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Abstract 

Objects on a collision course with an observer produce a specific pattern of optical expansion 

on the retina known as looming, which in theory exactly specifies the time-to-collision (TTC) 

of approaching objects. We recently demonstrated that the affective content of looming 

stimuli influences perceived TTC, with threatening objects judged as approaching sooner 

than non-threatening objects. Here, we investigated the neural mechanisms by which 

perceived threat modulates spatiotemporal perception. Participants judged the TTC of 

threatening (snakes, spiders) or non-threatening (butterflies, rabbits) stimuli, which expanded 

in size at a rate indicating one of five TTCs. We analysed visual-evoked potentials (VEPs) 

and oscillatory neural responses measured with electroencephalography (EEG). The arrival 

time of threatening stimuli was underestimated compared to non-threatening stimuli, though 

an interaction suggested that this underestimation was not constant across TTCs. Further, 

both speed of approach and threat modulated both VEPs and oscillatory responses. Speed of 

approach modulated the N1 parietal and oscillations in the beta band. Threat modulated 

several VEP components (P1, N1 frontal, N1 occipital, EPN and LPP) and oscillations in the 

alpha and high gamma band. The results for the high gamma band suggest an interaction 

between these two factors.  Previous evidence suggests that looming stimuli activate 

sensorimotor areas, even in absence of an intended action. Our results show that threat 

disrupts the synchronization over the sensorimotor areas that are likely activated by the 

presentation of a looming stimulus.  
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Introduction 

Protecting the body from potentially threatening objects is among the most critical 

functions of the visual system. Looming (i.e., rapidly approaching) objects represent one such 

cue to threat that requires a rapid defensive or evasive response. Indeed, looming stimuli 

elicit stereotyped fear responses in monkeys (Schiff,  Caviness, & Gibson, 1962), human 

infants (Ball & Tronick, 1971), and adults (King et al., 1992). In theory, the rate of optical 

increase in the size of the retinal image as an object approaches exactly specifies the time-to-

collision (TTC), independent of object size or distance (Gibson, 1979). Traditionally looming 

has been viewed as a purely optical cue to collision, regardless of the content of the 

approaching stimulus (Schiff et al., 1962; Ball & Tronick, 1971; King et al., 1992). This view 

is consistent with the idea that the processing of looming relies on low-level, and largely sub-

cortical, mechanisms. 

In contrast, two recent studies have demonstrated that perceived TTC is affected by 

the semantic content of looming stimuli (Brendel et al., 2012; Vagnoni, Lourenco, & Longo, 

2012). In the study of Vagnoni and colleagues, the participants completed a TTC task in 

which a visual stimulus expanded in size over one second and then disappeared. After the 

stimulus disappearance, the participants had to imagine the stimulus continuing to approach 

and judge when it would have made contact with their body. Threatening objects (snakes and 

spiders) were judged as arriving sooner than non-threatening objects (butterflies and rabbits). 

Further, the magnitude of this effect was correlated with self-reported fear of snakes and 

spiders, such that people who were more fearful of these stimuli underestimated their arrival 

time more than those who were less fearful. The precise nature of this modulation, however, 

remains unclear.  

In this study, we therefore investigated the cortical mechanisms underlying this 

modulation by measuring visual-evoked potentials (VEPs) and evoked oscillatory responses 
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induced by looming visual stimuli. Several studies have investigated VEPs associated with 

visual processing of emotionally-laden stimuli (e.g., Olofsson, Nordin, Sequeira, & Polich, 

2008). Differential neural activity related to the affective valence of pictures begins as early 

as 100 ms after stimulus onset and persists for the next 1000 to 2000 ms (Codispoti, Ferrari, 

& Bradley, 2007; Olofsson & Polich, 2007). We were specifically interested in whether and 

how emotion modulates neural responses to looming images. We asked participants to make 

TTC judgments of looming visual stimuli. We manipulated both the rate of image expansion, 

consistent with one of five TTCs, and the emotional content of the stimulus (i.e., threatening, 

non-threatening). Our previous work showed that threat influences looming judgments, with 

the arrival time of threatening images underestimated relative to non-threatening images 

(Vagnoni et al., 2012). In this study we expand on this work by asking about the neural basis 

of the underestimation effect of threatening stimuli. Does threat modulate the visual 

mechanisms involved in calculating TTC, or does it alter visual processing by some other 

mechanism that affects TTC judgments?  
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Methods 

Participants 

Nineteen members of the Birkbeck community (10 female) between 19 and 36 years 

of age (M = 24.4, SD = 4.9) participated for payment or course credit. Participants were 

generally right-handed as assessed by the Edinburgh Inventory (M: 41.9, range: -100 – 100; 3 

participants were left handed) (Oldfield, 1971). During the recruitment, participants with 

phobia to one of the four categories (snakes, spiders, butterflies, and rabbits) used were 

discarded. Before starting the experiment, the participants read the information about the 

study and gave written informed consent to take part in this experiment. Procedures were 

approved by the local ethics committee and were in accordance with the 2013 WMA 

Declaration of Helsinki. 

 

Materials 

Stimuli were the same as used in our previous study (Vagnoni et al., 2012), namely 

160 colour photographs collected from the internet, 40 from each of the four categories. 

Images were cropped and resized using Adobe Photoshop CS5 (Adobe Systems, San Jose, 

CA). This resulted in images (400 pixels wide, 250 pixels high) in which the animal took up 

the entire image. Backgrounds from the original photographs were replaced with a 

homogenous grey colour (identical to the background of the experimental script). 

 

Procedure 

Participants sat at a table approximately 40 cm in front of a 19-inch monitor (120 Hz 

refresh rate). The distance between the participants and the monitor was checked during the 

experiment (measures were taken during the breaks between blocks). Stimulus presentation 
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and data collection were controlled by a custom MATLAB (Mathworks, Natick, MA) script 

using the Cogent Graphics toolbox (developed by John Romaya at the Wellcome Department 

of Imaging Neuroscience, University College London). On each trial, the stimulus increased 

in size across 120 frames (i.e., one second), consistent with one of five TTCs (3.0, 3.5, 4.0, 

4.5, and 5.0 s after the onset of the first frame). The width of the stimulus on the first frame 

was either 400 or 500 pixels (15.1° or 18.9° visual angle), giving the impression that it was at 

two different distances. It seems, from our previous results (Vagnoni et al., 2012), that 

participants judged bigger stimuli as closer and smaller as farther). We cannot exclude, 

however, that the stimuli were perceived of different size and at the same distance. Starting 

image size was manipulated so that actual TTC was not perfectly correlated with the size of 

the image on the final frame. After the 120th frame, the image was replaced by a blank 

background. There were a total of 320 trials divided into 8 blocks of 40 trials each. Each 

block included one repetition of each combination of TTC (5 levels), stimulus category (4 

levels), and initial image size (2 levels). The order of trials within each block was randomized. 

The 40 images from each category were randomly assigned to trial types and each image was 

used exactly twice for each participant. After the participant responded on each trial, the next 

trial began after a random inter-trial interval of 500-1000 ms. Between blocks the participant 

was allowed to take a short break if he/she wished. The next block started whenever the 

participant was ready. 

