last quarter of the year 

(yellow line, Q4) has a longer and thicker left tail than the distributions for players born in 

other quarters. This suggests there might be a wage gap penalizing players born in the last 

quarter. Somehow puzzling, players born in the third quarter (green line, Q3) tend to earn 

more frequently wages in the top percentiles of the wage distribution. 

                                                 
23

 Teams trade players in two main market sessions: in summer, which separates different soccer seasons, and 

during the Christmas break and January, which is toward the end of the first half of the season. Players who 

change team during the latter session and come from another Serie A team are assigned the gross wage they 

received from the team with which they started the season. Players who join a Serie A team during the Christmas 

break and come either from abroad or from Serie B—or other lower domestic leagues—are assigned the new 

wage. 
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Additional insights on the nature of the wage gap might be gained with the 

investigation of its dynamics through players’ career. With this purpose, Figure 5 plots the 

average natural logarithm of the gross wages against age for the four groups of players. 

 

Figure 5 

 

For players born in the last quarter of the year (yellow line, Q4), there is an important entry 

wage gap which disappears in the early twenties; afterwards, a wage gap appears anew and 

disappears only toward the end of the career. The entry wage gap is smaller for players born 

in the third quarter (green line Q3);
24

 these players also seem to enjoy higher wages in the 

core of the career and toward its end. Around 40 years of age a gap in favor of players born in 

the first quarter (red line, Q1) appears. The indications provided by this figure should be 

                                                 
24

 The entry wage gap might be explained with a physical development gap, which disappear at 20 years of age 

(see the WHO grow charts for children from 5 to 19 years of age, in the WHO web-site, and US grow charts, in 

Kuczmarski et al, 2002), while the cognitive development gap disappear between 20 and 25 years of age 

(Salthouse at al., 2004). 
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considered carefully. This graph illustrates averages and there is a low amount of observations 

for extreme ages,
25

 so outliers may drive the results; this is particularly important because of 

the presence of superstars. 

In conclusion, the visual inspection of the data suggests that players born early in the 

admission year are over-represented and that the players’ birthrate by quarter decreases with 

the distance from the admission date. The visual inspection also suggests that players born in 

the last quarter of the admission year receive a lower entry wage than players born in other 

quarters; they earn lower wages also throughout the career.  

4 Methods and Results 

 RAE in Terms of Representativeness 4.1

In presence of RAE in terms of representativeness, the observed distribution of the quarter of 

birthrate should differ from the expected distribution. Players born at the beginning of the 

admission year should be over-represented, while players born at the end of the admission 

year should be under-represented. Moreover, there should be a specific birthrate trend: the 

birthrate should decrease with the distance from the admission date. 

A chi-square goodness-of-fit test is used to compare the difference between observed 

and expected amount of players across quarters of birth (e.g., Sims & Addona, 2014; Helsen 

et al., 2012). The observations from the seven seasons are pooled. The expected amount of 

players is based on the average quarter of birthrate, in Italy, between 1993 and 1998; data on 

previous years are unavailable. The uniform birthrate distribution is not assumed, because of 

the seasonality of birth for the general Italian population (e.g., Rizzi & Dalla Zuanna, 2007; 

Prioux, 1988). Table 1 shows the results from this analysis. 

 

 

                                                 
25

 There are 27 players -season observations at 18 years of age, or less, and 33 players -season observations at 37 

years of age, or more. 
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Table 1. Chi-squared goodness-of-fit by quarter of birth. 

 

Quarter 

Observed 

counts 

Expected 

counts 

Difference 

    

Q1 (January-March) 508 406 102 

Q2 (April-June) 534 434 100 

Q3 (July-September) 389 450 -61 

Q4 (October-December) 273 414 -141 

χ
2
(3) 7.81 

 

 

hfh 

(cccc 

P-value 0.000 

Note: “Expected counts” is the expected amount of players born in each 

quarter. “Actual counts” is the observed amount of players born per month. 

“Difference” provides the differences between observed and expected counts, 

which are used to compute the chi-squared statistics. 

 

The table confirms the insights provided by the descriptive statistics: Serie A is characterized 

by the presence of RAE in terms of representativeness. The distribution of the observed 

quarters of birthrate for Serie A Italian players is statistically significantly different from its 

expected distribution. This result is in line with other studies which analyze the RAE in Serie 

A (e.g., Salinero, Pérez, Burillo & Lesma, 2013; Helsen et al., 2012). 

Furthermore, the column “Difference” suggests the existence of a specific trend in the 

players’ quarters of birthrate. In fact, in presence of RAE players born at the beginning of the 

admission year are over-represented, the extent of this over-representation reduces with the 

distance from the admission month, and then turns into under-representation which increases 

moving toward the end of the admission year. The formal analysis on the existence of this 

specific birthrate trend is implemented with the Spearman-rank correlation coefficient (for a 

similar application of this test, see Musch & Hay, 1999, and Ashworth & Heyndels, 2007). 

This Spearman-rank correlation coefficient is computed between two measurement 

variables converted to ranks (McDonald, 2014). One variable is the months 

representativeness in Serie A and it is based on the differences between the expected amount 

of players, based on the Italian population month of birthrate, and the observed amount of 
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players in each month. When the difference between the expected and the observed amount of 

observations is negative, the players born in that month are over-represented; vice-versa, a 

positive difference signals under-representation. The first place in the ranking is assigned to 

the most under-represented month, while the last place is assigned to the most over-

represented month. The measurement variable represents the admission date distance, which 

is based on the distance of the month from the admission date (i.e., January has the first 

position in the ranking, whereas December has the last position) and measures the RA. 

If the Spearman rank-correlation coefficient was computed simply between the 

ranking based on the observed counts—in lieu of the differences between the expected and 

observed amount of players—and the admission date distance, the possible presence of trends 

in the months birthrate for the underlying general population would not be taken into account. 

If already in the general population the month birthrate was to increase in the distance from 

the admission date, the results could provide artifactual evidence of RAE. 

