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1 Introduction

Robust inference in linear regression models has attracted considerable attention in

the literature. It is well known that estimators that are optimal in cross-sectional set-

tings remain asymptotically valid in time series regressions under general regularity

conditions. A leading example is the ordinary least squares (OLS) estimator of the

parameters of regression models with strictly exogenous regressors and dependent er-

rors. In such cases autocorrelation-robust inference is typically carried out by relying

on the asymptotic normality of the OLS estimator and a so-called heteroskedastic-

ity and autocorrelation consistent estimator of its asymptotic covariance matrix (see,

e.g., Newey and West (1987); Andrews (1991)).

However, a number of problems remain under such a strategy. The most widely

reported problem relates to the poor finite-sample properties of robust inference pro-

cedures and in particular to the large size distortions that related tests exhibit (see,

e.g., den Haan and Levin (1997)). Attempts to deal with this issue, either directly or

indirectly, can be found in Kiefer, Vogelsang, and Bunzel (2000), Andrews and Mon-

ahan (1992) and Jansson (2004), inter alia. A second problem that has received less

attention in the literature arises from the fact that the structure of the dependence

in the regression errors is not routinely exploited in order to improve the properties

of robust inference procedures. Of course, the fact that the dependence structure of

the errors is generally unknown poses a significant hurdle in this respect.

The present paper attempts to address the second problem and indirectly pro-

vides a means of addressing the first. In particular, we suggest using generalized least

squares (GLS) as an alternative to OLS for estimating the regression coefficients. One

of the advantages of this approach is that the GLS estimator is known to be the best

linear unbiased estimator (BLUE) of the regression coefficients under very general

conditions. The obvious difficulty, however, is that GLS requires knowledge of the

covariance structure of the errors. To overcome this difficulty, we propose to follow

Amemiya (1973) in employing a GLS procedure which approximates the generating

mechanism of the errors by an autoregressive model (for the residuals) the order of

which grows slowly with the sample size; this model is then used to obtain an esti-

mate of the error covariance matrix that is needed for the computation of feasible GLS

(FGLS) estimates. Such an approach is semiparametric in the sense that no particu-

lar finite-parameter model for the errors is assumed; instead, the infinite-parameter
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error process is approximated by a sequence of autoregressive models of finite but

increasing order. The sequence of approximations may be viewed as a sieve, in the

sense of Grenander (1981), which is why we refer to this procedure as semiparametric

sieve-type GLS. Amemiya (1973) established the asymptotic normality and asymp-

totic Gauss—Markov efficiency of an FGLS estimator based on such an autoregressive

approximation when the regressors are nonstochastic and the errors are generated by

a linear process with independent and identically distributed (i.i.d.) innovations.

In this paper we extend the work of Amemiya (1973) in two important respects.

Firstly, we generalize the analysis to allow for a much larger class of stochastic

processes, as well as for autoregressive approximations the order of which is data-

dependent and determined by means of information criteria or sequential testing.

Secondly, unlike the papers cited in preceding paragraphs, all of which deal with

models with regressors and errors that are short-range dependent (in the sense of

having absolutely summable autocovariances), we also consider models in which the

regressors and/or the errors may exhibit long-range dependence (in the sense of having

autocovariances which are not absolutely summable). In models of the latter type, the

OLS estimator of the regression coefficients not only fails to attain the Gauss—Markov

efficiency bound but may also have a slow rate of convergence and a non-Gaussian

asymptotic distribution (see, e.g., Robinson (1994); Chung (2002)). As a result, the

use of robust OLS-based inferential procedures cannot be justified. Furthermore, even

in models with nonstochastic regressors, where the OLS estimator is asymptotically

normal for certain designs, asymptotic efficiency is generally unattainable and the

rate of convergence may be slow (cf. Yajima (1988, 1991); Dahlhaus (1995)). By

contrast, the GLS estimator, and suitable approximations thereof, are known to have

the desirable properties of asymptotic normality and Gauss—Markov efficiency even

under circumstances in which the OLS estimator has a non-Gaussian asymptotic dis-

tribution or a slow rate of convergence (cf. Robinson and Hidalgo (1997); Choy and

Taniguchi (2001)).

GLS-based inference in the semiparametric context of autocorrelation of unknown

form, although less studied than OLS-based inference, has been analyzed in a number

of papers. Almost all of the available work, Amemiya (1973) being the obvious

exception, address the problem by using semiparametric estimates of the error spectral

density. In a short-range dependent environment, examples of this approach include
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Hannan (1963, 1970) and Robinson (1991), among others. It is worth noting, however,

that the small-sample properties of inference procedures based on such frequency-

domain GLS estimators tend to be comparably poor (and, for very small samples,

considerably so) compared to those obtained via OLS (cf. Robinson (1991)). In the

presence of long-range-dependence, a related approach was investigated by Hidalgo

and Robinson (2002), who demonstrated that the unknown spectral density of the

errors may be replaced by a suitable smoothed nonparametric estimator without any

effect on the first-order asymptotic distribution of their (approximate) GLS estimator.

If the spectral density of the errors is a known function of finitely many unknown

parameters, Robinson and Hidalgo (1997) showed that it is also possible to replace the

latter by suitable estimates and employ a frequency-domain FGLS procedure. Nielsen

(2005) considered an alternative frequency-domain FGLS estimator which uses only

periodogram ordinates in a degenerating band around the origin in conjunction with

a consistent estimator of the memory parameter of the errors.

A related strand of the literature deals with inference on the parameters of the

trend function of a time series when deviations from the trend may or may not be

integrated of order one, or I(1). Notable papers in this area include Perron and Yabu

(2009, 2012). In these papers the authors postulate an autoregressive structure for the

deviations from a deterministic trend function and use FGLS to carry out inference.

In the case of I(1) deviations from the trend, inference is improved by the use of ‘super-

efficient’ estimation of the parameters associated with the autoregressive structure of

the detrended series. Perron and Yabu (2012) also consider the implications of allow-

ing for deterministic breaks in the trend function. While the aforementioned papers

make use of autoregressive approximations, as we do, and allow for I(1) components

in the data-generating process, they are specifically concerned with inference on the

trend component of a time series or, more generally, on deterministic components,

and do not allow for the general stochastic-regressor setting considered here. In that

sense, they are complementary to our analysis. A related set of contributions have

been made by Harris, Harvey, Leybourne, and Taylor (2009) and Harvey, Leybourne,

and Taylor (2007), who consider the problem of unit-root testing in the presence of

breaks and inference on the parameters of a deterministic linear trend function in

the presence of possibly I(1) noise, respectively. The former paper extends the work

on GLS-based unit-root testing by Elliott, Rothenberg, and Stock (1996) and others,
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while the latter is based on a variant of the procedure of Newey and West (1987),

suitably modified to allow for the possibility that the detrended series is I(1).

The remainder of the paper is organized as follows. Section 2 introduces the model

and describes the sieve-type FGLS estimation procedure. Section 3 establishes the

asymptotic properties of the FGLS procedure under conditions that allow for short-

range or long-range dependence in the errors and/or regressors. Section 4 reports

the results of a simulation study of the small-sample performance of the method in

the context of testing regression hypotheses. Section 5 summarizes and concludes.

Mathematical proofs and supporting lemmata are collected in the Appendix.

2 Model and Estimation Procedure

Consider a regression model of the form

yt = x0tβ + ut, t = 1, . . . , T, (1)

where yt is the observable dependent variable, xt = (x1,t, . . . , xk,t)0 is a k-dimensional

vector of observable explanatory variables (with xk,t = 1 for all t), β = (β1, . . . , βk)0

is a k-dimensional vector of unknown parameters, and ut is an unobservable random

error term. The aim is inference on β.

Letting B denote the backward shift operator, we make the following assumption

about the errors in (1).

Assumption 1 (i) {ut} is a second-order stationary process satisfying

ut = (1−B)−duξt, ξt =
∞X
j=0

δjεt−j, t = 0,±1,±2, . . . , (2)

for some 0 ≤ du < 1/2; (ii) {δj; j ≥ 0} is an absolutely summable sequence of
constants (with δ0 = 1) satisfying

P∞
j=0δjz

j 6= 0 for all complex z with |z| ≤ 1;

(iii) {εt} is an ergodic sequence of random variables such that E(εt|Fε
t−1) = 0 a.s.,

E(ε2t |Fε
t−1) = σ2ε > 0 a.s., and suptE(|εt|4) < ∞, Fε

t being the σ-field generated by

{εs; s ≤ t}.

As usual, for any non-integer real d, the operator (1−B)−d is defined by the series

(1−B)−d = 1 +
∞X
j=1

Γ(j + d)

Γ(j + 1)Γ(d)
Bj,

5



where Γ(·) is the gamma function (with the convention 1/Γ(0) = 0). Assumption 1
requires {ut} to be a fractionally integrated process with memory (or long-range
dependence, or fractional differencing) parameter du. Under this assumption, {ut}
admits the AR(∞) representation

ut =
∞X
j=1

φjut−j + εt, t = 0,±1,±2, . . . . (3)

for some absolutely summable sequence of constants {φj; j ≥ 1} satisfying φj ∼ j−du−1

as j → ∞ (du 6= 0), where ‘∼’ signifies asymptotic proportionality. Similarly, it can
be easily seen that {ut} admits the causal MA(∞) representation

ut = εt +
∞X
j=1

ψjεt−j, t = 0,±1,±2, . . . , (4)

for some square-summable sequence of constants {ψj; j ≥ 1} satisfying ψj ∼ jdu−1 as

j →∞ (du 6= 0).
Assumption 1 covers many important families of long-range dependent processes,

including autoregressive fractionally integrated moving average (ARFIMA) processes

(Granger and Joyeux (1980); Hosking (1981)). When du = 0 in (2), the regression

errors are a short-range dependent linear processes with martingale-difference inno-

vations and a spectral density that is continuous and positive at the origin. We note

that, for 0 < du < 1/2, Assumption 1 is stronger than the corresponding assumption

of Robinson and Hidalgo (1997), who only require the existence of the MA(∞) repre-
sentation in (4) with square-summable coefficients and innovations which satisfy the

same conditions as ours. Hidalgo and Robinson (2002), on the other hand, essentially

require the innovations in (4) to behave like an i.i.d. sequence up to the 12th moment.