Participants were all instructed that they would see objects expanding in size as if they 

were approaching and that they would disappear after a while. They were told that their task 

was to imagine the object continuing to approach at the same rate and to press the button 

when they judged that the object would have made contact with their body. 

Fear ratings for each of the four categories were collected by modifying the Fear of 

Spiders Questionnaire (Szymanski & O'Donohue, 1995), as in our previous study (Vagnoni et 
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al., 2012). The 18 items on this questionnaire ask participants to indicate their agreement or 

disagreement with statements indicating fear or anxiety related to spiders. Example items 

include: “If I saw a spider now, I would feel very panicky.” and “I now would do anything to 

try to avoid a spider.” The 18 statements were modified for each of the other stimulus 

categories by replacing the word ”spider” with either “snake”, ”butterfly”, or ”rabbit”. 

Participants rated their agreement or disagreement with each statement using a 7-point Likert 

scale, where a score of +3 indicated strong agreement with the statement (i.e., high levels of 

fear) and -3 indicated strong disagreement (i.e., low levels of fear). The 72 items were 

presented in random order using a custom MATLAB script. 

 

EEG data collection 

A SynAmps 2 amplifier system and SCAN 4.3 software (Neuroscan, El Paso, TX, 

USA) were used to record EEG (electroencephalography) data. Twenty-six scalp Ag-AgCl 

electrodes were recorded (FP1, FPz, FP2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, 

P4, P8, PO7, PO3, POz, PO4, PO8, O1, Oz, O2) according to the 10–20 international 

electrode placement system. The active reference electrode was placed on the nose and the 

ground electrode was placed on the chin. Electrode impedances were kept below 3 KΩ. The 

horizontal electroculogram was recorded from electrodes placed near the outer canthi of each 

eye, and the vertical electroculogram was recorded from electrodes placed above and below 

the right eye. The EOG data was collected using the same amplifier. EEG signals were 

amplified and digitized at 1000 Hz.  

 

Event-related potential (ERP) analysis 

The EEG data were analysed with EEGLAB (Delorme & Makeig, 2004; 

http://sccn.ucsd.edu/eeglab/). Data were re-referenced to the average of all of the sensors and 

http://sccn.ucsd/
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digitally low-pass filtered (0-30 Hz). The EOG (electrooculogram) data was collected using 

the same amplifier as the EEG and all digitization and preprocessing was identical for both 

types of data. Epochs, time-locked to the visual stimulus presentation, were extracted from 

the raw EEG data from -0.1 s before to 2 s after the stimulus onset. Epochs containing severe 

artefacts were rejected by visual inspection. Further artefacts were discarded using blind 

source separation with independent component analysis (Jung et al., 2000) collapsing across 

experimental conditions. In total, 3.8% of trials were discarded (on average 12 out of 320 

trials). 

We focused our analysis on VEPs known, in the literature, not only as being linked to 

visual processing but also modulated by the emotional content of the stimulus: 

The P1 is interpreted as an index of attention allocation in the extrastriate visual 

cortex. This component seems to be modulated by the emotional content of the stimulus 

being larger for negative, relative to positive, stimuli. The modulation of the P1 by the 

emotional content of stimuli suggests that positive and negative stimuli receive different 

amounts of attention very early in the information processing stream (Smith et al., 2003; 

Carretié et al., 2004; Cobb & Dawson, 1960; Eason et al., 1969; Van Voorhis & Hillyard, 

1977; Luck et al., 1994). The P1 was evaluated as the activity at the left (O1, PO7, P7) and 

right (O2, PO8, P8) occipital–parietal recording sites in the time window between 115-135 

ms after stimulus onset (Michalowski et al., 2009; Smith et al., 2003). 

In the literature, we found three different N1 components: an early frontal component 

and two late components, one that peaks across the parietal recording sites and another that 

peaks across the occipital recording sites (Luck, 2005). Given that the N1 seems to be 

influenced by several characteristics of the stimulus, including colour (Anllo-Vento & 

Hillyard, 1996), location (Martinez et al., 2006), perceived motion (Lorteije et al., 2008) and 

emotional content (Hart et al., 2012; Carretié et al., 2004; Foti et al., 2009) and given that we 
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were interested in both the influence of the emotional, as well as the temporal characteristics 

of the stimuli, we analysed all the different components of N1. The N1 early component was 

evaluated as the activity at the frontal recording sites (F7, F3, FZ, F4, F8) between 110-135 

ms (Hart et al., 2012) after stimulus onset. The N1 late parietal component was evaluated as 

the activity at the parietal recording sites (P7, P3, Pz, P4, P8) in the time window between 

150-200 ms (Hart et al., 2012; Bailey et al., 2012). Given the latency and the scalp 

distribution of this component we believe that what we have called the N1 parietal, following 

the classification of Luck (Luck, 2005), represents what in the literature is referred to more 

commonly as N2 (Heinrich et al., 2005) or N160 (Kremlácěk et al., 2004). Moreover, in the 

literature, the scalp location of motion-onset VEP amplitude depends on the character of the 

motion stimulus. While linear motion mainly activates human MT (middle temporal visual 

area) analogues in the occipito-temporo-parietal cortex (Kubová et al., 1990), radial motion 

(‘‘expansion/contraction’’) produces maximum responses in the centro-parietal cortex 

(Kremlácěk et al., 2004; Langrová et al., 2006) and it is for this reason that we looked at the 

parietal N1 expecting a modulation of this component by the characteristics of the perceived 

motion of the stimuli. 

The N1 late occipital was evaluated as the activity at the left (PO7, PO3, O1) and 

right (PO8, PO4, O2) occipital – parietal recording sites at the window time between 155-185 

ms after stimulus onset (Hart et al., 2012; Bailey et al., 2012). 

There are two components that are thought to index the greater attention that we pay 

to emotional relative to neutral stimuli (i.e., motivated attention, Lang et al., 1997): the EPN 

and the LPP (Nordström & Wiens, 2012). The EPN reflects a transient negativity over the 

posterior region of the scalp between 200 and 300 ms after stimulus onset. Emotional (e.g., 

both unpleasant and pleasant), compared with neutral, pictures elicit an increase in this 

component (Hajcak & Dennis, 2009). The early posterior negativity (EPN) selects for further 
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processing of affectively arousing stimuli (Olofsson et al., 2008). The EPN was evaluated as 

the activity at the occipital– parietal recording sites (T7, P7, PO7, PO3, O1, Oz, POz, T8, P8, 

PO8, PO4, O2) at the time window between 200-300 ms after stimulus onset (Nordström & 

Wiens, 2012; Bailey et al., 2012; Michalowski et al., 2009; Hajcak & Dennis, 2009). 