How to interpret the output of the Spearman-rank correlation coefficient test? On one 

hand, if the estimate of the correlation was negative and statistically significant, there would 

be evidence of the specific trend characterizing the RAE, that is, players born in early months 

are over-represented and, with the increase in the distance of the month of birth from the 

admission date, the over-representation reduces and eventually players born toward the end of 

the year would be under-represented. On the other hand, if the correlation was positive and 

statistically significant, the trend would have opposite direction and there would be evidence 

of reverse RAE. In this case, we would observe under-representation in early months, the 

months birthrate would tend to increase with the distance from the admission date, such that 

players born toward the end of the year would be over-represented. Based on the RAE 

mechanism previously discussed, we expect to find a negative correlation between months 
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order and admission date distance. The H0 of the Spearman-rank correlation coefficient test is 

that the correlation between the two rankings is zero.
26

 

 

Table 2. Correlation between months representativeness and admission date distance. 

 Months representativeness Admission date 

distance 

Month Expected 

counts 

Actual 

counts 

Difference Ranking  

(1) 

Ranking  

(2) 

      

January 138,8 234 -95,17 12 1 

February 126,4 120 6,41 7 2 

March 140,2 154 -13,81 9 3 

April 138,1 139 -0,92 8 4 

May 149,2 206 -56,81 11 5 

June 145,9 189 -43,07 10 6 

July 154,6 138 16,60 5 7 

August 146,5 136 10,52 6 8 

September 149,0 115 34,01 3 9 

October 144,8 111 33,80 4 10 

November 132,6 89 43,59 2 11 

December 136,9 73 63,87 1 12 

      

Spearman -0.860 

 (0.000) 

Note: The shaded areas include the figures of interest. “Expected counts” is the 

expected amount of players born in each month, based on the Italian average monthly 

birthrate from 1993 to 1998. “Actual counts” is the observed amount of players born 

per month. “Difference” provides the differences between observed and expected 

counts. “Ranking (1)” is the month ranking based on the differences between expected 

and actual counts: the first place is assigned to the most under-represented month, i.e., 

the month with the largest positive difference; the last place is assigned to the most 

over-represented month, i.e., the month with the largest negative difference. “Ranking 

(2)” is the distance of the month of birth from the admission date; this ranking is 

directly established by the “Admission date distance;” for example, January, February 

and March receive ranks 1, 2, 3. “Spearman” is the estimate of the Spearman-rank 

correlation coefficient; the corresponding P-value is in parenthesis.   

 

Table 2 presents a highly statistically significant and negative correlation between months 

representativeness and admission date distance, providing evidence for a downward trend in 

the soccer players’ birthrate. This result reinforces the evidence of RAE in terms of 

representativeness. 

                                                 
26

 The usage of the two-tailed test is motivated by the possibility to have a reverse RAE as well. 
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 RAE in Terms of Wages 4.2

The sign of the RAE in terms of wage gaps might differ from the sign of the RAE in terms of 

representativeness. It is possible to have RAE in terms of representativeness, yet reverse RAE 

in terms of wages. Relatively young players enjoy higher, equal or lower wages depending on 

several characteristics of the streaming process. As discussed in the introduction, relatively 

young players might have been exposed to positive peer effects or might have been positively 

selected (e.g., Ashworth & Heyndels, 2007; Gibbs et al., 2012; Bryson et al., 2014), which 

eventually benefits them in terms of wages. Differently, it is possible that the path dependence 

might have increased original differences in performances (Allen & Barnsley, 1993), which 

eventually disadvantage them in terms of wages. Finally, discriminatory criteria which cause 

original differences in achievements might cease to be relevant in the labor market (Crawford 

et al., 2013), in this case there could be an equalization of the wages. The analysis in this 

section focuses on the empirical sign of RAE in terms of wages. 

The descriptive statistics suggest that players born in the last quarter receive gross 

wages in the bottom percentiles of the wage distribution more frequently than players born in 

other quarters. However, other characteristics which determine the wage are not controlled 

for, so it is not possible to gain clear insights.  

The empirical investigation of wage gaps proceeds with a standard methodology used 

in economics of sports: the pooled OLS regression.
27

 The model is the following. 

 

𝐿𝑛(𝑤𝑖) =  𝛽0  +  𝛽1𝑎𝑔𝑒𝑖  +  𝛽2𝑎𝑔𝑒𝑖
2 +  𝜷𝑹𝑨𝒊 +  𝜀𝑖 

 

The natural logarithm of the deflated gross wage for player i is the outcome variable. The set 

of control variables includes 𝑎𝑔𝑒𝑖 and 𝑎𝑔𝑒𝑖
2, both of them refer to player i’s age; age is 

                                                 
27

 See for instance Bryson et al. (2014) as well as Frank and Nüesch (2012). 
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computed in years, instead of in months as in Ponzo and Scoppa (2014), since there is no 

information on the date of signing the contract. This variable is rescaled; it ranges from 0 to 

26—since in our dataset the minimum registered age for Italian players is 17 whereas the 

maximum is 43—so that the estimate of the constant is directly interpretable. The variable for 

squared age captures the decreasing return to age. 𝑹𝑨𝒊 is a vector of dummy variables for 

quarter of birth, where the first quarter of the admission year (i.e., January to March) is the 

reference quarter. Their estimated coefficients represent the estimates of RAE for different 

quarters, and reflect differences in both sheer maturity and productivity. The RAE is unbiased 

if two assumptions hold true: i) date of birth is unrelated to innate ability, this assumption is 

also called “nonastrology assumption” (Allen & Barnsley, 1993, p. 654); ii) season-of-birth is 

unrelated to players’ performance, which also implies the absence of a relationship between 

household socio-economic status and birthdate.
28

 Finally, someone may argue that the 

estimates capture the combined RAE from sports and school, since soccer and school 

admission years overlap; however, previous literature suggests that education achievements 

do not affect returns from playing soccer at professional level (Barros, 2001). 

As Ashworth and Heyndels (2007) explain, the inclusion of other variables normally 

used in economics of sports—for instance measures of players’ performance—would cause 

multicollinearity. For the same reason, controls for players’ experience are not included. 

There is no problem of collinearity with age,
29

 but there might be collinearity with the RA 

                                                 
28

 The existence of the correlation between date of birth and socio-economic status seems to differ by country. 