The analysis in Amemiya (1973) requires {ut} to be a short-range dependent process
that admits an AR(∞) representation like (3) with P∞

j=1 |φn+j| = O( n) for some

0 < < 1 and {εt} being an i.i.d. sequence.
Letting y = (y1, . . . , yT )

0, X = (x1, . . . , xT )
0 and u = (u1, . . . , uT )

0, the BLUE of

the parameter β in (1) is eβ = (X 0Ω−1X)−1X 0Ω−1y, (5)

where Ω = E(uu0). When Ω is unknown, an FGLS estimator must be used instead

of the BLUE. Following Amemiya (1973), we propose to construct such an estimator

by using an approximation to the AR(∞) representation of {ut} given in (3).
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To describe the method in detail, let

ūt = yt − x0tβ̄, t = 1, . . . , T, (6)

where β̄ is a preliminary estimator of β. Further, for some positive integer h, chosen

as a function of T so that h→∞ and h/T → 0 as T →∞, let bφh = (bφh,1, . . . , bφh,h)0
be the hth-order OLS estimator of the autoregressive coefficients for {ūt}, obtained
as the solution to the minimization of

(T − h)−1
TX

t=h+1

(ūt − φh,1ūt−1 − · · ·− φh,hūt−h)
2 (7)

over φh = (φh,1, . . . , φh,h)0 ∈ Rh. A computationally attractive FGLS estimator of β

may then be obtained as bβ = (X 0bΦ0bΦX)−1X 0bΦ0bΦy, (8)

where bΦ is the (T − h)× T matrix defined as

bΦ =
⎛⎜⎜⎜⎜⎜⎝
−bφh,h −bφh,h−1 · · · −bφh,1 1

−bφh,h −bφh,h−1 · · · −bφh,1 1 0
...

0 · · · 1

−bφh,h −bφh,h−1 · · · −bφh,1 1

⎞⎟⎟⎟⎟⎟⎠ .

This, of course, is equivalent to applying OLS to the regression of (1−Ph
j=1

bφh,jBj)yt

on (1−Ph
j=1

bφh,jBj)xt.1

Remark 1 An alternative FGLS estimator of β, with the same asymptotic properties

as bβ, can be obtained by replacing bΦ0bΦ in (8) by bΩ−1, where
bΩ = ½Z π

−π
eı(t−s)ω bfū(ω)dω; t, s = 1, . . . , T¾ .

Here bfū(·) is the estimator of the spectral density of {ut} associated with the autore-
gressive approximation based on ūt, i.e.,

bfū(ω) = bσ2ū,h
2π

¯̄̄̄
¯1−

hX
j=1

bφh,jeıjω
¯̄̄̄
¯
−2

, −π < ω ≤ π,

where bσ2ū,h is the minimum of (7) and ı =
√−1.

1We note that Yule—Walker or Burg-type estimates may be used instead of the OLS estimatesbφh in the construction of bΦ without changing the first-order asymptotic properties of bβ.
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Remark 2 Using the discrete Fourier transforms of X and y, the BLUE eβ may be
expressed as eβ = (Ẍ∗WΩ−1W ∗Ẍ)−1Ẍ∗WΩ−1W ∗ÿ,

where W = {T−1/2 exp(2πıts/T ); t, s = 0, 1, . . . , T − 1}, Ẍ = WX, ÿ = Wy, and the

asterisk denotes matrix transposition combined with complex conjugation. It is well

known that, when T is large, the matrix WΩ−1W ∗ is approximately diagonal with

elements fu(2πj/T )−1, 0 ≤ j ≤ T − 1, where fu(·) is the spectral density of {ut} (cf.
Grenander and Szegö (1958, p. 62)). Hence, the time-domain GLS estimator given in

(5) can be shown to be asymptotically equivalent to the frequency-domain estimator

eβf = (Ẍ∗Q−1Ẍ)−1Ẍ∗Q−1ÿ, (9)

where Q = diag{fu(2πj/T ); j = 0, 1, . . . , T − 1}. The approximate GLS estimator
in (9) is a member of the family of estimators considered by Robinson and Hidalgo

(1997), whose frequency-domain weighted least-squares estimator of (β1, . . . , βk−1)0

may be expressed as

eβg = ÃT−1X
j=1

Ixx(2πj/T )g(2πj/T )
!−1ÃT−1X

j=1

Ixy(2πj/T )g(2πj/T )
!
. (10)

Here, Ixx(·) and Ixy(·) stand for the periodogram of {(x1,t, . . . , xk−1,t)0} and the cross-
periodogram of {(x1,t, . . . , xk−1,t)0} and {yt}, respectively, and g(·) is a real-valued,
integrable, even, and periodic function on [−π, π] with period 2π. If g(·) = fu(·)−1,
then eβg = (eβ1,f , . . . , eβk−1,f )0, where eβi,f denotes the ith element of eβf .
3 Asymptotic Results

3.1 Short-Range Dependence

We first consider the asymptotic properties of the FGLS estimator in the case where

the errors and regressors in (1) are both short-range dependent. More specifically,

we assume that the regression errors satisfy (2) with du = 0, and strengthen the

assumptions about the MA(∞) innovations and weights as follows.

Assumption 2 (i) {εt} is ϕ-mixing of size −η, for some η > 1; (ii) suptE(|εt|2κ) <
∞ for some κ > 2; (iii)

P∞
j=0 jζ |δj| < ∞ for some ζ ≥ 1/2 such that 2η ≥ ζ and

ζ(κ− 2)/{2(κ− 1)} ≥ 1/2.
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Regarding the regressors, we make the following assumption.

Assumption 3 (i) {xt} is L2r-bounded, L2-near-epoch-dependent (L2-NED) of size
−ζ on a k-dimensional ϕ-mixing process of size −η, η > 1, such that 2η ≥ ζ and

ζ(r−2)/{2(r−1)} ≥ 1/2 for some r > 2; (ii) {xt} and {εt} are mutually independent;
(iii) E(xtx

0
t) and E (T

−1X 0Ω−1X) are nonsingular.

Assumption 3(i) is quite general and, together with Assumptions 1 and 2, implies

that {(ut, x0t)0} is NED in L2-norm on a ϕ-mixing base process.2 This requirement is

relatively mild compared to other conditions that are commonly used in the robust

inference literature (such as mixing), and allows for a wide variety of linear and non-

linear short-range dependent processes with bounded fourth moments (cf. Davidson

(1994, 2002)). The level of detail is needed since the properties of {ut} are important
for deriving all the results and there exists a degree of trade-off on the stringency of

the conditions applied to {xt} and {ut} in order to obtain the central limit theorem
that is needed in the proof of Theorem 1 below. Of course, there exist alternative sets

of dependence and heterogeneity conditions that can be used to establish our results.

An example are the conditions considered in Section 3.2; unlike Assumption 3(i),

however, these impose conditional homoskedasticity on {xt}. Assumption 3(i) is a
substantially weakening of the assumptions in Amemiya (1973), which require {xt}
to be a nonstochastic sequence satisfying the so-called Grenander conditions.

Assumption 3(ii) is a rather restrictive exogeneity condition. As remarked by

Robinson (1991), Robinson and Hidalgo (1997) and Hidalgo and Robinson (2002),

who use it as well, the assumption could probably be relaxed to a milder orthogonality

condition, albeit at the cost of greater structure on {xt}. The leading case where
this assumption is violated is when lagged values of the dependent variable appear

as regressors in (1). Whereas the exogeneity requirement may appear restrictive,

it is implicit in some form in all work on robust inference as error autocorrelation

combined with the presence of lagged dependent variables among the regressors leads

to inconsistency of the OLS estimator. Assumption 3(iii) is a conventional full-rank

condition that precludes multicollinearity.

Before stating our main result, we introduce two more assumptions about the pre-

liminary estimator β̄ of the regression coefficients and the order h of the autoregressive
2For a definition and more information on the ϕ-mixing and NED concepts, and the related size

terminology, the reader is referred to Davidson (1994).

9



approximation used to obtain bΦ.
Assumption 4 β̄ = β +Op(T

−1/2) as T →∞.

Assumption 5 (i) h = hT
p→∞ as T →∞;(ii) hT = op

¡{T/ lnT}1/4¢ as T →∞.
Assumption 4 is a mild requirement that is satisfied by many estimators, includ-

ing the OLS estimator. Assumption 5 defines probabilistic conditions on the rate

of growth of the sequence hT . It does not necessarily specify whether the sequence

is deterministic (in which case the probabilistic conditions degenerate to their de-

terministic equivalents) or data-dependent and, therefore, stochastic. Later results

will provide conditions under which a data-dependent sequence hT satisfies Assump-

tion 5. The assumption is consistent with the view that {ut} is neither white noise
nor, more generally, a finite-order autoregressive process. In the latter case, a finite

h at least equal to the true autoregressive order would suffice, and existing standard

results would provide justification for our FGLS approach. As the case of an AR(∞)
process is more interesting and realistic, we focus on this and disallow the simpler case

of finite-order autoregressive dynamics for {ut}. This is formalized in the following
assumption.

Assumption 6 {ut} does not degenerate to a finite-order autoregressive process.

The following theorem establishes the asymptotic equivalence of the FGLS esti-

mator bβ and the BLUE eβ.
Theorem 1 Suppose Assumptions 1, 2, 3, 4 and 5 hold and du = 0. Then

√
T (bβ − eβ) = op(1) as T →∞,

and hence √
T (bβ − β)

D→ N (0, V ) as T →∞,

where V = plim
T→∞

(T−1X 0Ω−1X)−1.