The late positive potential (LPP) is represented by a long-lasting elevated ERP 

positivity to arousing pictures (Amrhein et al., 2004; Cuthbert et al., 2000; Ito et al., 1998a,b; 

Keil et al., 2002; Mini et al., 1996; Olofsson & Polich, 2007; Palomba et al., 1997; Schupp et 

al., 2000). This component indexes the sustained increase in attention toward emotional 

stimuli. The LPP before stimulus offset was evaluated as the activity at the central recording 

sites (Cz, Pz) from 400-1000 ms after stimulus onset. The LPP after stimulus offset was 

evaluated as the activity at the central recording sites (Cz, Pz) at time window 1400-1800 ms 

after stimulus onset (Hajcak & Nieuwenhuis, 2006; Nordström & Wiens, 2012; Bailey et al., 

2012; Hajcak & Olvet, 2008; Ito et al., 1998b; Cacioppo et al., 1994; Michalowski et al., 

2009; Hajcak & Dennis, 2009). 

 

Time-frequency analysis 

Analyses of EEG oscillations were conducted using SPM8 

(http://www.fil.ion.ucl.uk/spm/software/spm8/). We started the time-frequency analysis over 

from the raw, unfiltered data.  We performed the blind source separation with independent 

component analysis (Jung et al., 2000) then we divided the file according to the condition. A 

complex Morlet wavelet decomposition of the EEG signal with seven wavelet cycles using a 

variable time window length was performed across a 2–40 Hz frequency range, in steps of 1 

Hz for the alpha, beta and theta bands. Regarding the high gamma band, the frequency range 

was 70-190 Hz and the wavelet decomposition was performed in steps of 10 Hz. The wavelet 

decomposition was performed for each trial, sensor, and participant. The power at each 
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frequency was logarithmically rescaled (LogR in SPM8) for a baseline period defined as the 

1 s before the onset of the stimulus. Time–frequency data were averaged across trials of the 

same trial type to produce an average time–frequency map for each sensor and for each 

condition. 

We focused our analysis on the alpha (8–13 Hz) and beta (15–25 Hz) bands at the 

posterior sites because previous studies have shown the modulation of alpha band due to the 

emotional content of the stimuli (Aftanas et al., 1996a) and the modulation of beta band due 

to the temporal characteristics of the stimulus (van der Meer et al., 2008). van der Weel (van 

der Weel & van der Meer, 2009) found that infants’ looming related brain activity is 

characterised by theta oscillations (4-7 Hz) , further,  there are several evidences about the 

modulation of high gamma band (70-190 Hz) during perceptual binding and multisensory 

integration (Quinn et al., 2014), we then analysed also these frequency bands. Repeated 

measures ANOVAs were performed on alpha, beta, theta and high gamma power. We 

averaged the mean amplitude of the alpha power over the posterior channels (O1, Oz, O2, 

PO7, PO3, POz, PO4, PO8, P7, P3, Pz, P4, P8); the beta power on the same electrode sites as 

the alpha power (O1, Oz, O2, PO7, PO3, POz, PO4, PO8, P7, P3, Pz, P4, P8); the theta 

power over the occipital channels (O1, Oz, O2); the high gamma on the central (C3, Cz, C4) 

and occipital (PO7, O1, Oz, O2, PO8) channels comparing the different stimulus category 

(threatening, non-threatening) and actual TTC (3.0, 3.5, 4.0, 4.5, 5.0 s). In the task used, the 

stimulus was visible for 1 second and then disappeared. After the stimulus disappearance, the 

participants had to imagine it still approaching them and to judge its arrival time. Given the 

task structure, we divided the analysis into three periods: the first period in which the 

stimulus was visible (500-1000 ms), the period in which the stimulus disappeared (1000-1500 

ms) and then the period in which the stimulus was not visible but imagined (1500-2000 ms). 
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It is reasonable to expect any effects of stimulus, and its characteristics, to change according 

to these different stages. 

 

Statistical analysis 

Regarding the P1, a repeated measures ANOVA was run on the mean amplitude with 

stimulus category (threatening, non-threatening), actual TTC (3.0, 3.5, 4.0, 4.5, 5.0 s), 

hemisphere (left, right) and channel (O1/2, PO7/8, P7/8) as the within-subjects factors.  

Regarding the early (frontal) N1, a repeated measures ANOVA was run on the mean 

amplitude with stimulus category (threatening, non-threatening), actual TTC (3.0, 3.5, 4.0, 

4.5, 5.0 s), hemisphere (left, right) and channel (F3/4, F7/8) as the within-subjects factors. 

Regarding the N1 that peaks over the parietal channels, a repeated measures ANOVA 

was run on the mean amplitude with stimulus category (threatening, non-threatening), actual 

TTC (3.0, 3.5, 4.0, 4.5, 5.0 s), hemisphere (left, right) and channel (P3/4, P7/8) as the within-

subjects factors.  

Regarding the N1 that peaks over the occipital channels, a repeated measures 

ANOVA was run on the mean amplitude with stimulus category (threatening, non-

threatening), actual TTC (3.0, 3.5, 4.0, 4.5, 5.0 s), hemisphere (left, right) and channel (O1/2, 

PO3/4, PO7/8) as the within-subjects factors.  

The mean voltage data of the EPN was analysed with a repeated measures ANOVA 

with stimulus category (threatening, non-threatening), actual TTC (3.0, 3.5, 4.0, 4.5, 5.0 s), 

hemisphere (left, right) and channel (O1/2, PO3/4, PO7/8, P7/8, T7/8) as the within-subject 

factors. 

The mean voltage data of the LPP (both before and after the stimulus disappearance) 

was analysed with a repeated measures ANOVA with stimulus category (threatening, non-
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threatening), actual TTC (3.0, 3.5, 4.0, 4.5, 5.0 s), and channel (Cz, Pz) as the within-subjects 

factors. 

The mean amplitude of power in the alpha and beta bands was averaged over the 

posterior channels (O1, Oz, O2, PO7, PO3, POz, PO4, PO8, P7, P3, Pz, P4, P8). The 

selection of the channels was made in accordance with the literature. Indeed Krause et al. 

(2000) showed the influence of the emotional content of the stimulus on alpha band in the 

posterior electrodes while van der Meer et al. (2008) showed, over the same channels, the 

influence of motion’s characteristics on beta band.  

Regarding the analysis of the theta band, we selected the occipital channels (O1, Oz, 

O2) according to the work of van der Weel et al. (2009) where it is shown a modulation of 

theta power by the temporal structure of looming stimuli. 

Moreover the high gamma was analysed on the central (C3, Cz, C4) and occipital 

(PO7, O1, Oz, O2, PO8) channels following the study of Quinn et al. (2014) on perceptual 

binding and multisensory integration. 

In all the frequency band’s analyses we compared the different time periods: during 

stimulus presentation (500-1000 ms), the period immediately after the stimulus disappearance 

(1000-1500 ms), and the post stimulus period (1500-2000 ms); stimulus category (threatening, 

non-threatening); and actual TTC (3.0, 3.5, 4.0, 4.5, 5.0 s).   