For instance, some studies suggest the presence of such a correlation in the US (Bound & Jaeger, 2001; Cascio 

& Lewis, 2005; Buckels & Hungerman, 2013), in Sweden (Carlsson et al., forthcoming), and in Austria 

(Doblhammer & Vaupel, 2001). However, a recent study suggests that in Norway there is no such correlation 

(Black et al., 2011). Moreover, for Italy, this correlation is not systematically analyzed, but a previous study on 

RAE on school performances suggests that it is non-existent (Ponzo & Scoppa, 2014). Bound and Jaeger (2001) 

mention the presence of additional season-of-birth effects on health, e.g., mental health, but it can be ignored as 

it involves only a small number of individuals in the whole population (Plug, 2001). 
29

 In European sports athletes may enter professional competitions at different ages. Therefore, the usage of both 

age and experience does not create multicollinearity. Differently, in studies on US sports, the introduction of 

both variables would create multicollinearity, as the drafting system is such that athletes enter professional 

leagues at a somewhat uniform age (Lucifora & Simmons, 2003). 
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variable: in presence of RAE, relatively old players also benefit from more played time, 

which increases their experience more rapidly.
30

 

As a robustness check, the analyses are re-run adding variables for specific effects on 

wage heterogeneity. There is one vector for teams and one for season fixed-effects.
31

 The 

favorite model is that including all the fixed-effects. 

As additional robustness check, the analyses are re-run on a discontinuity sample (e.g., 

Ponzo & Scoppa, 2014; Black et al. 2011). This strategy consists in focusing on the narrower 

sample of footballers born either in January or in December; these are two adjacent months, 

one is after the admission date (1
st
 of January), whereas the other comes right before it. As 

suggested in Barnsley and Thompson (1988), in the analysis of a discontinuity sample season-

of-birth effects should be eliminated, since the two months are in the same season. All the 

fixed-effects are included in this analysis. 

Since repeated observations on individual players are not likely to be independent, 

standard errors are clustered on footballers in all the analyses. 

Although all the estimates are reported, the focus of the analyses is on the comparison 

between footballers born in the fourth and first quarters, or in December and January. 

The estimates, also for the robustness check, are reported in Table 3.  

 

 

 

 

 

 

                                                 
30

 Ashworth and Heyndels (2007) do not find such a correlation, so they introduce also experience in the model.  
31

 This paper cannot investigate the effect of the increased competition from foreign players, as the amount of 

foreign players augments constantly throughout the seven seasons in exam; hence, seasons fixed-effects would 

be perfectly collinear with this measure of competition. 
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Table 3. Wage gap between relatively old and young players.  

Variables (1) (2) (3) (4) 

     

Age 0.227*** 0.225*** 0.224*** 0.270** 

 (0.039) (0.039) (0.028) (0.105) 

Age
2
 -0.008*** -0.008*** -0.008*** -0.010** 

 (0.002) (0.002) (0.001) (0.004) 

Q2 (April-June) -0.062 -0.061 -0.053 - 

 (0.093) (0.093) (0.055)  

Q3 (Jule-September) 0.181 0.179 0.045 - 

 (0.114) (0.114) (0.069)  

Q4 (October-December) -0.203* -0.207* -0.177** - 

 (0.114) (0.114) (0.0752)  

December - - - -0.369* 

    (0.186) 

Constant -1.284*** -1.215*** -1.366*** -1.841** 

 (0.225) (0.249) (0.215) (0.732) 

     

F-test, quarters of birth 

(p-value) 

0.022 

 

0.022 

 

0.033 

 

- 

 

     

Season F.E. N Y Y Y 

Team F.E. N N Y Y 

     

R-square 0.142 0.151 0.560 0.658 

Observations 1,598 1,598 1,598 282 

Note: Standard errors clustered on footballers are reported in parentheses. *** p<0.01, ** 

p<0.05, * p<0.1. Column (1) reports the results from the OLS without fixed-effects; column (2) 

reports the results from the OLS with season fixed-effects; column (3) reports the results from 

the OLS with players’ team and season fixed-effects. The sample size for the analyses in column 

(1)-(2)-(3) is smaller than 1,704 observations because of missing values on wage. Column (4) 

reports the results obtained with the discontinuity sample, i.e., only players born in January or 

December; also this analysis is conducted with OLS and includes players’ team and season 

fixed-effects. “F-test, quarters of birth” gives the p-value from the F-test on the joint significance 

of the quarters of birth estimates. 

 

This table provides evidence for RAE on wage gaps. The results displayed in column (3) 

provide statistically significant evidence that, ceteris paribus, a player born in the fourth 

quarter of the admission year receives a wage which is about 19% lower than that earned by 

footballers born in the first quarter.
32

 The p-value from the F-test on the joint significance of 

the estimates for the quarter of birth coefficients suggests that these three coefficients 

considered together are statistically significant. The estimates in column (4) are obtained from 

the analysis of the discontinuity sample; an even larger and statistically significant wage gap 

is obtained. 

                                                 
32

 The wage gap in percentage terms is computed as [exp(0.177)-1]*100= 19.3%. 
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These results are robust to two robustness checks. First, the results are confirmed after 

winsorization at 3% and 97%, see Appendix C, Table C.1. This analysis is conducted to 

verify whether the evidence of RAE on wages is led by wage outliers. Second, the results are 

confirmed also when players in their first season in the dataset and players who have changed 

team are dropped from the dataset. The reason for conducting this robustness check is the 

following: since the signing date of the contract is not known, it is not possible to differ 

between players whose first wage refers to the whole season or only to a few months (e.g., a 

player signs a contract for a new team in January and this first season wage could refer only to 

the period from January to the end of the season, which is May or June). 

5 Heterogeneity Analyses on Wage Gaps 

In this section heterogeneity analyses on the RAE in terms of wage gaps are implemented. 

The wage gap might differ across ages, as the sheer maturity differential decreases
33

 and 

additional selection of the players occurs throughout the career.
34

 Additionally, the wage gap 

might differ across quantiles of the wage distribution; the differences might be particularly 

important in light of the positive skewedness of the wage distribution. While the main 

analysis conducted with OLS focuses on the sign of the RAE in terms of wages, these 

additional analyses might provide additional insights. 

Does the wage gap change over the footballers’ career? Figure 5 suggests that the 

answer might be positive. To formally investigate this research question, the analyses are re-

run for different categories of age: footballers younger than 21 (players who can still compete 

in the last youth category, “Primavera,” and might present physical development 

differentials), footballers between 21 and 25 (players for whom complete cognitive maturity 

is still to be reached), between 26 and 30 (career core), and older than 30 (retirement period).
 

                                                 
33

 The introduction mentions that there might still be a maturity differential due to RA up until mid-twenties. 
34

 Some players can leave (permanently or temporarily) Serie A during their career for different reasons; other 

players can start their career in Serie A when they are older. This might change the wage gap at different ages; 

the direction of this change depends on the performance of the players who leave or join Serie A. 
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This approach by category of age to study the evolution of RAE is used also in Black et al. 