An important practical issue in sieve-type GLS inference is the choice of the ap-

proximating autoregressive order h in (7). Automatic data-dependent choices for h

using either information criteria or sequential testing are natural strategies to con-

sider.
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Information criteria take the general form

ln bσ2ū,h + hCT/T, (11)

where bσ2ū,h is the minimum of (7) and CT is an information criterion specific penalty

term. For instance, in the case of the familiar Akaike, Bayesian and Hannan—Quinn

information criteria the penalty terms are CT = 2, CT = lnT and CT = 2b ln lnT

(b > 1), respectively. The following theorem provides the theoretical justification for

the use of information criteria in our setting.

Theorem 2 Suppose Assumptions 1, 2, 3, 4 and 6 hold and du = 0. Let hT be chosen

by minimizing (11) over h ∈ HT , where HT = {1, 2, . . . , H∗
T}, H∗

T = o
¡{T/ lnT}1/4¢

as T → ∞, CT > 1 and CT = o
¡{T 3 lnT}1/4¢ as T → ∞. Then hT satisfies

Assumption 5.

As an alternative to information criteria, one may use sequential testing. This

amounts to starting with a general autoregressive model of order H∗
T and sequentially

testing the significance of, and removing, the highest-order lag if its coefficient is

found to be insignificantly different from zero. The sequence of tests stops if the

highest-order lag considered is found to be significant. More specifically the following

algorithm may be adopted.

Algorithm 1 (Selection of h using sequential testing)

Step 1: Start with an AR(H∗
T ) model for the residual {ūt}. Set h∗ = H∗

T . Go to

Step 2.

Step 2: Using a conventional t-test with significance level α, test the significance

of the coefficient on the h∗th-order lag in an AR(h∗) model for ūt. If found

significant, stop and set hT = h∗. Otherwise, go to Step 3.

Step 3: Set h∗ = h∗ − 1. If h∗ = 0, set hT = 1. Otherwise, go to to Step 2.

We make the following assumption about the maximum allowable autoregressive

order H∗
T in Algorithm 1.

Assumption 7 H∗
T = o

¡{T/ lnT}1/4¢ and P∞
j=H∗T+1

|δj| = o(T−1/2) as T →∞.
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Our next theorem establishes the validity of the procedure based on sequential

testing.

Theorem 3 Suppose Assumptions 1, 2, 3, 4, 6 and 7 hold and du = 0. Let hT be

chosen using Algorithm 1 with α ∈ (0, 1). Then hT satisfies Assumption 5.

Remark 3 The conditions given in Assumption 7 clearly depend on the nature of

the data-generating mechanism for {ut}. Hence, in order to minimize dependence on
these conditions, it is reasonable in practice to set the upper boundH∗

T to values close

to T 1/4, e.g., H∗
T =

¥
T 1/4

¦
, where b·c denotes the integer-part function. Also note

that the assumption imposes both an upper and a lower bound on the rate of growth

of h. This makes the selection procedure based on information criteria to be valid

under slightly less restrictive conditions for the problem considered in this paper.

We end this section by considering an important question relating to the power

of a conventional hypothesis test based on the FGLS estimator of β compared to the

corresponding test based on the OLS estimator. Clearly both tests are consistent.

Although the inefficiency of the OLS-based test is obvious, the result becomes clearer

in terms of local power, on which we briefly comment.

In the case of a single regressor (which, for the purposes of the discussion on local

power only, may be assumed to be different from a constant), the null hypothesis

H0 : β = β0 may be tested using the GLS-based t-statistic (bV /T )−1/2(bβ − β0), wherebV is a consistent estimator of V .3 It is then straightforward to show that, under a

sequence of local alternatives of the form H1T : β = βT = β0 + cT−1/2, where c is

a constant, (bV /T )−1/2(bβ − β0)
D→ N (cV −1/2, 1) as T → ∞. Similarly, for the OLS-

based t-statistic we have (bVOLS/T )−1/2(bβOLS − β0)
D→ N (cV −1/2OLS , 1) as T →∞ under

H1T , where bβOLS, VOLS, and bVOLS denote, respectively, the OLS estimator of β, its
asymptotic variance and a consistent estimator of VOLS. Since, V ≤ VOLS, the local

power of the GLS-based test dominates that of the OLS-based test.

3.2 Long-Range Dependence

We now consider the case where the errors and/or regressors in (1) may exhibit

long-range dependence. In order to allow for this possibility, we make the following

3The estimator bV can be easily obtained from the OLS regression of (1 −Ph
j=1

bφh,jBj)yt on

(1−Ph
j=1

bφh,jBj)xt.
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assumptions about the regressors (here, and in the sequel, k·k denotes the Euclidean
norm for vectors and matrices, and Ik is the identity matrix of order k).

Assumption 8 (i) {xt} is a fourth-order stationary process satisfying

xt − μx = D(B)vt, vt =
∞X
j=0

Ψjwt−j, t = 0,±1,±2, . . . . (12)

where D(B) = diag{(1−B)−d1, . . . , (1−B)−dk} for some 0 ≤ di < 1/2 (i = 1, . . . , k)

and μx ∈ Rk is a constant; (ii) {Ψj} is an absolutely summable sequence of non-
stochastic k × k matrices (with Ψ0 = Ik); (iii) {wt} is an ergodic sequence of k-
dimensional random vectors such that E(wt|Fw

t−1) = 0 a.s., E(wtw
0
t|Fw

t−1) = Σw a.s.,

with |Σw| > 0 and kΣwk <∞, and suptE(kwtk4) <∞, Fw
t being the σ-field generated

by {ws; s ≤ t}.

Assumption 9 {wt} and {εt} are mutually independent.

Assumption 8, which is a multivariate variant of Assumption 1, is fairly mild and

allows for stochastic regressors which may exhibit long-range dependence. Under

this assumption, the k-variate fractionally integrated process defined by (12) admits

a causal MA(∞) representation with square-summable coefficients which decay at
slow hyperbolic rates. Needless to say, Assumption 8 also caters for the possibility

that the regressors are short-range dependent, albeit under stricter conditions than

those in Assumption 3; if d1 = · · · = dk = 0, then {xt} is a linear process with
martingale-difference innovations and a continuous spectral density matrix. By way

of comparison, we note that Robinson and Hidalgo (1997) and Hidalgo and Robinson

(2002) assume that {xt} is an ergodic, fourth-order stationary process satisfying a
suitable cumulant condition. The maintained assumption in Nielsen (2005) is that

{(x0t, ut)0} is a linear process with square-summable weights, fourth-order stationary
martingale-difference innovations, and a spectral density matrix which satisfies certain

long-range dependence conditions.

The strict exogeneity of the explanatory variables imposed by Assumption 9 is

admittedly restrictive. We again note the remark by Robinson and Hidalgo (1997)

and Hidalgo and Robinson (2002), that the assumption could probably be relaxed to

a milder orthogonality condition, albeit at the cost of greater structure on {xt} and
greater technical complexity. However, as mentioned before, even such a condition
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would rule out dynamic specifications in which the regressors include lagged values of

the regressand. The assumption used by Nielsen (2005) is essentially a local (in the

neighborhood of the zero frequency) version of the usual orthogonality condition.

In order to establish the asymptotic distribution of the FGLS estimator, Assump-

tion 4 will be needed, which requires the preliminary estimator β̄ to be
√
T -consistent.

In the presence of long-range dependence, this generally rules out the OLS estima-

tor, which has a rate of convergence slower than Op(T
−1/2) when at least one of the

regressors in (1) has memory parameter di such that di + du > 1/2 (cf. Robinson

(1994); Chung (2002)). However, one may use the weighted least-squares estimator

in (10) with a weight function g(·) which satisfies the conditions of Robinson and
Hidalgo (1997); an example of such a function is g(ω) = |1− eıω|.
We shall also make use of the following assumption, which requires h to increase

with the sample size at a suitable rate.

Assumption 10 h = hT → ∞ as T → ∞ so that hT = O ({lnT}r) for some
0 < r <∞.

The theorem below gives sufficient conditions for the FGLS estimator bβ to have
the same asymptotic distribution as the BLUE eβ in the presence of long-range de-
pendence. The asymptotic distribution of the BLUE can be found in Robinson and

Hidalgo (1997).

Theorem 4 Suppose Assumptions 1, 4, 8, 9 and 10 hold. If, in addition,

(5/2)du + (1/2)max{di; 1 ≤ i ≤ k} < 1, (13)

then √
T (bβ − eβ) = op(1) as T →∞.

Remark 4 We conjecture that the result of the above theorem will hold for all

linear, long-range dependent, stationary processes {xt} and {ut}, rather than just
those satisfying (13). Our simulation results suggest that this is the case. Note also

that condition (13) is more flexible than conditions usually invoked in the literature to

derive standard (short-range dependence type) asymptotics for long-range dependent

processes. These are usually of the form du < 1/4 or max{di; 1 ≤ i ≤ k} < 1/4. By
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contrast, du < 2/5 and max{di; 1 ≤ i ≤ k} < 1/2 are cases that can be potentially

accommodated by our results.

As in the short-range dependent case discussed in Section 3.1, data-dependent

choices of the approximating autoregressive order h = hT can be allowed for. Any

choice hT obtained by using a data-driven selection procedure which guarantees that

hT satisfies Assumption 10 with probability approaching one as T →∞ is sufficient

for Theorem 4 to hold. Using the results in Poskitt (2007), it can be shown, in

a similar way to Theorem 2, that information criteria such as the familiar Akaike,

Bayesian and Hannan—Quinn criteria return a lag order hT which is asymptotically

acceptable, provided the maximum allowable order is allowed to grow to infinity with

T at a rate O ({lnT}r) for some 0 < r <∞.