 

Results 

Behavioural Responses 

Mean fear ratings were higher for snakes (-.19) and spiders (-.66) than for butterflies 

(-2.13) and rabbits (-2.08), t(17) = -5.34, p < .001. This provides a check on our manipulation 

of how threatening the different types of stimuli were.  
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To identify outliers, we calculated the Z-score for each TTC judgment, separately for 

each participant and level of actual TTC. Trials with Z-scores greater than +3 or less than -3 

were considered outliers and excluded from analyses (0.8% of trials). An analysis of variance 

(ANOVA) was run on mean TTC judgments including actual TTC (3.0, 3.5, 4.0, 4.5, 5.0 s), 

stimulus category (threatening, non-threatening), and initial stimulus size (400, 500 pixels 

wide) as within-subjects factors. Figure 1 shows the behavioural results. There was a 

significant effect of actual TTC, F (4, 72) = 32.06, p < .0001, with responses increasing 

monotonically with actual TTC. There was also a marginal effect of stimulus category, F(1, 

18) = 4.19, p = .055, with TTC being reduced for threatening compared to non-threatening 

stimuli, consistent with previous results (Brendel et al., 2012; Vagnoni et al., 2012). There 

was also a marginally significant interaction between these factors, F(4, 72) = 2.43, p = .056. 

It seems that threatening stimuli, relative to the non-threatening, were not underestimated for 

all the time-to-collisions. The pattern of this interaction is not linear given that the 

underestimation of threatening stimuli does not increase, nor decrease, with the increase, or 

decrease, of time-to-collision. Moreover, no such interaction was apparent in our previous 

experiments using this paradigm (Vagnoni et al., 2012). Finally, there was also a significant 

effect of initial stimulus size, F(1, 18) = 8.27, p < .02, with shorter judgments following 

presentation of larger, than smaller, images. 

To isolate variance specifically related to individual differences in fear of the 

threatening stimuli, we regressed fear ratings for threatening on ratings for non-threatening, 

and calculated the residuals. Similarly, for TTC judgments, we regressed mean judgments for 

threatening stimuli on judgments for non-threatening stimuli and calculated the residuals. The 

residuals estimated how much more afraid of snakes and spiders a participant was than would 

have been predicted by their fear of butterflies and rabbits. In the case of TTC judgments, the 

residuals estimated how much earlier a participant judged the arrival time of threatening 
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stimuli than would have been predicted by their TTC for non-threatening stimuli. The 

residuals for fear and TTC judgments were significantly negatively correlated, r(17) = -.621, 

p < .005, indicating that people who reported more fear of snakes and spiders, relative to their 

fear of butterflies and rabbits, showed larger underestimation of TTC of these threatening 

stimuli. These results replicate our previous findings (Vagnoni et al., 2012). 

 

 

Figure 1: Left panel: judged TTC as a function of actual TTC. Judgments increased monotonically as a function 

of actual TTC for non-threatening (butterflies and rabbits) and threatening (snakes and spiders) stimuli. The 

light grey dotted line indicates veridical judgments. There was a clear bias to underestimate TTC for threatening 

compared to nonthreatening stimuli. Right panel: scatterplot showing relation of TTC judgments and fear. For 

both TTC judgments and fear ratings, variance specifically related to the threatening stimuli was isolated by 

calculating the residuals regressing scores for threatening on those for non-threatening stimuli. These residuals 

were significantly negatively correlated, indicating that greater fear was associated with increased tendency to 

underestimate TTC. 

 

VEPs 

The VEPs analysis was focused on components found in the literature being 

modulated by the emotional content of the visual stimuli or by the motion characteristics. 

This section is organised according to the latency of the component analysed, starting from 

the earlier components to the later ones. 
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P1 and N1. The P1 amplitude was modulated by the emotional content of the stimulus, 

with decreased amplitude for threatening compared to non-threatening stimuli, F(1, 18) = 

24.71, p < .001 (Figure 2). This main effect was explained by a significant interaction 

between stimulus category and channel, F(2, 36) = 26.524, p < .001, which appeared as a 

gradient with the difference between threatening and non-threatening stimuli being more 

marked on the occipital channels, t(18) = -6.07, p < .001 (M for threatening = 1.32 μV, SE = 

0.64; M for non-threatening = 2.86 μV, SE = 0.60), relative to the occipito-parietal channel, 

t(18) = -3.61, p < .005 (M for threatening = 3 μV, SE = 0.50; M for non-threatening = 3.62 

μV, S.E. =0.52), and no difference between threatening and non-threatening on the parietal 

channels, t(18) = -.21, p = 0.836 (M for threatening = 2.73 μV, SE = 0.42; M for non-

threatening = 2.75 μV, SE = 0.41). Finally, there was a significant effect of hemisphere, with 

the P1 being enhanced over the right hemisphere, F(1, 18) = 10.08, p < .01. We did not find 

an interaction between stimulus category and TTCs, F(4, 72) = 1.37, n.s. The effect of 

stimulus category, hemisphere and the interaction between stimulus category and channel 

imply that emotional stimuli are processed differently, especially on the posterior sites. 

Our results showed that also the early frontal N1 was modulated by the emotional 

content of the stimulus, being decreased when threatening stimuli were presented, F(1, 18) = 

25.86, p < .001 (Figure 3). The ANOVA showed a significant effect of TTC, F(4, 72) = 2.75, 

p <  .05 and an interaction between channel and TTC, F(4, 72) = 2.77, p  < .05. These effects 

were modulated by a significant three-way interaction between stimulus category, channel 

and TTC, F(4, 72) = 2.83, p < .05. Given this three-way interaction, we performed separate 

ANOVAs for threatening and non-threatening stimuli. For threatening stimuli there was a 

significant main effect of TTC, F(4, 72) = 3.59, p = .01. The amplitude of the N1 frontal 

changed according to the different TTCs but not in an obvious way. The amplitude was less 

negative for TTC equal to 3.0 s (M = -0.87 μV, SE = 0.50) relative to the amplitude for TTC 
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equal to 3.5 (M = -1.83 μV, SE = 0.38) and 4 (M = -1.78 μV, SE = 0.36). The mean 

amplitude for TTC equal to 4.5 was -1.2 μV (SE = 0.44) and -1.4 μV (S.E. = 0.40) for TTC 

equal to 5.0 sec. Therefore the amplitude did not increase nor decrease according to the TTC. 

Regarding the ANOVA performed on non-threatening stimuli, we did not find any significant 

result. It seems that threatening and non-threatening stimuli are still, after the P1, processed 

differently.  