(2011).
35

 For brevity, only the estimates obtained with season and players’ team fixed-effects 

are reported in Table 4. 

 

Table 4. Wage gap between relatively old and young players, by age group. 

 < 21 21-25 26-30 > 30 

Variables (1) (2) (3) (4) 

     

Age 0.825 0.181 0.206 0.330** 

 (0.665) (0.166) (0.232) (0.143) 

Age
2 

-0.049 -0.059 -0.007 -0.011*** 

 (0.183) (0.013) (0.010) (0.004) 

Q2 (April-June) -0.344 -0.092 -0.038 -0.099 

 (0.608) (0.084) (0.069) (0.089) 

Q3 (Jule-September) -0.866* -0.013 0.076 -0.092 

 (0.509) (0.107) (0.093) (0.114) 

Q4 (October-December) -1.129 -0.195* -0.240*** -0.134 

 (0.906) (0.108) (0.092) (0.110) 

Constant -3.517** -1.011** -1.357 -1.975 

 (1.402) (0.532) (1.249) (1.238) 

     

F-test, quarters of birth 

(p-value) 

0.291 

 

0.223 

 

0.018 

 

0.213 

 

     

Season F.E. Y Y Y Y 

Team F.E. Y Y Y Y 

     

R-square 0.841 0.491 0.550 0.635 

Observations 51 403 629 515 

Note: Standard errors clustered on players are reported in parentheses. *** p<0.01, ** 

p<0.05, * p<0.1. Column (1) reports the results from the OLS with players’ team and 

season fixed-effects for players younger than 21 years of age; column (2) reports the 

results from the OLS with players’ team and season fixed-effects for players between 21 

and 25 years of age; column (3) reports the results from the OLS with players’ team and 

season fixed-effects for players between 26 and 30 years of age. Column (4) reports the 

results from the OLS with players’ team and season fixed-effects for players older than 

30 years of age. “F-test, quarters of birth” gives the p-value from the F-test on the joint 

significance of the quarters of birth estimates. 

 

These results confirm the presence of RAE in terms of wage gaps and suggest wage gaps 

might evolve along players’ career. The estimates for players born in the second and third 

quarter confirm the results from the main analysis. The players born in these two quarters do 

not suffer from any statistically significant wage gap, at any age-group. The p-value from the 

F-test on the joint significance of the estimates for the quarter of birth coefficients suggests 

                                                 
35

 The difference with Black et al. (2011) is that they use single ages from 24 to 35, whereas here four age-

groups are used; the choice of multiple age categories is due to the sample size. 
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that these three coefficients considered together are statistically significant only in the age-

group between 26 and 30 (career core). These results are similar also after winsorization at 

3% and 97%, see Appendix C, Tables C.2.  

Although the dataset does not allow for further investigation of the wage gap 

dynamics through players’ career, it is possible to interpret these results based on the existing 

literature. Players born in the fourth quarter suffer from the largest wage gap under 21 years 

of age; this estimate is not statistically significant (there is a very limited amount of 

observations for this age-group). Once in the labor market, the performance gap between 

these new relatively young players and the older peers might be relevant. Therefore, between 

21 and 25 years of age, the worst performers among the relatively young players might decide 

to leave Serie A to gain experience in lower leagues or abroad, consequently the wage gap 

decreases sensibly; this gap is not statistically significant though. During this period away 

from Serie A, the part of the RAE due only to the sheer maturity differential is filled.
36

 When, 

between 26 and 30 years of age, these players re-enter Serie A,
37

 they are still worse 

performers than older peers on average: the sheer maturity gap is now filled, but tangible and 

intangible skills might still differ because of the RAE. Therefore, the wage gap increases 

again,
38

 even if it is now smaller compared to the entry wage gap they suffered at the 

beginning of their career. Finally, after 30 years of age, the wage gap might widen even more 

because the characteristics of the players who decide to retire might differ by quarter of birth. 

For example, if the best players among those who are born in the first quarter tend to retire 

late, while the best players from the fourth quarter retire early, the average performance gap 

diverges, even if on average these two groups of players retire at the same age.  

                                                 
36

 Note that the same occurs if the best players among the relatively old players leave Serie A to gain more 

experience. 
37

 Similarly, Parent-Harvey et al. (2013) and Böheim and Lackner (2012) suggest that relatively young athletes 

might delay the entry into professional sport to wait for the maturity gap to be filled. 
38

 The wage gap might increase also because the best relatively old players who left Serie A are now back. 
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Does the wage gap differ over different quantiles of the wage distribution? This 

question makes empirical sense: since the distribution of players’ wages is positively skewed 

and characterized by the presence of superstars, the normality assumption does not hold. 

Moreover, the analysis at the median, that is, the 50
th

 percentile of the wage distribution, is 

more robust to wage outliers—including superstars—than the OLS. The OLS estimates 

describe the relationship between the regressors and the conditional mean of the outcome 

variable, whereas the quantile regression describes the relationship between the regressors and 

the conditional quantile of the outcome variable; therefore, the quantile regression gives a 

more comprehensive picture of the relationship. Results from the quantile regression also help 

to understand whether there are positive peer effects for and selections of relatively young 

players; this point is illustrated below and is important to understand the RAE mechanism. To 

the best of my knowledge, this is the first time the quantile regression is used to analyze the 

RAE on wages. Analyses are implemented at the 25
th

, 50
th

, 75
th

 and 90
th

 percentiles of the 

wage distribution.
39

 For brevity, only the estimates obtained with season and players’ team 

fixed-effects are reported in Table 5. 

 

 

 

 

 

 

 

 

 

                                                 
39

 Since repeated observations on individual players are not likely to be independent, standard errors are 

clustered on players,. The employed method is that suggested in Parente and Silva (2013). 



Hewlett-Packard Company 32 

 

Table 4. Wage gap between relatively old and young players. 

Quantile regression at 25%, 50%, 75% and 90% of the wage distribution. 