4 Monte Carlo Experiments

The theoretical part of the paper has argued that the approach of Amemiya (1973)

can be extended to cover a rich class of short-range dependent and long-range de-

pendent processes, be made automatic through the use of information criteria and/or

sequential tests, and be applied to the problem of robust inference. Nevertheless,

it is not clear to what extent the asymptotic results provide good small-sample ap-

proximations. The aim of the Monte Carlo study of this section is to provide some

answers to this question by examining the small-sample size and power properties of

hypothesis tests.

4.1 Experimental Design

In our numerical experiments, artificial data {yt} are generated according to the
model

yt = β1x1,t + β2 + ut, t = 1, . . . , T,

with β1 ∈ {0, 0.05, 0.1, 0.2, 0.5} and β2 = 0. The data-generating mechanism for

{x1,t} is either the AR(1) model (1− 0.5B)x1,t = wt or the ARFIMA(0, dx, 0) model

x1,t = (1−B)−dxwt with dx ∈ {0.2, 0.4}; in either case, {wt} are i.i.d. N (0, 1) random
variables. Similarly, the errors are allowed to exhibit either long-range or short-range

dependence. In the former case, {ut} is generated as the ARFIMA(1, du, 0) process
(1−φB)ut = (1−B)−duεt with φ ∈ {0, 0.5, 0.9, 0.98} and du ∈ {0.2, 0.4}. In the latter
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case, we consider the following data-generating processes (I(·) denotes the indicator
function):

1. ut = 0.3ut−1 + εt (AR1)

2. ut = 0.95ut−1 + εt (AR2)

3. ut = εt + 0.5εt−1 (MA)

4. ut = 0.5ut−1εt−1 + εt (BIL)

5. ut = 0.8ε2t−1 + εt (NMA)

6. ut = 0.5ut−1I(ut−1 ≤ 1) + 0.4ut−1I(ut−1 > 1) + εt (TAR1)

7. ut = 0.95
p|ut−1|+ εt (SQRT)

8. ut = −I(ut−1 ≤ 0) + I(ut−1 > 0) + εt (SGN)

9. ut = 0.95ut−1I(ut−1 ≤ 0)− 0.2ut−1I(ut−1 > 0) + εt (TAR2)

10. ut =
√
νtεt, νt = 0.25+0.5νt−1+0.5y2t−1I(εt ≤ 0)+0.2y2t−1I(εt > 0) (NARCH)

For all the designs, {εt} are i.i.d. N (0, 1) random variables independent of {wt}.
AR1, AR2 and MA are linear processes, and hence the sieve-type GLS is expected to

work best for these. In order to investigate the robustness of the method to failure

of the linearity assumption, the remaining eight processes under consideration are

nonlinear. We feel they represent a reasonable sample of nonlinear processes used in

the literature and have taken many of them from Hong and White (2005). BIL is

a bilinear AR(1) process, NMA is a nonlinear MA(1) process, TAR1 and TAR2 are

threshold AR(1) processes, SQRT is a fractional AR(1) process, SGN is a sign AR(1)

process, and NARCH is a nonlinear GARCH process. If the sieve-type GLS procedure

were found to perform well in these cases, then it would be reasonable to claim that

linear autoregressive approximations are worth considering more generally. It is worth

pointing out that nonlinear short-range dependent processes have not been widely

used in Monte Carlo studies in the robust inference literature. This seems surprising,

especially in the case of methods that utilize autoregressive prewhitening (such as

those discussed in Andrews and Monahan (1992) and den Haan and Levin (2000),
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among others), since such methods may be reasonably expected to work better for

linear processes compared to other nonparametric approaches.

In the experiments, the objective is to test the null hypothesis H0 : β1 = 0 against

the alternative H1 : β1 6= 0 using a t-type statistic; the latter is constructed using

either the FGLS coefficient estimator and its variance or the OLS coefficient estimator

and a heteroskedasticity and autocorrelation robust variance estimator. The value

β1 = 0 is thus used to compute Type I error probabilities, while values β1 > 0 are used

for power calculations. To ensure meaningful power comparisons, power calculations

are carried out using size-adjusted critical values computed from the experiments in

which β1 = 0. The number of Monte Carlo replications is 20,000 in the case of size

calculations and 5,000 otherwise. The nominal significance level of tests is 0.05.

When the errors and regressors are short-range dependent, we consider two ver-

sions of the GLS-based test depending on the strategy used to choose the order h of

the autoregressive approximation. For the first version, h is selected by minimizing

the Bayesian information criterion of Schwarz (1978) over the range 0 ≤ h ≤ H∗
T .

We set H∗
T = 10

¥
T 1/4

¦
, which is an appropriate choice in view of Theorem 2, and

label the resulting test GLSB. The second version uses the sequential testing proce-

dure described in Algorithm 1 with α = 0.01. We set H∗
T = 10

¥
T 1/4

¦
, which is an

appropriate choice in view of Theorem 3 and Remark 3, and label the resulting test

GLS1%. In either case, the preliminary estimator β̄ used to compute the residuals in

(6) is OLS.

We consider three OLS-based competitors to the tests constructed using FGLS

estimates. The first is a test based on the Newey and West (1987) robust covariance

estimator with bandwidth set equal to
¥
T 1/5

¦
, which is labeled NW. The second is

based on the approach advocated by Kiefer, Vogelsang, and Bunzel (2000), which

is labeled KVB. The third test is based on the approach of Andrews and Monahan

(1992) using the quadratic spectral kernel, AR(1) prewhitening, and AR(1)-based

automatic bandwidth selection, as discussed in that paper; this test is labeled QS.

When long-range dependence is considered, we examine regression tests based

on our time-domain FGLS estimator bβ and the frequency-domain GLS estimator of
Hidalgo and Robinson (2002).4 In our implementation of the FGLS procedure, the

preliminary estimator used to compute the residuals in (6) is OLS. This, of course, is

4We are grateful to Štěpána Lazarová for providing us with the computer code used in the
simulation study of Hidalgo and Robinson (2002).
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not a theoretically attractive choice because the OLS estimator of the slope coefficient

is
√
T -consistent only when dx + du < 1/2. Nevertheless, we use the OLS estimator

because of its numerical convenience and familiarity, and because we wish to examine

whether this choice has deleterious effects on the small-sample properties of the FGLS

procedure. The order of the autoregressive approximation h is selected by minimizing

the Bayesian information criterion over the range 0 ≤ h ≤ b2 lnTc . Frequency-
domain GLS estimates are computed using the weight function c(u) = 1 − |u| and
bandwidth parameter m = bT/16c, in the notation of Hidalgo and Robinson (2002).
The preliminary estimator employed is again OLS; interestingly, Hidalgo and Robin-

son (2002) found this choice of preliminary estimator to yield satisfactory results even

in situations where it is theoretically unjustifiable owing to the reason mentioned in

the previous sentence. The tests based on the sieve-type GLS and the frequency-

domain GLS are labeled GLS-TD and GLS-FD, respectively.

4.2 Simulation Results

Tables 1—3 report Monte Carlo estimates of the rejection probabilities of tests in the

case where the stochastic regressor and the errors exhibit short-range dependence.

The null rejection probabilities shown in Table 1 reveal that both GLS-based tests

have very good performance. GLS1% tends to have an advantage over GLSB in small

samples (T = 20, 30), but otherwise the performance of the two tests is quite similar.

For this reason, we focus on the GLS1% test. As expected, in the case of linear data-

generating processes for the errors, GLS1% dominates all other tests by substantial

margins (see, e.g., the case of AR2). More surprisingly perhaps, GLS1% is also the

superior test when {ut} is a nonlinear process. More specifically, it dominates NW and

QS for all design points. KVB performs better than GLS1% in some cases. However,

even in these cases the difference between KVB and GLS1% is small and becomes

negligible when T ≥ 30. What is more, in cases where GLS1% outperforms KVB, it
does so by a considerable margin.

These results are backed up by a more detailed study of the null rejection probabil-

ities shown in Figure 1, where T varies between 10 and 100 at steps of 1 observation.

The panels in Figure 1 group the performance of the tests for a given process for

{ut}. To gain a different insight, Figure 2 presents the same results but here each
panel groups the results for one test across error processes. Performance across er-
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ror processes is much less variable for GLS-based tests than for OLS-based tests.

The GLS-based tests perform impressively regardless of the structure of the process

generating the errors. This is not the case for OLS-based tests. NW is the least suc-

cessful and, while QS improves upon NW, it never dominates either KVB or GLS1%.

As a final point, we comment on the difference in performance between GLS1% and

GLSB. Although they perform equally well for T > 30, the performance for small T

is different enough to warrant some explanation. Closer examination suggests that

GLS1% performs better because it relies on a more parsimonious and less variable

order selection procedure, which results in better size control.

Rejection probabilities for the power experiments are reported in Tables 2 and

3. Since our computations use size-adjusted critical values, it is not surprising that

GLS1% and GLSB perform very similarly. The two GLS-based tests are never domi-

nated by the OLS-based tests. In many cases the performance of GLS1% and GLSB

is similar to that of NW, and to a lesser extent QS. GLS1% and GLSB dominate KVB

in most cases by substantial margins.