The late N1 parietal increased in amplitude as approach speed increased, F(4, 72) = 

3.07, p < .05 (Table 1). This pattern broke down, however, for the slowest stimulus; indeed 

the amplitude of the N1 parietal increased when stimuli with a TTC of 5 seconds were 

presented. We found a significant effect of hemisphere, F(1, 18) = 6.55, p < .05 so that the 

amplitude across the left hemisphere was less positive, and a significant interaction between 

stimulus category and channel, F(1, 18) = 14.63, p < .002, and a significant three-way 

interaction between stimulus category, hemisphere and channel, F(1, 18) = 6.20, p < .05, but 

critically no significant interactions involving TTC. To investigate the three-way interaction 

we performed separate ANOVAs for each hemisphere. For the left hemisphere we found a 

significant interaction between stimulus category and channel F(1, 18) = 7.15, p = .01, with 

the mean amplitude when threatening stimuli were presented being more negative (M = 0.26 

μV, SE = 0.58) relative to when non-threatening were presented (M = 0.75 μV, SE = 0.50) on 

channel P3 and the reverse pattern on channel P7 (threatening: M = -0.35 μV, SE 0.66; non-

threatening: M = -0.46 μV, SE 0.56). Regarding the right hemisphere we found a significant 

interaction between stimulus category and channel F(1, 18) = 21.61, p < .01, with the mean 

amplitude when threatening stimuli were presented being less positive than when non-

threatening were presented on channel P4 (for the threatening M = 0.95 μV, SE = 0.44; for 

the non-threatening M = 1.48 μV, SE = 0.53) and the reverse pattern on channel P8 (for the 
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threatening M = 1.29 μV, SE = 0.64; for the non-threatening M = 0.88 μV, SE = 0.80).  This 

pattern suggests that perceived threat shifts activations more laterally.  

 

Actual TTC (sec) Non-threatening Threatening Averaged 

Non-threatening and 

Threatening 

3 

3.5 

4 

4.5 

5 

0.473 (1.94) 

0.451 (2.22) 

0.934 (2.00) 

1.024 (1.96) 

0.809 (1.88) 

0.157 (2.17) 

0.679 (2.10) 

0.433 (1.77) 

0.705 (1.53) 

0.448 (1.75) 

0.315 (2.02) 

0.565 (2.11) 

0.684 (1.81) 

0.865 (1.81) 

0.629 (1.75) 

Table 1. The mean (with SD) peak amplitude (μV) of the N1 parietal in response to the five different TTC (sec) 

for non-threatening (second column), threatening (third column) and for the average of non-threatening and 

threatening stimuli (fourth column). 

 

The N1 occipital was modulated by the emotional content of the stimulus, enhanced 

for threatening relative to non-threatening stimuli, F(1, 18) = 15.12, p < .002 (Figure 2). We 

found a significant interaction between stimulus category and channel, F(2, 36) = 7.05, p 

= .003, and a significant interaction between stimulus category, hemisphere, and channel, F(2, 

36) = 3.29, p < .05. When threatening stimuli were presented on the screen, the amplitude of 

the N1 was more positive in the right hemisphere compared to the left, but only for the 

posterior-occipital channels (PO8 M = 2.07 μV, SE = 0.79; PO7 M = 1.19 μV, SE = 0.87). 

Moreover, we found a significant interaction between TTC and channel, F(8, 144) = 2.26, p 

< .05. This interaction is not interpretable given that the amplitude does not increase or 

decrease according to the increase or decrease of the TTC. Indeed the amplitude became 

more positive for stimuli with a TTC of 3.5 (in O1-O2 M = 1.56 μV, SE = 0.81; in PO3-PO4 
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M = 1.57 μV, SE =0.93; in PO7-PO8 M = 1.63 μV, SE = 0.93), 4 (in O1-O2 M = 1.57 μV, 

SE = 0.74; in PO3-PO4 M = 1.49 μV, SE =0.74; in PO7-PO8 M = 2.06 μV, SE = 0.81), 4.5 

(in O1-O2 M = 1.73 μV, SE = 0.74; in PO3-PO4 M = 1.81 μV, SE =0.78; in PO7-PO8 M = 

2.02 μV, SE = 0.79) compared to the amplitude when stimuli with a TTC of 3.0 (in O1-O2 M 

= 1.21 μV, SE = 0.78; in PO3-PO4 M = 1.22 μV, SE =0.85; in PO7-PO8 M = 1.46 μV, SE = 

0.82) or 5.0 (in O1-O2 M = 1.14 μV, SE = 0.71; in PO3-PO4 M = 1.28 μV, SE =0.79; in 

PO7-PO8 M = 1.73 μV, SE = 0.81) were presented. However we did not find an interaction 

between stimulus category and TTC, F(4, 72) = 1.05, n.s. 

In summary, these results show how emotion affects the early stages of stimulus 

processing; modulating the brain activity within 100-150 ms, the characteristic latency of the 

P1. Regarding the N1, we identified three different sub-components: the frontal, the parietal 

and the occipital component. The occipital was strongly influenced by the emotional content 

of the stimulus and more on the occipital channels than on the occipito-parietal ones. The N1 

frontal was clearly influenced by the emotional content of the stimulus, being reduced as a 

threatening stimulus was presented. Regarding this component, we did find an interaction 

involving both the stimulus category and the speed of approach but it is difficult to draw 

conclusions from this interaction. Indeed, when we explored it more deeply with separate 

ANOVAs, one for each stimulus category, the only significant effect that we found was a 

main effect of TTC when a threatening stimulus was presented. Finally, the N1 parietal 

showed an interesting pattern, with its amplitude modulated by the speed of approach of the 

stimuli. This component was also modulated by the stimulus category and hemisphere, with 

the activity shifted more laterally when a threatening stimulus was presented. However, we 

did not find any significant interaction between speed of approach and stimulus category. 

EPN and LPP. Regarding the EPN, our results showed a significant effect of stimulus 

category F(1, 18) = 12.48, p < .005 (Figure 2), a significant effect of channel, F(4, 72) = 
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56.48, p < .0001 and a significant interaction between stimulus category and channel, F(4, 

72) = 8.95, p < .0001, with the amplitude being significantly less positive when a threatening 

stimulus was on the screen for channels O1 and O2, t(18) = -3.53, p < .005, channels PO3 

and PO4, t(18) = -3.82, p < .002, channels PO7 and PO8, t(18) = -2.09, p = .051, channels T7 

and T8, t(18) = -2.82, p < .02, but not for channels P7 and P8, t(18) = -1.33, n.s. 

For the LPP (calculated before the stimulus disappearance i.e. 400-1000 ms) we found 

a significant interaction between channel and stimulus category, with a significant difference 

between threatening and non-threatening only in Cz, F(1, 18) = 9.01, p < .01, with the 

amplitude being more positive when threatening stimuli were presented. For the LPP post-

stimulus (calculated after the stimulus appearance i.e. 1400-1800 ms) we found a significant 

effect of channel F(1, 18) = 9.454, p = .007, and a significant interaction between stimulus 

category and channel with the LPP being enhanced for threatening stimuli in Cz, F(1, 18) = 

7.12, p < .02 (Figure 4). 
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Figure 2. Averaged VEP waveforms at occipital (O1-O2), occipito-parietal (PO3-PO4; PO7-PO8), parietal (P7-

P8) and temporal (T7-T8) electrodes. The earliest positive-going (downward) deflection is the P1, which is 

smaller for threatening stimuli than non-threatening stimuli. The difference between threatening and non-

threatening stimuli is more marked on the occipital channels (O1-O2) relative to the occipito-parietal (PO7-

PO8) channel and no difference between threatening and non-threatening on the parietal channels (P7-P8). The 

second, negative-going (upward), deflection is the N1 occipital, which is less positive for threatening relative to 

non-threatening stimuli. The third one is the EPN, which is less positive for the threatening stimuli relative to 

the non-threatening stimuli. The EPN is significantly less positive when a threatening stimulus was on the 

screen for channels O1 and O2, channels PO3 and PO4, channels PO7 and PO8, channels T7 and T8, but not for 

channels P7 and P8. These three components were clearly modulated by the emotional content of the stimuli. 