 25% 50% 75% 90% 

Variables (1) (2) (3) (4) 

     

Age 0.258*** 0.193*** 0.163*** 0.132*** 

 (0.030) (0.032) (0.027) (0.036) 

Age
2
 -0.009*** -0.007*** -0.006*** -0.004*** 

 (0.001) (0.001) (0.001) (0.001) 

Q2 (April-June) -0.029 -0.030 -0.057 -0.172** 

 (0.055) (0.052) (0.078) (0.072) 

Q3 (Jule-September) 0.025 0.061 0.096 0.067 

 (0.066) (0.071) (0.103) (0.072) 

Q4 (October-December) -0.128 -0.097 -0.113 -0.158 

 (0.085) (0.063) (0.091) (0.109) 

Constant -2.055*** -1.222*** -0.355 1.096*** 

 (0.349) (0.227) (0.221) (0.242) 

     

F-test, quarters of birth 

(p-value) 

0.317 

 

0.172 

 

0.310 

 

0.000 

 

     

Season F.E. Y Y Y Y 

Team F.E. Y Y Y Y 

     

Pseudo R-square 0.537 0.544 0.538 0.505 

Observations 1,598 1,598 1,598 1,598 

Note: Standard errors clustered on players are reported in parentheses. *** p<0.01, ** p<0.05, 

* p<0.1. The samples for the analyses use less than 1,704 observations because of missing 

values on wage. Column (1) reports the results from the quantile regression at the 25
th
 

percentile of the wage distribution; column (2) reports the results from the quantile regression 

with players’ team and season fixed-effects at the 50
th

 percentile of the wage distribution; 

column (3) reports the results from the quantile regression with players’ team and season fixed-

effects at the 75
th

 percentile of the wage distribution; column (4) reports the results from the 

quantile regression with players’ team and season fixed-effects at the 90
th

 percentile of the 

wage distribution. The sample size for the analyses in column (1)-(2)-(3) is smaller than 1,704 

observations because of missing values on wage. “F-test, quarters of birth” gives the p-value 

from the F-test on the joint significance of the quarters of birth estimates. 

 

Two important aspects of Table 5 deserve some attention. On one hand, the analysis at the 

median, column (3), reports quite a lower wage gap than that obtained with the OLS for 

players born in the fourth quarter.
40

 On the other hand, the wage gap seems to increase in the 

quantile of the wage distribution. If these results were to be taken seriously, there would be 

two implications. First, there might not be positive peer effects and selection for relatively 

young Serie A players; otherwise a reduction of the wage gap, or even its reversal, would 

have been observed in top quantiles of the wage distribution rather than its increase.
41

 Second, 

                                                 
40

 Interpretation of the estimated coefficients is similar to that for OLS estimates (Hao & Naiman, 2007). 
41

 Gibbs et al. (2011) show that the RAE in terms of representativeness could reverse among the very best 

players; therefore, also a reversal of the RAE in terms of wages among the very best players is plausible. 
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the RAE on wages seems to be driven by the effect on wages in the top quantiles of the 

distribution; this tendency is not captured by the analysis with winsorized wages (see Table 

C.1), which is a methodology frequently adopted for robustness checks. 

It is worth mentioning that the RAE might differ also based on players’ roles. The 

different effects might depend on at least three factors: i) the innate ability might be more 

important and compensate to some extent differences in maturity at an early age for some 

roles, for instance, for forwards and their “tor-instinct” (Ashworth & Heyndels, 2007, p. 368), 

ii) the identification of role-specific skills might be easier for some roles, for instance, for 

forwards (Ashworth & Heyndels, 2007), iii) the importance of physical characteristics is 

greater for goalkeepers and defenders (Salinero et al., 2013). Since the reasons that lead to 

possible differences in RAE by players’ role are peculiar to sports disciplines, the results are 

reported and commented more extensively in Appendix D. In summary, the RAE seems to be 

larger for goalkeepers and midfielders, while it seems to be non-existent for forwards. 

6 Discussion and Conclusions 

Chronological differences between individuals within the same age-group, that is, relative age 

(RA), determine maturity gaps during childhood, both in school and in sport contexts. These 

differences translate into a performance gap (e.g., Musch & Hay, 1999; Musch & Grondin, 

2001; Bedard & Dhuey, 2006; Dhuey & Lipscomb, 2009), that is, relative age effect (RAE), 

which should disappear over time. However, because of streaming, competition and social 

interactions, the performance gap might extend to the long-run (e.g., Allen & Barnsley, 1993; 

Bedard & Dhuey, 2006), affecting labor market outcomes. 

This paper focuses on two aspects of RAE on the labor market for a particular group 

of high skilled workers: professional soccer players. First, it investigates the existence of RAE 

in terms of representativeness, that is, whether players born at the beginning of the admission 

year are over-represented. Second, it investigates the presence of RAE in terms of wage gaps. 
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Heterogeneity analyses on the evolution of this possible wage gap across ages and quantiles 

of the wage distribution are also carried out. 

This study provides statistical significant evidence for RAE in terms of 

representativeness, with relatively old players being over-represented in Serie A (e.g., 

Barnsley & Thompson, 1988; Musch & Hay, 1999; Musch & Grondin, 2001; Böheim & 

Lackner, 2012). The analyses also suggest the existence of a specific trend in the birthrate 

distribution, further reinforcing the evidence of RAE: the over-representation decreases and 

turns into under-representation as the end of the admission year is approached. 

This paper also provides statistically significant evidence of RAE on players’ wages, 

with relatively young players, that is, players born late in the admission year, earning on 

average lower gross wages. The size of the wage gap, caused by the RAE, is economically 

important; in particular, it is important for players born in December, which is the last month 

of the admission year. Furthermore, this wage gap appears to increase with age, after an initial 

reduction. I speculate that this trend could be owed to players’ mobility in and out of Serie A, 

which affects the distribution of the characteristics of the players who do not move. The 

analyses on different wage quantiles suggest that wage gaps tend to increase in the quantiles 

of the wage distribution, and thus that the estimates obtained with the OLS are driven by 

differences in the top quantiles of the wage distribution. These results seem to rule out the 

presence in Serie A of positive peer effects and selection in favor of relatively young players. 

These analyses should be considered carefully. Since the admission date for the 

players in this sample does not vary it is not possible to definitely rule out any season-of-birth 

effect on wages. 

Also, these results on wage gaps are somewhat different from those in the only other 

study on RAE in the soccer players’ labor market, in Germany (Ashworth & Heyndels, 2007). 
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However, this might be due to the type of data and the different characteristics of the Italian 

and German institutional contexts.
42

 

Future analyses of RAE on wages should include a quantile regression. This is 

particularly important when the wage distribution is expected to be positively skewed; 

consider the case of studies on RAE among CEOs (e.g., Malmendier & Tate, 2009; Frank & 

Nüesch, 2012). The quantile regression is important also to investigate positive peer effects 

and selection, which might characterize relatively young workers. 