Overall, it is clear that GLS-based tests, and especially GLS1%, suffer little of the

size distortions widely reported in the literature on OLS-based procedures. Their

power performance in small samples reflects their theoretical asymptotic properties

by being superior to that of OLS-based tests. Importantly, these results seem to

extend to cases where the generating mechanism of the errors is nonlinear, implying

that autoregressive approximations have wide applicability, as indeed is suggested by

the work of Bickel and Bühlmann (1997).5

Turning to designs with long-range dependence, Table 4 contains estimates of the

rejection probabilities of the GLS-TD and GLS-FD tests in the case where both the

stochastic regressor and the errors are long-range dependent. For the most part,

the discrepancy between the empirical and nominal Type I error probabilities of the

GLS-TD test is smaller than that of the GLS-FD test, especially in the smaller sam-

ples. The GLS-TD test is also more robust than the GLS-FD test with respect to

strong collective long-range dependence (although it is possible that the performance

of the GLS-FD test would improve in cases where dx + du > 1/2 if a
√
T -consistent

5Bickel and Bühlmann (1997) show that the closure (with respect to certain metrics) of the
class of MA(∞) or AR(∞) processes is fairly large. Roughly speaking, for any stationary nonlinear
process, there exists another process in the closure of linear processes having identical sample paths
with probability exceeding 1/e ≈ 0.368.
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preliminary estimator of the slope parameter was used instead of OLS). As far as

power is concerned, the GLS-TD test has a clear advantage for most parameter con-

figurations. This advantage is particularly prominent in cases where there is strong

long-range dependence in the errors.

In additional experiments not reported here, we considered situations where either

the regressor or the error (but not both) is long-range dependent. The case where the

regressor is long-range dependent but the error is not, included experiments where the

error follows all of the nonlinear processes presented earlier. Results under the null

hypothesis exhibit similar patterns to those reported in Table 4. More specifically,

in the presence of long-range dependent errors, the GLS-TD test dominates GLS-

FD in terms of size distortion, especially in the smaller samples. The GLS-TD test

generally has a power advantage too over the GLS-FD test, the advantage being

most prominent for small T and large du. When the regressor exhibits long-range

dependence, the empirical size of the GLS-TD test is closer to the nominal level than

the GLS-FD test, the difference between the two tests being especially noticeable

for the smaller sample sizes. The performance of the GLS-TD test is particularly

impressive in light of the fact that the sieve-type GLS procedure relies explicitly on

a linear autoregressive approximation to the generating mechanism of the errors, a

mechanism which is linear in the minority of cases considered in the experiments. In

fact, as observed in the case of the GLSB and GLS1% tests, nonlinearity in the errors

does not seem to have any noticeable effects on the size properties of the GLS-TD test

compared to cases where errors are generated by linear processes. The GLS-TD test

also dominates the GLS-FD test in terms of power for almost all designs, although

the differences between the two tests are not substantial.6

In sum, the sieve-type GLS-based tests are found to have the best overall per-

formance in our experiments. They generally exhibit smaller size distortions than

other GLS-based or OLS-based tests, especially when the sample size is small, and

they also tend to be superior in terms of size-adjusted power. Furthermore, they are

robust with respect to the presence of neglected nonlinearity in the regression errors.

6The full set of simulation results is available from the authors upon request.
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5 Conclusion

This paper has considered the use of time-domain sieve-type GLS based on autoregres-

sive approximations for inference in linear regression models. By allowing the order of

the autoregressive approximation to increase with the sample size at an appropriate

rate, it has been shown that the sieve-type GLS estimator of the regression coefficients

is
√
T -consistent, asymptotically normal and asymptotically Gauss—Markov efficient

under general conditions, including mixingale-type conditions as well as conditions

which permit long-range dependence in the stochastic regressors and the errors. A

Monte Carlo study has revealed that hypothesis tests based on sieve-type GLS have

better finite-sample size and power properties than tests based on an alternative

frequency-domain GLS procedure or OLS combined with a robust estimator of the

OLS asymptotic covariance matrix.

6 Appendix

This Appendix presents the proofs of the theorems stated in the main text. We begin

by introducing two lemmata which are used in our proofs. Throughout, limits in

order symbols are taken as T → ∞, unless stated otherwise, and c, c1, c2, . . . denote

finite constants that may assume different values upon each appearance.

Lemma 1 Suppose Assumptions 1, 2 and 3 hold and du = 0. Then {xtut} is an
L2-mixingale of size −1/2.

Proof. If {xt} and {ut} are Lr-bounded (r ≥ 2), L2-NED processes of size −ζ on
a ϕ-mixing process of size −η (η > 1), then, by Example 17.17 of Davidson (1994),

{xtut} is L2-NED of size −{ζ(κ− 2)}/{2(κ− 1)} ≤ −1/2 on a ϕ-mixing process of
size −η. In view of Theorem 17.5(ii) of Davidson (1994), this in turn implies that

{xtut} is an L2-mixingale of size −1/2 if 2η > ζ. Hence it is enough to show that

{ut} is Lr-bounded (r ≥ 2), L2-NED of the required size.
By Burkholder’s inequality for martingale-difference sequences (e.g., Davidson

(1994, Theorem 15.18)) and Hölder’s inequality,

E(|ut|r) ≤ cE

⎛⎝( ∞X
j=0

|δj|2 |εt−j|2
)r/2

⎞⎠ ≤ c

Ã ∞X
j=0

|δj|2
!r/2−1Ã ∞X

j=0

|δj|2E(|εt−j|r)
!
,
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so {ut} is Lr-bounded if suptE(|εt|r) < ∞. Moreover, writing k·kr for the Lr-norm,

we have, by Minkowski’s inequality,°°ut − E(ut|Fε
t−m)

°°
2
=

°°°°°
∞X

j=m+1

δjεt−j

°°°°°
2

≤ sup
t
kεtk2

∞X
j=m+1

|δj| ,

for any integer m > 0. But, when du = 0, Assumption 2(iii) implies that

lim
m→∞

mζ
∞X

j=m+1

|δj| = 0,

and consequently {ut} is L2-NED of size −ζ, which completes the proof.

Lemma 2 Let φh = (φh,1, .., φh,h)
0 satisfy the equations Γhφh = γh, where Γh =

{γu(s − j); j, s = 1, . . . , h}, γh = (γu(1), . . . , γu(h))
0 and γu(s) = E(utut+s). If the

assumptions of either Theorem 1 or Theorem 4 hold, then
hX

j=1

¯̄̄bφh,j − φh,j

¯̄̄2
= Op

Ã
h

µ
lnT

T

¶1−2du!
,

uniformly in h.

Proof. We examine the general case with long-range dependence; for the case of

short-range dependence the result follows upon setting du = 0. Let bφuh = (bφuh,1, .., bφuh,h)0
satisfy the equations bΓuhbφuh = bγuh , where bΓuh = {bγu(j, s); j, s = 1, . . . , h}, bγuh =

(bγu(1), . . . , bγu(h))0, bγu(s) = bγu(0, s), and bγu(j, s) = T−1
PT

t=1+max{j,s} ut−jut−s. Let-

ting bΓh and bγh be the quantities corresponding to bΓuh and bγuh , respectively, with ūt in

place of ut, and noting that each element of bΓh− bΓuh and bγh − bγuh can be shown to be
Op(T

−1), we have
hX

j=1

¯̄̄bφh,j − bφuh,j ¯̄̄2 ≤ °°°bφh − bφuh°°°2 = °°°°bΓ−1h bγh − ³bΓuh´−1 bγuh°°°°2
≤
µ°°°bΓh − bΓuh°°° kbγuhk+ kbγh − bγuhk°°°°³bΓuh´−1°°°°¶2

=
°°°bΓh − bΓuh°°°2 kbγuhk2 + 2°°°bΓh − bΓuh°°° kbγuhk kbγh − bγuhk°°°°³bΓuh´−1°°°°

+ kbγh − bγuhk2 °°°°³bΓuh´−1°°°°2
= Op(h

2T−2)Op(h) + 2Op(hT
−1)Op(h

1/2)Op(h
1/2T−1)Op(h)

+Op(hT
−2)Op(h

2)

= Op(h
3T−2).

22



Furthermore, by Theorem 5 of Poskitt (2007),

hX
j=1

¯̄̄bφuh,j − φh,j

¯̄̄2
= Op

Ã
hp

λmin(Γ2h)

µ
lnT

T

¶1−2du!

uniformly in h, where λmin(Γ2h) is the smallest eigenvalue of Γ
2
h. In consequence, there

exist constants c1 > 0 and c2 > 0 such that

hX
j=1

¯̄̄bφh,j − φh,j

¯̄̄2
≤ c1

hX
j=1

¯̄̄bφh,j − bφuh,j ¯̄̄2 + c2

hX
j=1

¯̄̄bφuh,j − φh,j

¯̄̄2
= Op

Ã
hp

λmin(Γ2h)

µ
lnT

T

¶1−2du!
,

and the desired result follows.

Proof of Theorem 1. Observe that

√
T
³bβ − β

´
=

⎡⎣ 1
T

TX
t=1

Ã
xt −

hX
j=1

bφh,jxt−j!Ãxt − hX
j=1

bφh,jxt−j!0
⎤⎦−1

×
"
1√
T

TX
t=1

Ã
xt −

hX
j=1

bφh,jxt−j!Ãut − hX
j=1

bφh,jut−j!# .
Hence, the first part of the theorem follows if

P1 =
1√
T

TX
t=1

Ã
xt −

hX
j=1

bφh,jxt−j!Ãut − hX
j=1

bφh,jut−j!

− 1√
T

TX
t=1

Ã
xt −

∞X
j=1

φjxt−j

!Ã
ut −

∞X
j=1

φjut−j

!
= op(1) (14)

and

P2 =
1

T

TX
t=1

Ã
xt −

hX
j=1

bφh,jxt−j!Ãxt − hX
j=1

bφh,jxt−j!0

− 1

T

TX
t=1

Ã
xt −

∞X
j=1

φjxt−j

!Ã
xt −

∞X
j=1

φjxt−j

!0
= op(1). (15)
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Considering (14) first, we have

1√
T

TX
t=1

Ã
xt −

hX
j=1

bφh,jxt−j!Ãut − hX
j=1

bφh,jut−j!

=
1√
T

TX
t=1

"Ã
xt −

∞X
j=1

φjxt−j

!
−

∞X
j=1

³bφh,j − φj
´
xt−j

#

×
"Ã

ut −
∞X
j=1

φjut−j

!
−

∞X
j=1

³bφh,j − φj
´
ut−j

#
,

with bφh,j = 0 for j > h, and so

P1 = − 1√
T

TX
t=1

" ∞X
j=1

³bφh,j − φj
´
xt−j

#Ã
ut −

∞X
j=1

φjut−j

!