The black vertical line at 1000 ms represents the stimulus disappearance. 
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Figure 3: Averaged VEP waveforms at the frontal electrodes (F7, F3, FZ, F4, F8). The upward going deflection 

between 110-135 ms is the N1 frontal, which is decreased for threatening, relative to non-threatening, stimuli. 

The black vertical line at 1000 ms represents the stimulus disappearance. 
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Figure 4: Averaged VEP waveforms at Cz. The LPP is clearly enhanced for threatening, relative to non-

threatening, stimuli both before and after the stimulus presentation (black vertical line at 1000 ms). 

 

 

Stimulus-induced oscillations  

Alpha band (8–13 Hz). The ANOVA on the average of alpha power showed a 

significant effect of time period, F(2, 36) = 20.52, p < .001, with less desynchronization 

during the third time period (first time period M = -2.97 μV, S.E. = 0.53; second time period 

M = -2.22 μV, S.E. = 0.42; third time period M = -0.98 μV, S.E. = 0.24). There was also a 

significant main effect of stimulus category, F(1, 18) = 9.66, p < .01, with more 

desynchronization during the presentation of threatening relative to non-threatening stimuli 

(Figure 5). The interaction between time period and stimulus category was not significant, 
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F(2, 36) = 2.32, p = 0.11. Moreover, there was no significant effect of actual TTC, F(4, 72) = 

1.62, n.s., nor the interaction between stimulus category and TTC, F(4, 72) = 2.03, n.s. 

Beta band (15–25 Hz). The ANOVA on the averaged beta power revealed a 

significant effect of time period, F(2, 36) = 25.90, p < .001, actual TTC, F(4, 72) = 2.73, p 

< .05, and the interaction between time period and actual TTC F(8, 144) = 2.84, p < .01. The 

effect of stimulus category, however, was not significant, F(1, 18) = 3.13, p = .094 (Figure 5), 

nor did it interact with the other factors.  

Given the presence of the time period effect, we ran separate ANOVAs for each time 

period. The ANOVA for the first time period (between 500 and 1000 ms) revealed no 

significant effect of stimulus category, F(1, 18) = 1.99, p =.175 (Figure 5); but a significant 

effect of actual TTC, F(4, 72) = 5.02, p < .002 (Table 2) so that the desynchronization of the 

beta band increased as the time-to-collision decreased (mean amplitude beta band for time-to-

collision equal to 3.0 M = -1.67 μV, S.E. = 0.23; for time-to-collision equal to 3.5 M = -1.42 

μV, S.E. = 0.21; for time-to-collision equal to 4.0 M = -1.34 μV, S.E. = 0.21; for time-to-

collision equal to 4.5 M = -1.28 μV, S.E. = 0.23; for time-to-collision equal to 5.0 M = -1.42 

μV, S.E. = 0.22). There were no other significant effects.  

We further investigated whether beta power changes as a function of TTC. We 

calculated the regression coefficient, regressing the averaged beta power across posterior sites 

(O1, Oz, O2, PO7, PO3, POz, PO4, PO8, P7, P3, Pz, P4, P8), on the five actual TTCs. Our 

results show that during the period in which the stimulus is visible (500-1000 ms) beta 

activity over posterior sites changes as a function of TTC, specifically there was more de-

synchronization as the TTC decreases (slope = 0.115, t(17) = 3.49, p = .002). 
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Actual TTC (sec) Non-threatening Threatening Averaged 

Non-threatening and 

Threatening 

3 

3.5 

4 

4.5 

5 

-1.649 (1.17) 

-1.361 (0.94) 

-1.249 (0.85) 

-1.297 (1.03) 

-1.328 (1.01) 

 

-1.642 (0.97) 

-1.496 (0.92) 

-1.433 (1.12) 

-1.267 (1.07) 

-1.531 (1.05) 

 

-1.645 (1.02) 

-1.428 (0.91) 

-1.341 (0.92) 

-1.282 (1.01) 

-1.429 (0.97) 

Table 2. The mean (with SD) amplitude (μV) of the beta power in response to the five different TTC (sec) for 

non-threatening (second column), threatening (third column) and for the average of non-threatening and 

threatening stimuli (fourth column).  

 

Theta band (4–7 Hz). The ANOVA on the average of theta power did not show a 

significant effect of time period, F(2, 36) = 0.51, n.s., nor of stimulus category, F(1, 18) = 

0.34, n.s., nor of actual TTC, F(4, 72) = 0.37, n.s., nor of the interaction between stimulus 

category and actual TTC, F(4, 72) = 1.56, n.s 

High gamma band (70-190 Hz). Regarding the ANOVA performed on central 

electrodes, we found a significant interaction between time period and stimulus category, 

F(2,36) = 4.52, p = 0.01. To further investigate this interaction we performed separated 

ANOVA, one for each time period. The only significant effect was the effect of stimulus 

category during the second time period F(1,18) = 6.45, p = 0.02. After the presentation of 

threatening stimuli, there was clearly more desynchronization on high gamma band. 

Regarding the ANOVA performed on occipital channels, with time period (500-1000 

ms, 1000-1500 ms, 1500-2000 ms), stimulus category (threatening, non-threatening) and 
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actual TTC (3.0, 3.5, 4.0, 4.5, 5.0 s) as within-subjects factors, there were no significant 

effects. 

Thus, we found an effect of TTC on beta oscillations limited to the period that the 

stimulus was visible on the screen, in contrast to the effect of threat on alpha oscillations, 

which continued throughout the period during which participants imagined the stimulus 

continuing to approach. Regarding the high gamma band, we found an effect of threat soon 

after the disappearance of the visual stimulus only over the central electrodes and not over the 

occipital ones. 

The results from the analysis of the theta band were not statistically significant. 
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Figure 5: The colour maps represent the grand mean time–frequency representations of EEG spectral power 

over the occipito-parietal electrodes (O1, Oz, O2, PO7, PO3, POz, PO4, PO8, P7, P3, Pz, P4, P8). Baseline- 

rescaled responses were averaged across all subjects. The colour maps represent average oscillatory power 

during the 3 periods 500-1000 ms, 1000-1500 ms, 1500-2000 ms in the alpha (8–13 Hz) and beta (15–25 Hz) 

bands. In the first panel the colour map on the left represents the grand mean for non-threatening stimuli, the 

second represents the grand mean for threatening whereas the third one the grand mean of the difference 

between threatening and non-threatening stimuli. The brackets specifies the three different periods while the two 

red square the frequency bands.  On the left of the lower panel there are the topographical maps representing the 

alpha band for the non-threatening, threatening and the difference between threatening and non-threatening 

during the three different time periods. On the right of the lower panel is represented, instead, the topographical 

maps for the beta activity. It is clear from the figure that alpha activity is modulated by the emotional content of 

the stimulus. This difference is sustained across the three different time-periods (although the difference is less 
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robust during the third period). The beta band, in contrast, is unaffected by the emotional content of the stimulus 

at any time period. 