Further work is required to increase the knowledge on short- and long-run RAE. 

Future studies on wage gaps should exploit variations in the admission date in order to gain 

clearer evidence of RAE. This variation can be obtained in cross-country analyses, similarly 

to Bedard and Dhuey (2006) and Munch and Hay (1999). Moreover, different aspects, such as 

career promotions, retirement and migration decisions, have yet to be analyzed.  

Additional evidence in favor of RAE would call for a revision of the age-grouping 

system. Age-groups could be shortened, for instance, 6 or 9 months (e.g., Pellizzari & Billari, 

2012; Barnsley & Thompson, 1988) instead of 12 months, so that within-age-group 

performance differences would be reduced, potentially decreasing the wage gaps on the labor 

market. In alternative, the admission date could rotate in different ways, so that the RAE 

would not consistently provide advantages to people born in a given month (Barnsley & 

Thompson, 1988; Wattie et. al, 2015). 

  

                                                 
42

 Italian and German youth categories systems might be differ. Moreover, Ashworth and Heyndels (2007) use 

data from 1997-98 and 1998-99, immediately after the Bosman ruling, 1995, imposed by the European Court of 

Justice. This ruling affected the soccer players’ labor market, it banned limitations on the amount of players from 

EU countries and introduced the free-agency. The data used in this paper are almost a decade more recent, so 

longer time has passed by allowing the Bosman ruling to fully affect the soccer players’ labor market. During the 

seven seasons in analysis the amount of foreign players constantly increased, while until 2008 the amount of 

foreign players in Italy was among the lowest in EU (Bryson et al., 2014). Since the Bosman ruling affects 

players’ competition, it could also affect the RAE on wages; however, the expected sign of this effect is 

uncertain: it depends on many factors, such as the top tax rates, which determine the quality of the players who 

move (Kleven et al., 2013). 
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Appendix A 

 
Table A.1 Variables description. 

Variable Description 

     

Ln(w) Natural logarithm of the gross wage, deflated at 2013, for player i. 

     

Age Age of player i. This variable is rescaled; range from 0 to 26 (0 correspond to 17, 

while 26 corresponds to 43). 

 

Age
2
 Squared age of player i. 

     

Quarter dummies Relative age, in terms of quarter of birth, for player i. The reference quarter is 

January-March. 

  

December dummy Relative age for players i born in December. The reference month is January. 

  

Team dummies Dummies for team; Udinese is the reference team. 

     

Season dummies Dummies for season; 2013-14 is the reference season. 

 

Table A.2 Descriptive statistics for wage and age, by quarter of birth. 

Variable Whole sample Q1 Q2 Q3 Q4 

      

Ln(w) 0.126 0.128 0.078 0.310 -0.048 

 (0.835) (0.813) (0.753) (0.894) (0.894) 

Age 28.046 27.777 28.095 28.082 28.399 

 (4.469) (4.483) (4.392) (4.596) (4.406) 

Note: Mean Ln(w) and age, standard deviation in parenthesis. 
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Appendix B 

Table B.1 reports the amount of births in the Italian general population, from 1993 to 1998. It 

contains the statistics used to compute the Italian quarterly and monthly birthrates 

Table B.1 Amount of births in the Italian general population from 1993 to 1998. 

 1993 1994 1995 1996 1997 1998 Average counts Average rate 

Period (1) (2) (3) (4) (5) (6) (7) (8) 

         

January 45,704 43,859 42,996 42,872 45,549 40,063 43,507.17 0.082 

February 39,578 38,767 38,420 39,318 41,809 39,807 39,616.50 0.074 

March 45,536 44,163 42,618 43,258 44,982 43,047 43,934.00 0.082 

April 43,942 43,948 40,172 41,306 47,143 43,124 43,272.50 0.081 

May 45,465 47,419 44,708 45,398 51,174 46,371 46,755.83 0.088 

June 46,215 45,082 44,533 45,228 48,824 44,510 45,732.00 0.086 

July 52,284 47,703 47,839 48,822 46,955 47,099 48,450.33 0.091 

August 48,270 45,599 46,507 46,630 42,482 46,014 45,917.00 0.086 

September 47,807 45,976 47,050 45,971 43,910 49,480 46,699.00 0.087 

October 47,353 44,419 47,118 44,866 41,778 46,737 45,378.50 0.085 

November 43,330 42,382 41,321 41,118 38,981 42,176 41,551.33 0.078 

December 44,000 43,733 42,327 43,316 40,874 43,120 42,895.00 0.080 

         

Year 549,484 533,050 525,609 528,103 534,461 531,548 533,709.17 100 

Note: Column (1)-(6) report the amount of births in the Italian general population per month and per year, from 1993 to 

1998. Column (7) reports the average amount of births per month and per year, from 1993 to 1998. Column (8) reports 

the average monthly birth rate (month average / year average). 

 

Figure B.1 plots the amount of births per month, by year, for the general Italian population.  
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Figure B.1 

 

 

The bulk of the births is concentrated in summer and beginning of fall, while the lowest levels 

of births are reached in winter. 
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Appendix C 

Main analysis - winsorization at 3% and 97%. 

Table C.1 Wage gap between relatively old and young players. Winsorization at 3% and 97%. 