− 1√
T

TX
t=1

Ã
xt −

∞X
j=1

φjxt−j

!" ∞X
j=1

³bφh,j − φj
´
ut−j

#

+
1√
T

TX
t=1

" ∞X
j=1

³bφh,j − φj
´
xt−j

#" ∞X
j=1

³bφh,j − φj
´
ut−j

#
= −S1 − S2 + S3.

Regarding S1, we have

S1 =
1√
T

TX
t=1

" ∞X
j=1

³bφh,j − φj
´
xt−j

#
εt

=
1√
T

TX
t=1

"
hX

j=1

³bφh,j − φh,j
´
xt−j

#
εt +

1√
T

TX
t=1

" ∞X
j=1

(φh,j − φj)xt−j

#
εt

= J1 + J2, (16)

with φh,j = 0 for j > h. By the Cauchy—Schwarz inequality,

1√
T

TX
t=1

"
hX

j=1

³bφh,j − φh,j
´
xt−j

#
εt

=
hX

j=1

³bφh,j − φh,j
´Ã 1√

T

TX
t=1

xt−jεt

!

≤
"

hX
j=1

³bφh,j − φh,j
´2#1/2 " hX

j=1

Ã
1

T

TX
t=1

x0t−jε
2
txt−j

!#1/2
.
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But, by Assumptions 1(iii) and 3, and Theorem 17.9 of Davidson (1994), {x0t−jε2txt−j}
is an L1-NED process which, by Theorem 19.11 of Davidson (1994), obeys a law of

large numbers. Since

sup
1≤j≤h

¯̄̄̄
¯ 1T

TX
t=1

x0t−jε
2
txt−j

¯̄̄̄
¯ ≤

hX
j=1

1

T

TX
t=1

x0t−jε
2
txt−j,

it follows that "
hX

j=1

Ã
1

T

TX
t=1

x0t−jε
2
txt−j

!#1/2
= Op(h

1/2).

Since, in addition, "
hX

j=1

³bφh,j − φh,j
´2#1/2

= Op

³©
hT−1 lnT

ª1/2´
by Lemma 2, we conclude that

J1 = op(1), (17)

as long as h = o
³
{T/ lnT}1/2

´
. Moreover, we have

1√
T

TX
t=1

" ∞X
j=1

(φh,j − φj)xt−j

#
εt =

1√
T

TX
t=1

QTεt =
1√
T

TX
t=1

JtT ,

where JtT = QTεt. By Theorem 7.6.6 of Anderson (1971), var(JtT ) = o(1). Hence,

by a triangular array central limit theorem, it follows that

J2 =
1√
T

TX
t=1

JtT = op(1),

which, together with (17), shows that S1 = op(1).

We now examine S2. It is easy to see that, under the assumptions of the theorem,

xt −
P∞

j=1 φjxt−j is an NED process. Then, a similar treatment to that used for S1

leads to S2 = op(1).
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Finally, we consider S3. We have

1√
T

TX
t=1

" ∞X
j=1

³bφh,j − φj
´
xt−j

#" ∞X
j=1

³bφh,j − φj
´
ut−j

#

=
1√
T

TX
t=1

"
hX

j=1

³bφh,j − φh,j
´
xt−j +

∞X
j=1

(φh,j − φj) xt−j

#

×
"

hX
j=1

³bφh,j − φh,j
´
ut−j +

∞X
j=1

(φh,j − φj)ut−j

#

=
1√
T

TX
t=1

" ∞X
j=1

(φh,j − φj)xt−j

#" ∞X
j=1

(φh,j − φj)ut−j

#

+
1√
T

TX
t=1

"
hX

j=1

³bφh,j − φh,j
´
xt−j

#" ∞X
j=1

(φh,j − φj)ut−j

#

+
1√
T

TX
t=1

" ∞X
j=1

(φh,j − φj) xt−j

#"
hX

j=1

³bφh,j − φh,j
´
ut−j

#

+
1√
T

TX
t=1

"
hX

j=1

³bφh,j − φh,j
´
xt−j

#"
hX

j=1

³bφh,j − φh,j
´
ut−j

#
= K1 +K2 +K3 +K4. (18)

We first examine K1. We have that°°°°° 1√
T

TX
t=1

" ∞X
j=1

(φh,j − φj)xt−j

#" ∞X
j=1

(φh,j − φj)ut−j

#°°°°°
≤
°°°°° 1√

T

TX
t=1

Ã ∞X
j=1

φh,jxt−j

!" ∞X
j=1

(φh,j − φj)ut−j

#°°°°°
+

°°°°° 1√
T

TX
t=1

Ã ∞X
j=1

φjxt−j

!" ∞X
j=1

(φh,j − φj)ut−j

#°°°°° .
Noting that Theorem 7.6.6. of Anderson (1971) holds uniformly over t, and using

that theorem, we have°°°°° 1√
T

TX
t=1

Ã ∞X
j=1

φh,jxt−j

!" ∞X
j=1

(φh,j − φj)ut−j

#°°°°°
+

°°°°° 1√
T

TX
t=1

Ã ∞X
j=1

φjxt−j

!" ∞X
j=1

(φh,j − φj)ut−j

#°°°°°
= op(1), (19)
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provided that h→∞ as T →∞. To see this, we note that
∞X
j=1

(φh,j − φj)ut−j =

Ã
ut −

∞X
j=1

φjut−j

!
−
Ã
ut −

∞X
j=1

φh,jut−j

!
= εt − εh,t.

Letting Et−1(·) denote conditional expectation given the the σ-field generated by

{(εs, xs); s < t}, it can be seen that {εt − εh,t} is a triangular array such that
limT→∞Et−1(εt − εh,t) = 0 uniformly over t and limT→∞Et−1 ({εt − εh,t}2) does not
depend on t. Further, εt − εh,t is independent of xt−j for all integers j. Since

∞X
j=1

φjxt−j = xt −
Ã
xt −

∞X
j=1

φjxt−j

!
,

it follows that
P∞

j=1 φjxt−j is a stationary NED process of the same size as {xt}. This
is also the case for

P∞
j=1 φh,jxt−j. It is then easy to see that

lim
T→∞

Et−1

Ã ∞X
j=1

φjxt−j (εt − εh,t)

!
= 0 (20)

uniformly over t, and

Et−1

⎛⎝" ∞X
j=1

φjxt−j (εt − εh,t)

#2⎞⎠ = cT , (21)

where cT ≥ 0 does not depend on t. This implies that a martingale-difference central
limit theorem holds for

P∞
j=1 φjxt−j (εt − εh,t).7 Since, in addition, the variance ofP∞

j=1 φjxt−j (εt − εh,t) approaches zero as T →∞, uniformly over t, (19) holds true.
Moving on to K2, K2 = op(1) follows immediately from Theorem 7.6.6. of An-

derson (1971) and (17). Arguing as in the case of S2, it can also be deduced that

K3 = op(1). Finally, we consider K4. We have

1√
T

TX
t=1

"
hX

j=1

³bφh,j − φh,j
´
xt−j

#"
hX

j=1

³bφh,j − φh,j
´
ut−j

#

=
hX

j=1

hX
s=1

³bφh,j − φh,j
´³bφh,s − φh,s

´Ã 1√
T

TX
t=1

xt−jut−s

!
. (22)

7Note that the standard central limit theorem for martingale-difference sequences specifies that
(20) and (21) hold for all T and not only in the limit, but a casual examination of the proof of
Theorem 24.3 of Davidson (1994) shows that (20) and (21) are sufficient for the theorem to hold.
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By Lemma 1, {xtut} is an L2-NED process of size −1/2 which, in view of Theorem 1
of De Jong (1997), obeys a central limit theorem. Thus

1√
T

TX
t=1

xt−jut−s = Op (1) .

But
hX

j=1

hX
s=1

Ã
1√
T

TX
t=1

xt−jut−s

!
= Op

¡
h2
¢

uniformly in j and s. Then, by Lemma 2,

hX
j=1

hX
s=1

³bφh,j − φh,j
´³bφh,s − φh,s

´Ã 1√
T

TX
t=1

xt−jut−s

!
= Op

¡
h4T−1 lnT

¢
,

which is op(1) as long as h = o
¡{T/ lnT}1/4¢, and thus K4 = op(1). This completes

the proof of P1 = op(1). By reasoning in a similar way, it can be shown that P2 =

op(1), and so the first part of the theorem is established.

The second part of the theorem follows in a straightforward manner using the fact

that, in view of Lemma 1, {xtut} obeys a central limit theorem (cf. De Jong (1997,

Theorem 1)) and {xtx0t} obeys a mixingale law of large numbers (cf. Davidson (1994,
Theorem 19.11))). ¥

Proof of Theorem 2. Part (ii) of Assumption 5 holds on account of the fact that

H∗
T = o

¡{T/ lnT}1/4¢. Thus, it remains to prove that hT → ∞ as T → ∞. By
Theorem 7.4.7(b) of Hannan and Deistler (1988),

ln bσ2ū,h + hCT

T
= c+

h(CT − 1)
T

+
bσ2ū,h − σ2ε

σ2ε
{1 + op(1)}, (23)

where c is a constant not depending on h. But (23) implies that hT →∞ as T →∞.
To see this, note that, under Assumption 6, (bσ2ū,h − σ2ε)/σ

2
ε is bounded away from

zero almost surely for any finite value of h. Since h(CT − 1)/T → 0 as T →∞ when

CT = o
¡{T 3 lnT}1/4¢, it follows that (11) cannot be minimized for any finite value

of h. ¥

Proof of Theorem 3. To establish the assertion of the theorem, it is sufficient to

show that Lemma 5.1 of Ng and Perron (1995) holds for hT = H∗
T . The desired result

follows then by Lemma 5.2 of Ng and Perron (1995). Under the conditions of the

theorem, Lemma 5.1 of Ng and Perron (1995) holds for hT = H∗
T if Theorem 4 of Lewis
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and Reinsel (1985) or, equivalently, Theorem 7.4.8 of Hannan and Deistler (1988)

holds when hT = H∗
T . But the latter theorem holds provided

√
T
P∞

j=H∗T+1
|δj| → 0

as T →∞, and the desired result is obtained.8 ¥

Proof of Theorem 4. The assertion of the theorem can be proved by showing that

(14) and (15) hold under the conditions of the theorem. Thus, using the same notation

as in the proof of Theorem 1, we begin by showing that S1, S2 and S3 are op(1).