 

Discussion 

We investigated neural responses to threatening and non-threatening looming stimuli 

with different TTCs. Both speed of approach and threat modulated several aspects of visual 

processing, measured both with VEPs and event-related oscillations. We found also 

components (like the N1 frontal and the N1 parietal) modulated by both the speed of 

approach and the emotional content of the stimulus but, critically, we did not find any 

meaningful interaction between these two factors. Indeed, the N1 frontal seems to be 

modulated both by the semantic content of the stimulus and the speed of approach but in an 

uninterpretable way. When threatening stimuli were on the screen the amplitude of this 

component was modulated by the different time-to-collision but the amplitude did not 

increase nor decrease according to them making difficult to draw any conclusions.  

These results have implications for understanding the modulation of perceived TTC 

by threat recently reported in the literature (Brendel et al., 2012; Vagnoni et al., 2012). In 

particular, they suggest that threat does not modulate the mechanisms involved in interpreting 

the optical expansion specifying looming. Rather, these results suggest that threat may 

produce a separate bias in the visual system. 

The behavioural results partially replicated previous findings: the arrival time of 

threatening stimuli is underestimated relative to the arrival time of non-threatening stimuli 

(Brendel et al., 2012; Vagnoni et al., 2012), but not in all time-to-collision conditions. 

Moreover, the magnitude of this underestimation is related to individual differences in fear 

for the threatening stimuli used in this study (snakes and spiders). We found a significant 

correlation between trait fear ratings and TTC judgments indicating that threatening stimuli 

are perceived as making contact sooner than non-threatening stimuli especially for those who 
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are fearful of snakes and spiders. This correlation shows that the actual fear of threatening 

stimuli can modulate the strength of the underestimation bias for threatening stimuli. 

 

The influence of emotion on neural processing of visual stimuli 

The VEP analysis showed that both the emotional content of the stimulus as well as 

the speed of approach modulate the timing and amplitude of short, middle and long latency 

components. The P1 is modulated by the emotional content of the stimuli with a smaller P1 

when threatening stimuli are presented. Given that the P1 is most often interpreted as being 

an index of attention allocation in extrastriate visual cortex (Smith et al., 2003), these results 

suggest that positive and negative stimuli are receiving different amounts of attention very 

early in the information-processing stream. Zajonc (1980) and others have suggested that the 

role of emotion is to focus our information processing resources on, and guide our 

behavioural responses to, important stimuli. Clearly, being able to differentiate threatening 

from non-threatening stimuli already within the first 100 ms is useful to engage in a fast and 

appropriate response. The faster we can separate negative from positive stimuli, the faster we 

can engage an appropriate response strategy, and the more successful we will be in 

responding to the world (Smith et al., 2003). There is evidence, in the literature, of P1 

modulation by the emotional content of stimuli (Smith et al., 2003; Carretié et al., 2004), 

though less clear is the direction of this modulation. Indeed, if on one hand there is evidence 

showing a larger P1 for negative relative to positive stimuli (Smith et al., 2003; Carretié et 

al., 2004), on the other there are demonstrations of the opposite pattern (Begleiter et al., 

1967, 1969).  

Begleiter et al. (1967, 1969) elicited ERPs with neutral visual stimuli that were 

affectively conditioned by using words of unpleasant, neutral, and pleasant valence. The 

authors found that if participants were not notified of an association between words and 
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figures just before the ERP session, the amplitude was lowest for unpleasantly conditioned 

stimuli, whereas the opposite pattern was obtained from subjects that were aware of the 

presence of an association between words and figures. 

Affective VEP findings show a great deal of variability across studies in the early 

latency range. Different mixes of stimulus valence categories and arousal levels might induce 

processing differences that have not yet been investigated systematically. Even the varying 

number of stimulus repetitions could further modulate these affective VEP effects (Olofsson 

et al., 2008).  

Regarding the N1 component, we found an interesting pattern with the N1 frontal and 

occipital being influenced by the emotional content of the stimulus and the N1 parietal being 

modulated by speed of approach. Indeed we found a smaller mean amplitude of N1 early 

frontal (Bailey et al., 2012) and a greater amplitude of the N1 occipital when threatening 

stimuli were presented. Likewise, the results on the N1 parietal are consistent with previous 

evidence (Lorteije et al., 2008) with the component increasing in amplitude for faster stimuli. 

The EPN represents the process of selecting emotional arousing stimuli for further 

processing (Dolcos & Cabeza, 2002; Schupp et al., 2004). Consistent with that interpretation, 

our results show that the EPN is enhanced for the threatening stimuli. The LPP is represented 

by a long-lasting elevated ERP positivity to arousing pictures (Amrhein et al., 2004; Cuthbert 

et al., 2000; Ito et al., 1998a,b; Keil et al., 2002; Mini et al., 1996; Olofsson & Polich, 2007; 

Palomba et al., 1997; Schupp et al., 2000). According to several authors, the LPP reflects the 

allocation of attentional resources to salient events (Nordström & Wiens, 2012). Carretié and 

colleagues (2006) presented affective picture stimuli during a non-affective discrimination 

task. An increase in VEP amplitude at 680 ms following stimulus onset was present for 

unpleasantly arousing stimuli. In line with these findings, our results show greater mean 

amplitude of the LPP following the presentation of threatening stimuli. Our results highlight 
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that the nature of the stimulus – particularly its semantic content – is able to modulate the 

LPP even after it has disappeared. These findings are especially interesting in relation to the 

interpretation given by several authors that the LPP is involved in memory formation 

(Olofsson et al., 2008; Palomba et al., 1997; Azizian & Polich, 2007; Karis et al., 1984; 

Paller et al., 1988; Dolcos & Cabeza, 2002).  

Several authors contend that the analysis of event related synchronization and de-

synchronization can help to uncover the dissociation between the neural correlates of the 

processing of different types of emotional stimuli (Aftanas et al., 1996a; 1996b; 2001; Krause 

et al., 2000). Aftanas and colleagues (1996a) investigated the event-related desynchronization 

(ERD) of alpha components in an affective task. Positive and negative emotions were evoked 

by winning and losing certain amounts of money in a gambling situation while measuring 

ERD to positive and negative feedback stimuli. The authors found a left frontal activation to 

the positive feedback stimuli and right frontal activation to the negative feedback stimuli. 

This effect was restricted to the upper (i.e. 10-12 Hz) alpha band. These findings are evidence 

in favour of a specific role of frontal hemispheric asymmetries in valence discrimination. 