Variables (1) (2) (3) (4) 

     

Age 0.170*** 0.168*** 0.168*** 0.149*** 

 (0.029) (0.029) (0.019) (0.045) 

Age
2
 -0.006*** -0.005*** -0.006*** -0.005*** 

 (0.001) (0.001) (0.001) (0.002) 

Q2 (April-June) -0.061 -0.060 -0.056 - 

 (0.090) (0.090) (0.051)  

Q3 (Jule-September) 0.179* 0.178* 0.052 - 

 (0.108) (0.108) (0.065)  

Q4 (October-December) -0.162 -0.165 -0.131** - 

 (0.103) (0.103) (0.063)  

December - - - -0.176** 

    (0.078) 

Constant -0.953*** -0.855*** -1.028*** -1.025*** 

 (0.163) (0.174) (0.166) (0.356) 

     

F-test, quarters of birth 

(p-value) 

0.026 

 

0.026 

 

0.043 

 

- 

 

     

Season F.E. N Y Y Y 

Team F.E. N N Y Y 

     

R-square 0.112 0.123 0.566 0.700 

Observations 1,598 1,598 1,598 282 

Note: Standard errors clustered on footballers are reported in parentheses. *** p<0.01, ** 

p<0.05, * p<0.1. The samples for the analyses use less than 1,704 observations because of 

missing values on wage. Column (1) reports the results from the OLS without fixed-effects; 

column (2) reports the results from the OLS with season fixed-effects; column (3) reports the 

results from the OLS with players’ team and season fixed-effects; column (4) reports the results 

obtained with the discontinuity sample strategy, i.e., only players born in January or December, 

they are obtained with OLS including players’ team and season fixed-effects. “F-test, quarters of 

birth” gives the p-value from the F-test on the joint significance of the quarters of birth estimates. 

 

Column (3), with season and players’ team fixed-effects, returns estimates similar to those 

displayed in Table 3, whereas the estimate for the December coefficient from column (4) is 

almost halved. 

 

 

 

 

 



Hewlett-Packard Company 47 

 

Analysis by age group - winsorization at 3% and 97%. 

Table C.2 Wage gap between relatively old and young players, by age group.  

Winsorization at 3% and 97%. 

 < 21 21-25 26-30 > 30 

Variables (1) (2) (3) (4) 

     

Age 0.480* 0.173 0.217 0.280** 

 (0.270) (0.155) (0.228) (0.128) 

Age
2
 -0.070 -0.006 -0.008 -0.010*** 

 (0.075) (0.012) (0.010) (0.004) 

Q2 (April-June) -0.352 -0.073 -0.036 -0.091 

 (0.344) (0.079) (0.068) (0.084) 

Q3 (Jule-September) -0.575* 0.014 0.072 0.092 

 (0.338) (0.103) (0.090) (0.106) 

Q4 (October-December) 0.116 -0.190* -0.221** -0.121 

 (0.235) (0.103) (0.0880) (0.101) 

Constant -1.257** -0.986** -1.430 -1.593 

 (0.559) (0.496) (1.230) (1.128) 

     

F-test, quarters of birth 

(p-value) 

0.263 

 

0.229 

 

0.019 

 

0.197 

 

     

Season F.E. Y Y Y Y 

Team F.E. Y Y Y Y 

     

R-square 0.889 0.502 0.556 0.640 

Observations 51 403 629 515 

Note: Standard errors clustered on players are reported in parentheses. *** p<0.01, ** p<0.05, * 

p<0.1. The samples for the analyses use less than 1,704 observations because of missing values 

on wage. Column (1) reports the results from the OLS with players’ team and season fixed-

effects for players younger than 21 years of age; column (2) reports the results from the OLS 

with players’ team and season fixed-effects for players between 21 and 25 years of age; column 

(3) reports the results from the OLS with players’ team and season fixed-effects for players 

between 26 and 30 years of age; column (4) reports the results from the OLS with players’ team 

and season fixed-effects for players older than 30 years of age. “F-test, quarters of birth” gives 

the p-value from the F-test on the joint significance of the quarters of birth estimates. 

 

The estimates are similar to those displayed in Table 4. 
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Appendix D 

In this appendix the main analysis is repeated on different sub-samples, based on players’ 

role. Unfortunately, the sample sizes for the analyses by players’ role mostly lead to 

inconclusive results, except for the subsample of midfielders. Therefore, any interpretation of 

the estimates in Table D.1, D.2, D.3, and D.4 should be considered carefully. 

The analysis on the goalkeepers’ sub-sample is reported below in Table D.1. 

 

Table D.1 Wage gap between relatively old and young players, only goalkeepers. 

Variables (1) (2) (3) (4) 

     

Age 0.286*** 0.286*** 0.201*** 0.347*** 

 (0.089) (0.095) (0.063) (0.099) 

Age
2
 -0.010*** -0.0098*** -0.007*** -0.0125*** 

 (0.003) (0.003) (0.002) (0.003) 

Q2 (April-June) -0.527 -0.513 -0.295** - 

 (0.387) (0.419) (0.122)  

Q3 (Jule-September) -0.042 -0.038 0.032 - 

 (0.345) (0.351) (0.147)  

Q4 (October-December) -0.571 -0.556 -0.389 - 

 (0.361) (0.368) (0.339)  

December - - - 0.187 

    (0.320) 

Constant -1.706*** -1.600** -1.623** -2.461*** 

 (0.483) (0.601) (0.616) (0.176) 

     

F-test, quarters of birth 

(p-value) 

0.181 

 

0.221 

 

0.048 

 

- 

 

     

Season F.E. N Y Y Y 

Team F.E. N N Y Y 

     

R-square 0.208 0.219 0.729 0.864 

Observations 163 163 163 33 

Note: Standard errors clustered on footballers are reported in parentheses. *** p<0.01, ** 

p<0.05, * p<0.1. These analyses are run on the sub-sample of Italian goalkeepers, 175; the 

missing values on wage are such that the analyzed sub-sample is smaller. Column (1) reports the 

results from the OLS without fixed-effects; column (2) reports the results from the OLS with 

season fixed-effects; column (3) reports the results from the OLS with players’ team and season 

fixed-effects; column (4) reports the results obtained with the discontinuity sample strategy, i.e., 

only players born in January or December, they are obtained with OLS including players’ team 

and season fixed-effects. “F-test, quarters of birth” gives the p-value from the F-test on the joint 

significance of the quarters of birth estimates. 

 

The estimates for quarters of birth are rarely statistically significant. The analysis on the 

goalkeepers’ sub-sample seems to suggest the presence of RAE and, as expected, that the 

RAE is stronger for goalkeepers; the literature suggests this is due to the importance of 
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physical characteristics in this role (Salinero et al., 2013). However, the large and statistically 

significant RAE for players born in the second quarter, see column (3), is puzzling. Moreover, 

column (4) suggests a reverse RAE for goalkeepers born in December. 

The analysis on the defenders’ sub-sample is reported in below Table D.2. 

 

Table D.2 Wage gap between relatively old and young players, only defenders. 