As in (16), put S1 = J1 + J2. Now note that

hX
j=1

Ã
1

T

TX
t=1

x0t−jε
2
txt−j

!
=

hX
j=1

Ã
1

T

TX
t=1

x0t−j
¡
ε2t − σ2ε

¢
xt−j

!
+

hX
j=1

Ã
σ2ε
T

TX
t=1

x0t−jxt−j

!
.

By Assumptions 1, 8 and 9, it follows that {x0t−j (ε2t − σ2ε)xt−j} is a square-integrable
martingale-difference sequence, which implies that (1/T )

PT
t=1 x

0
t−j (ε

2
t − σ2ε) xt−j =

Op(T
−1/2). Further, by Assumption 8, (1/T )

PT
t=1 x

0
t−jxt−j obeys a law of large num-

bers and is, therefore, bounded in probability. Since

sup
1≤j≤h

¯̄̄̄
¯σ2εT

TX
t=1

x0t−jxt−j

¯̄̄̄
¯ ≤

hX
j=1

σ2ε
T

TX
t=1

x0t−jxt−j,

it follows that Ã
hX

j=1

"
1

T

TX
t=1

x0t−jε
2
txt−j

#!1/2
= Op(h).

Since, in addition,Ã
hX

j=1

³bφh,j − φh,j
´2!1/2

= Op

³©
h(T/ lnT )2du−1

ª1/2´
by Lemma 2, we conclude that

J1 = op(1), (24)

as long as h = O({lnT}a) for some 0 < a <∞. Moreover, by the same argument used
in the proof of Theorem 1, we deduce that J2 = op(1), thus showing that S1 = op(1).

8It is worth noting that Kuersteiner (2005) argues that the chi-square approximation in
Lemma 5.1 of Ng and Perron (1995) is not valid. However, irrespectively of the validity of the
result in question, it is straightforward to establish that, as long as the probabilities with which the
null hypothesis of the test used in the sequential testing procedure of Definition 3.1 of Ng and Perron
(1995) is accepted when true and rejected when false are bounded away from 1 and 0, respectively,
Lemma 5.2 of Ng and Perron (1995) is valid, thereby establishing our result.
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Regarding S2, it is easy to see that, under the assumptions of the theorem, the

ith component of xt −
P∞

j=1 φjxt−j has memory parameter di − du. Then, a similar

treatment to that used for S1 leads to S2 = op(1).

Next, as in (18), put S3 = K1+K2+K3+K4. To see that the result in (19) holds

true under the conditions of the theorem, note that
P∞

j=1 φjxt−j is a stationary process

with the same memory parameters as xt, and this is also the case for
P∞

j=1 φh,jxt−j.

It is then easy to see that (20) and (21) hold, and (19) follows by the argument used

in the proof of Theorem 1, thus showing that K1 = op(1). The result K2 = op(1)

follows from Theorem 7.6.6 of Anderson (1971) and (24). Arguing as in the case of

S1 and S2, it can also be deduced that K3 = op(1). Finally, an examination of the

proof of Theorem 2 of Chung (2002) suggests that, uniformly in j and s,

1

T

TX
t=1

xt−jut−s = Op

¡
T−d

∗¢
,

where

d∗ = (1/2)I(dx + du < 1/2)− (1/2)(1 + dx + du)I(dx + du > 1/2)

and dx = max{di; 1 ≤ i ≤ k}. Focusing on the ‘worst case’ scenario, under which
dx + du > 1/2, we have

1

T

TX
t=1

xt−jut−s = Op

¡
T−(1+dx+du)/2

¢
.

Hence, (22) is of the same order in probability as

T (dx+du)/2
hX

j=1

hX
s=1

³bφh,j − φh,j
´³bφh,s − φh,s

´
.

Then, by Lemma 2,

T (dx+du)/2
hX

j=1

hX
s=1

³bφh,j − φh,j
´³bφh,s − φh,s

´
= Op

³
h2T (dx+du)/2

¡
T−1 lnT

¢1−2du´ ,
which is op(1) as long as (5du/2) + (dx/2) − 1 < 0, thus deducing that K4 = op(1)

and concluding that P1 = op(1). By reasoning in a similar way, it can be shown that

P2 = op(1), which completes the proof of the theorem. ¥
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Table 1: Rejection probabilities for β1 = 0
T = 20 T = 30 T = 50

Model NW GLSB KVB QS GLS1% NW GLSB KVB QS GLS1% NW GLSB KVB QS GLS1%
AR1 .169 .121 .112 .144 .097 .136 .090 .094 .124 .080 .114 .070 .076 .100 .066
AR2 .241 .110 .150 .176 .087 .215 .076 .126 .158 .065 .174 .056 .099 .135 .052
MA .164 .121 .105 .139 .093 .135 .096 .090 .121 .083 .116 .078 .077 .097 .070
BILIN .136 .114 .090 .116 .087 .103 .083 .072 .094 .072 .091 .070 .064 .076 .064
NMA .124 .107 .080 .107 .081 .096 .082 .069 .092 .072 .087 .068 .064 .080 .064
TAR1 .127 .106 .083 .108 .082 .102 .081 .075 .095 .070 .090 .064 .064 .080 .061
SQRT .161 .111 .105 .143 .089 .130 .085 .088 .122 .075 .110 .067 .075 .099 .064
SGN .200 .114 .130 .159 .094 .179 .089 .117 .154 .081 .149 .069 .097 .131 .066
TAR2 .218 .110 .136 .167 .086 .190 .080 .118 .155 .070 .159 .058 .096 .132 .055
NARCH .127 .112 .079 .115 .086 .098 .085 .068 .096 .074 .082 .070 .057 .080 .066

T = 100 T = 200 T = 400
Model NW GLSB KVB QS GLS1% NW GLSB KVB QS GLS1% NW GLSB KVB QS GLS1%
AR1 .088 .058 .065 .079 .058 .075 .055 .058 .065 .055 .066 .053 .053 .058 .053
AR2 .140 .050 .079 .113 .050 .125 .049 .065 .094 .051 .102 .051 .059 .081 .052
MA .086 .063 .061 .070 .062 .076 .060 .056 .059 .060 .064 .055 .051 .048 .056
BILIN .067 .054 .051 .059 .053 .061 .052 .051 .056 .053 .058 .052 .052 .052 .052
NMA .066 .056 .054 .061 .056 .056 .051 .050 .052 .051 .057 .055 .052 .054 .055
TAR1 .073 .061 .059 .068 .061 .062 .058 .056 .059 .058 .056 .053 .052 .055 .053
SQRT .087 .058 .064 .077 .058 .074 .053 .055 .065 .053 .066 .055 .055 .060 .056
SGN .117 .057 .074 .102 .057 .098 .056 .061 .081 .056 .082 .053 .057 .067 .054
TAR2 .127 .051 .072 .104 .050 .115 .051 .061 .087 .052 .096 .053 .056 .070 .054
NARCH .062 .057 .051 .061 .057 .060 .059 .052 .060 .060 .054 .052 .047 .052 .054
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Table 2: Rejection probabilities for β1 ∈ {0.05, 0.1}
β1 = .05

T = 20 T = 30 T = 50
Model NW GLSB KVB QS GLS1% NW GLSB KVB QS GLS1% NW GLSB KVB QS GLS1%
AR1 .052 .048 .050 .051 .050 .058 .063 .050 .060 .064 .067 .064 .064 .061 .065
AR2 .054 .049 .055 .051 .050 .051 .057 .049 .056 .057 .051 .063 .053 .054 .066
MA .056 .055 .055 .057 .053 .056 .053 .058 .053 .052 .061 .056 .060 .062 .057
BILIN .052 .055 .054 .052 .054 .061 .056 .059 .058 .057 .059 .061 .059 .063 .061
NMA .047 .047 .048 .049 .047 .053 .055 .054 .056 .055 .060 .055 .057 .058 .054
TAR1 .059 .051 .060 .059 .055 .061 .057 .057 .061 .060 .067 .067 .066 .067 .066
SQRT .059 .052 .055 .056 .057 .053 .059 .053 .057 .058 .062 .065 .060 .063 .065
SGN .049 .051 .050 .049 .051 .059 .062 .058 .059 .062 .053 .056 .054 .051 .058
TAR2 .043 .049 .047 .048 .051 .054 .057 .052 .056 .060 .057 .067 .054 .054 .067
NARCH .058 .051 .056 .056 .054 .056 .058 .055 .056 .055 .062 .061 .066 .063 .061