This study (Aftanas et al., 1996a) showed that the ERD is able to evidence relatively small 

differences in emotion processing and appears to be a suitable method with which to study 

emotion. Therefore, desynchronization in the upper alpha band is associated with semantic 

processes (Aftanas et al., 2001; Pfurtscheller & Lopes da Silva, 1999) and is influenced by 

the emotional content of the stimulus in the posterior electrodes (Krause et al., 2000). A 

growing literature shows that the de-synchronization of the alpha band is not only linked to 

processes of external attention such as alertness/vigilance and expectancy but might also be 

associated with perceptual and cognitive processes (Aftanas et al., 2001; Basar et al., 1999; 

Doppelmayr et al., 1998; Klimesch, 1999). In the present study, threatening stimuli, 

compared to non-threatening stimuli, induced de-synchronization in the alpha band. We 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Olofsson%20JK%5Bauth%5D
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found that the effect of the stimulus’s emotional content on alpha activity began 

approximately 500 ms after the stimulus presentation and continued until well after the 

stimulus had disappeared. This suggests that the difference in the processing of the emotional 

content begins when the stimulus is recognized and is maintained even when the stimulus is 

not visible (Aftanas et al., 2001). Moreover, the effect of emotion on the high gamma band is 

present soon after the disappearance of the stimulus only on the central channels. Looming 

objects contain optical information that could directly specify an action. The action might be 

an interception (catch) or a defensive response (block), but in either case, the looming 

stimulus toward the body specifies how rapid that response should be (Field & Wann, 2005). 

Field and Wann (2005) demonstrated using fMRI that the TTC task, compared to an inflation 

judgment and closure gap task, produces specific activity in sensorimotor areas. Interestingly, 

these activations correspond closely to networks previously identified for reaching and 

grasping (Field & Wann, 2005). Likewise, Billington and colleagues (2001) found 

sensorimotor responses to looming, relative to static or receding stimuli, that suggest that 

there is motor preparation in response to an approaching object, even though execution is not 

intended, underlining the direct and impelling nature of looming events. Obviously, in our 

case we cannot exclude an initial preparation of the response given that we asked the 

participant to perform an action (to press the keyboard key). From our results, it seems that 

threat can disrupt the synchronization of the gamma band that is linked to the actual 

execution of an action (Ball, 2008) or, perhaps, to the preparation of action due to the simple 

perception of a looming stimulus (Field & Wann 2005; Billington et al., 2011). 

 

Looming related brain activity 

In addition to modulation by the emotional content of stimuli, we found neural 

responses that scaled with the speed of object approach. The first analysis was focused on 
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specific VEPs and showed that the mean amplitude of the N1 parietal increased with 

approach speed.  

The analysis of oscillation bands has been used, as well as the VEPs analysis, to 

investigate the perception of moving stimuli (Piantoni et al., 2010; van der Meer et al., 2008). 

Piantoni and colleagues conducted an EEG experiment to directly compare neural signatures 

in illusory motion reversal (IMR) and binocular rivalry (BR), a well-studied form of rivalry. 

The authors found that both IMR and BR show large changes in power in the beta range (14–

30 Hz) at the time of a perceptual switch. More importantly, during a stable percept, beta 

power correlates with the probability of a perception. From their findings, it is clear that beta 

power associated with veridical motion perception was higher than the power during illusory 

motion perception. The authors proposed that the amplitude of synchronized beta activity 

reflects the size of currently active neural coalitions, with less likely percepts associated with 

smaller coalitions. In our case, instead, the de-synchronization of beta activity increases as 

the speed of approach increases.  

van der Meer and colleagues (2008) compared the influence of structured optic flow 

and random visual motion to static dots on neural oscillations and found that while infants 

showed an induced decrease in the amplitudes in the theta band, adults showed an induced 

increase in the beta band. Therefore, in their experiment van der Meer and colleagues showed 

that the presentation of stimuli representing the optic flow increased beta-band activity in 

adults. Starting from these findings, the clear link between beta oscillations and the 

perception of motion, we investigated the influence of different TTC on beta band. Our 

findings show that, when the stimulus is visible, beta activity changes as a function of the 

TTC: de-synchronization increases as objects approach more quickly.  

 

Implications for understanding emotional modulation of looming  
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The main purpose of this work was to find the neural correlates of the influence of 

emotion on TTC judgments. We found a modulation of emotion on several components (P1, 

N1 frontal, N1 occipital, EPN and LPP) and power band (alpha band). Moreover, we found a 

modulation of the calculation of the speed of approach on other different components (N1 

parietal) and power band (beta band). Although we did not find any component or power 

band modulated by the interaction of these factors, we did find an interesting pattern 

regarding the modulation of high gamma band. This frequency band was modulated by the 

semantic content of the stimulus over sensorimotor areas. There is evidence of the activation 

of the sensorimotor areas by the simple presentation of looming stimuli (Field & Wann 2005; 

Billington et al., 2011). Threat seems to disrupt the synchronization of the high gamma band 

over the areas linked to the preparation of an action. This is the only result that could be 

linked to the neural basis of an interaction. Indeed all the other ones represent more two 

biases that seem to run in parallel without interacting with each other. Recently, de 

Vignemont and Iannetti (2015) proposed a dual model of peripersonal space, based on a clear 

functional distinction between bodily protection and goal-directed action. The authors argue 

that the two functions of peripersonal space require distinct sensory and motor processes that 

obey different principles. On the one hand, our results are in line with this differentiation, 

given that we presented a set of results showing how emotion influences the processing of 

visual stimuli and another set depicting looming related brain activity. But, on the other hand, 

we have to keep in mind that just the simple detection of an approaching object is interpreted 

as a cue for threat. Moreover, the modulation of the high gamma band by threat seems to 

suggest the existence of an interaction between the sensorimotor activation linked to the 

action preparation and the stimulus content.    

In our behavioural findings, there is not a clear interaction between the effect of 

stimulus category and time-to-collision. The underestimation bias for the threatening stimuli 
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does not increase, nor decrease, with the increase, or decrease, of the time-to-collision. It 

seems more that the underestimation of TTC of threatening compared to non-threatening 

stimuli may be the result of two different biases: we underestimate the TTC of an 

approaching stimulus because we interpret it as a cue for threat. In addition to this, the 

emotional effect makes the underestimation even stronger without interfering with the actual 

perception of the characteristics of the expansion. 

Several nuclei operating at the subcortical level, however, could be involved in the 

processing of emotional visual stimuli and could have an important role on the modulation of 

emotion on visual perception. For example, it has been claimed that the role of the pulvinar is 

to integrate information from visual areas determining the biological relevance of a stimulus 

(Pessoa & Adolphs, 2010). Because both biological relevance (Pessoa & Adolphs, 2010) and 

temporal characteristics of looming stimuli (Billington et al., 2011) are processed in 

subcortical areas future research should consider these nuclei. Indeed, Billington and 

colleagues (Billington et al., 2011) have found that the superior colliculus and the pulvinar 

nucleus of the thalamus respond to looming, in addition to cortical regions associated with 

motor preparation. These authors also implicated the anterior insula in making timing 

computations for collision events.  
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