Variables (1) (2) (3) (4) 

     

Age 0.196** 0.195** 0.227*** 0.727*** 

 (0.081) (0.079) (0.059) (0.240) 

Age
2
 -0.006* -0.006* -0.008*** -0.028*** 

 (0.003) (0.003) (0.002) (0.010) 

Q2 (April-June) -0.041 -0.039 -0.006 - 

 (0.144) (0.143) (0.084)  

Q3 (Jule-September) 0.037 0.035 -0.078 - 

 (0.197) (0.197) (0.104)  

Q4 (October-December) -0.108 -0.113 -0.135 - 

 (0.182) (0.183) (0.135)  

December - - - -0.233 

    (0.293) 

Constant -1.266*** -1.338*** -1.632*** -5.557*** 

 (0.443) (0.506) (0.376) (1.684) 

     

F-test, quarters of birth 

(p-value) 

0.896 

 

0.888 

 

0.675 

 

- 

 

     

Season F.E. N Y Y Y 

Team F.E. N N Y Y 

     

R-square 0.139 0.155 0.586 0.817 

Observations 582 582 582 83 

Note: Standard errors clustered on footballers are reported in parentheses. *** p<0.01, ** 

p<0.05, * p<0.1. These analyses are run on the sub-sample of Italian defenders, 604; the missing 

values on wage are such that the analyzed sub-sample is smaller. Column (1) reports the results 

from the OLS without fixed-effects; column (2) reports the results from the OLS with season 

fixed-effects; column (3) reports the results from the OLS with players’ team and season fixed-

effects; column (4) reports the results obtained with the discontinuity sample strategy, i.e., only 

players born in January or December, they are obtained with OLS including players’ team and 

season fixed-effects. “F-test, quarters of birth” gives the p-value from the F-test on the joint 

significance of the quarters of birth estimates. 

 

The estimates for quarters of birth are never statistically significant. The analysis on the 

defenders’ sub-sample seems to suggest the presence of RAE. However, the estimates are 

smaller than those obtained in the main analysis; according to the literature (e.g., Salinero et 

al., 2013), they are expected to be larger in presence of RAE. 

The analysis on the midfielders’ sub-sample is reported below in Table D.3. 
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Table D.3 Wage gap between relatively old and young players, only midfielders. 

Variables (1) (2) (3) (4) 

     

Age 0.264*** 0.262*** 0.213*** 0.198*** 

 (0.050) (0.050) (0.038) (0.070) 

Age
2
 -0.010*** -0.010*** -0.007*** -0.00598* 

 (0.002) (0.002) (0.002) (0.003) 

Q2 (April-June) 0.090 0.087 0.024 - 

 (0.145) (0.146) (0.075)  

Q3 (Jule-September) 0.120 0.109 -0.064 - 

 (0.165) (0.165) (0.083)  

Q4 (October-December) -0.331** -0.343** -0.176** - 

 (0.133) (0.135) (0.079)  

December - - - -0.177** 

    (0.085) 

Constant -1.485*** -1.403*** -1.438*** -1.426*** 

 (0.273) (0.289) (0.233) (0.444) 

     

F-test, quarters of birth 

(p-value) 

0.009 

 

0.008 

 

0.074 

 

- 

 

     

Season F.E. N Y Y Y 

Team F.E. N N Y Y 

     

R-square 0.170 0.183 0.634 0.804 

Observations 572 572 572 126 

Note: Standard errors clustered on footballers are reported in parentheses. *** p<0.01, ** 

p<0.05, * p<0.1. These analyses are run on the sub-sample of Italian midfielders, 612; the 

missing values on wage are such that the analyzed sub-sample is smaller. Column (1) reports the 

results from the OLS without fixed-effects; column (2) reports the results from the OLS with 

season fixed-effects; column (3) reports the results from the OLS with players’ team and season 

fixed-effects; column (4) reports the results obtained with the discontinuity sample strategy, i.e., 

only players born in January or December, they are obtained with OLS including players’ team 

and season fixed-effects. “F-test, quarters of birth” gives the p-value from the F-test on the joint 

significance of the quarters of birth estimates. 

 

The analysis on the midfielders’ sub-sample provides statistically significant evidence of 

RAE, which is confirmed also by the estimate of the RAE for midfielders born in December, 

see column (4). The preferred model, which is that that includes seasons and team fixed-

effects, provides estimates for RAE that are close to those obtained in the corresponding 

model in the main analysis. 

The analysis on the forwards’ sub-sample is reported below in Table D.4. 
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Table D.4 Wage gap between relatively old and young players, only forwards. 

Variables (1) (2) (3) (4) 

     

Age 0.217** 0.229** 0.234*** 0.0324 

 (0.0968) (0.0975) (0.053) (0.089) 

Age
2
 -0.007 -0.007* -0.008*** -0.003 

 (0.004) (0.004) (0.002) (0.004) 

Q2 (April-June) -0.092 -0.096 -0.001 - 

 (0.211) (0.214) (0.130)  

Q3 (Jule-September) 0.319 0.327 0.212* - 

 (0.209) (0.210) (0.126)  

Q4 (October-December) 0.0511 0.0601 0.037 - 

 (0.277) (0.282) (0.152)  

December - - - - 

     

Constant -0.992* -0.964* -1.297*** 0.781 

 (0.514) (0.527) (0.371) (0.650) 

     

F-test, quarters of birth 

(p-value) 

0.234 

 

0.224 

 

0.335 

 

- 

 

     

Season F.E. N Y Y Y 

Team F.E. N N Y Y 

     

R-square 0.209 0.224 0.664 0.906 

Observations 281 281 281 40 

Note: Standard errors clustered on footballers are reported in parentheses. *** p<0.01, ** 

p<0.05, * p<0.1. These analyses are run on the sub-sample of Italian forwards, 310; the missing 

values on wage are such that the analyzed sub-sample is smaller. Column (1) reports the results 

from the OLS without fixed-effects; column (2) reports the results from the OLS with season 

fixed-effects; column (3) reports the results from the OLS with players’ team and season fixed-

effects; column (4) reports the results obtained with the discontinuity sample strategy, i.e., only 

players born in January or December, they are obtained with OLS including players’ team and 

season fixed-effects. “F-test, quarters of birth” gives the p-value from the F-test on the joint 

significance of the quarters of birth estimates. 

 

The estimates for quarters of birth are rarely statistically significant. The analysis on the 

forwards’ sub-sample does not seem to suggest the presence of RAE. No estimate for the 

RAE is displayed in column (4) since there is only 1 forward born in December for the period 

under consideration. 