T = 100 T = 200 T = 400
Model NW GLSB KVB QS GLS1% NW GLSB KVB QS GLS1% NW GLSB KVB QS GLS1%
AR1 .075 .076 .068 .072 .077 .093 .103 .079 .094 .103 .162 .174 .131 .158 .173
AR2 .056 .086 .050 .052 .086 .060 .133 .055 .059 .131 .054 .193 .053 .051 .193
MA .065 .075 .063 .063 .072 .090 .108 .082 .090 .109 .127 .165 .111 .127 .163
BILIN .071 .073 .070 .074 .073 .102 .103 .082 .101 .102 .139 .137 .105 .136 .137
NMA .072 .073 .067 .071 .072 .095 .093 .082 .097 .092 .114 .114 .096 .116 .114
TAR1 .073 .076 .072 .076 .076 .114 .110 .088 .116 .109 .188 .190 .135 .190 .189
SQRT .075 .080 .069 .075 .081 .098 .110 .087 .097 .110 .155 .167 .122 .154 .167
SGN .058 .069 .051 .057 .070 .058 .086 .056 .057 .087 .084 .144 .075 .086 .144
TAR2 .055 .082 .054 .056 .081 .054 .109 .054 .052 .110 .064 .179 .061 .066 .178
NARCH .080 .073 .074 .079 .073 .106 .098 .095 .105 .098 .153 .151 .136 .153 .151

β1 = .1
T = 20 T = 30 T = 50

Model NW GLSB KVB QS GLS1% NW GLSB KVB QS GLS1% NW GLSB KVB QS GLS1%
AR1 .063 .064 .058 .066 .064 .072 .080 .065 .072 .080 .093 .106 .081 .092 .107
AR2 .057 .062 .055 .050 .061 .056 .078 .056 .057 .081 .059 .111 .054 .062 .113
MA .058 .063 .062 .059 .059 .071 .075 .073 .068 .071 .087 .090 .077 .091 .093
BILIN .053 .058 .056 .058 .059 .075 .068 .068 .070 .073 .088 .089 .079 .090 .091
NMA .059 .057 .057 .058 .058 .070 .072 .071 .068 .071 .080 .075 .074 .077 .076
TAR1 .070 .063 .067 .067 .065 .078 .073 .067 .076 .076 .107 .110 .090 .107 .112
SQRT .063 .064 .057 .057 .061 .076 .074 .069 .071 .075 .093 .103 .084 .092 .104
SGN .060 .056 .056 .056 .061 .054 .067 .053 .054 .069 .063 .081 .064 .065 .084
TAR2 .060 .064 .056 .056 .068 .054 .070 .049 .055 .075 .069 .105 .063 .069 .105
NARCH .075 .075 .078 .080 .077 .090 .089 .088 .083 .087 .112 .112 .102 .110 .110

T = 100 T = 200 T = 400
Model NW GLSB KVB QS GLS1% NW GLSB KVB QS GLS1% NW GLSB KVB QS GLS1%
AR1 .138 .158 .109 .131 .159 .253 .301 .191 .254 .302 .458 .531 .346 .455 .529
AR2 .055 .190 .049 .052 .191 .068 .347 .060 .062 .343 .072 .600 .065 .070 .600
MA .138 .168 .116 .135 .165 .212 .277 .170 .209 .277 .420 .524 .310 .413 .522
BILIN .143 .135 .123 .146 .135 .222 .219 .172 .221 .217 .391 .382 .279 .390 .383
NMA .122 .122 .099 .119 .123 .211 .205 .166 .215 .205 .330 .322 .238 .331 .322
TAR1 .162 .165 .126 .164 .166 .302 .305 .226 .304 .303 .566 .571 .411 .569 .570
SQRT .135 .155 .118 .133 .155 .253 .295 .202 .248 .295 .433 .497 .322 .438 .496
SGN .080 .135 .075 .077 .136 .112 .224 .104 .112 .224 .202 .407 .156 .202 .406
TAR2 .066 .176 .064 .063 .176 .090 .325 .078 .083 .325 .115 .541 .101 .114 .538
NARCH .182 .169 .148 .172 .168 .277 .258 .212 .268 .259 .481 .470 .359 .475 .471
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Table 3: Rejection probabilities for β1 ∈ {0.2, 0.5}
β1 = .2

T = 20 T = 30 T = 50
Model NW GLSB KVB QS GLS1% NW GLSB KVB QS GLS1% NW GLSB KVB QS GLS1%
AR1 .110 .104 .102 .109 .113 .146 .157 .127 .141 .167 .236 .274 .192 .227 .279
AR2 .070 .100 .064 .065 .108 .066 .167 .066 .067 .177 .087 .293 .078 .077 .307
MA .096 .102 .086 .090 .101 .128 .140 .122 .116 .149 .191 .222 .164 .183 .231
BILIN .106 .094 .102 .101 .102 .153 .141 .133 .146 .147 .218 .215 .187 .225 .224
NMA .100 .084 .093 .094 .096 .129 .119 .114 .121 .120 .181 .170 .147 .179 .172
TAR1 .127 .114 .117 .129 .128 .184 .172 .157 .178 .182 .287 .298 .231 .285 .299
SQRT .102 .113 .093 .099 .114 .149 .151 .129 .142 .155 .213 .262 .178 .213 .267
SGN .081 .083 .075 .073 .089 .088 .125 .079 .085 .128 .108 .187 .097 .101 .189
TAR2 .080 .097 .074 .071 .107 .084 .157 .079 .081 .166 .095 .279 .088 .092 .285
NARCH .155 .137 .150 .140 .150 .214 .193 .185 .195 .196 .303 .284 .255 .288 .287

T = 100 T = 200 T = 400
Model NW GLSB KVB QS GLS1% NW GLSB KVB QS GLS1% NW GLSB KVB QS GLS1%
AR1 .429 .500 .311 .412 .501 .732 .814 .553 .731 .814 .957 .983 .803 .955 .981
AR2 .091 .580 .082 .078 .581 .111 .870 .094 .108 .869 .151 .994 .131 .141 .994
MA .377 .478 .291 .361 .480 .658 .797 .497 .654 .795 .928 .979 .763 .928 .979
BILIN .392 .389 .304 .393 .389 .644 .652 .477 .641 .648 .888 .902 .706 .883 .901
NMA .345 .334 .252 .340 .334 .599 .589 .438 .603 .589 .839 .846 .653 .840 .846
TAR1 .502 .527 .387 .509 .527 .818 .827 .624 .819 .825 .986 .988 .872 .987 .988
SQRT .412 .486 .310 .398 .488 .713 .789 .530 .706 .789 .955 .973 .802 .955 .973
SGN .184 .399 .158 .175 .400 .355 .674 .272 .344 .674 .625 .937 .464 .623 .938
TAR2 .129 .510 .109 .123 .515 .190 .805 .160 .175 .802 .305 .982 .238 .294 .981
NARCH .509 .496 .403 .494 .498 .754 .738 .587 .746 .737 .925 .932 .799 .923 .931

β1 = .5
T = 20 T = 30 T = 50

Model NW GLSB KVB QS GLS1% NW GLSB KVB QS GLS1% NW GLSB KVB QS GLS1%
AR1 .377 .374 .321 .355 .417 .587 .650 .466 .539 .665 .815 .895 .654 .792 .899
AR2 .169 .427 .159 .153 .476 .195 .702 .171 .174 .729 .236 .939 .214 .201 .944
MA .339 .376 .300 .318 .399 .515 .614 .430 .466 .632 .765 .868 .612 .742 .872
BILIN .376 .334 .325 .341 .381 .559 .545 .464 .513 .565 .765 .772 .633 .750 .784
NMA .331 .287 .282 .305 .326 .492 .462 .404 .451 .481 .694 .698 .557 .670 .705
TAR1 .463 .431 .415 .439 .477 .684 .682 .565 .643 .701 .892 .911 .761 .881 .914
SQRT .382 .394 .319 .336 .432 .569 .617 .462 .524 .636 .788 .881 .636 .770 .884
SGN .216 .305 .193 .191 .332 .282 .504 .242 .258 .518 .436 .790 .354 .406 .793
TAR2 .213 .389 .186 .189 .441 .265 .630 .223 .241 .659 .336 .898 .285 .296 .903
NARCH .561 .508 .509 .503 .558 .710 .697 .609 .655 .708 .857 .864 .758 .832 .867

T = 100 T = 200 T = 400
Model NW GLSB KVB QS GLS1% NW GLSB KVB QS GLS1% NW GLSB KVB QS GLS1%
AR1 .990 .997 .900 .986 .997 1.00 1.00 .986 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AR2 .309 1.00 .257 .258 1.00 .426 1.00 .351 .394 1.00 .630 1.00 .490 .596 1.00
MA .977 .997 .864 .970 .997 1.00 1.00 .983 1.00 1.00 1.00 1.00 .999 1.00 1.00
BILIN .955 .966 .857 .946 .965 .997 .999 .970 .995 .999 1.00 1.00 .997 1.00 1.00
NMA .927 .942 .811 .922 .941 .998 .999 .958 .998 .999 1.00 1.00 .997 1.00 1.00
TAR1 .996 .997 .942 .996 .997 1.00 1.00 .996 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SQRT .988 .996 .902 .985 .996 1.00 1.00 .986 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SGN .772 .983 .601 .748 .983 .988 1.00 .871 .986 1.00 1.00 1.00 .976 1.00 1.00
TAR2 .506 .997 .404 .471 .997 .722 1.00 .591 .687 1.00 .919 1.00 .773 .911 1.00
NARCH .970 .977 .906 .967 .977 .997 .997 .978 .997 .997 .999 1.00 .997 1.00 1.00
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Table 4: Rejection probabilities under long-range dependence in xt and ut
GLS-TD GLS-FD

dx du φ/T 16 32 64 128 256 512 16 32 64 128 256 512
β1 = 0

0.2 0.2 0 0.143 0.084 0.071 0.062 0.060 0.059 0.411 0.163 0.100 0.067 0.058 0.054
0.2 0.2 0.5 0.136 0.078 0.061 0.051 0.052 0.049 0.416 0.164 0.097 0.067 0.058 0.052
0.2 0.2 0.9 0.140 0.077 0.058 0.052 0.055 0.051 0.421 0.169 0.096 0.068 0.062 0.055
0.2 0.2 0.98 0.137 0.074 0.056 0.051 0.050 0.049 0.428 0.166 0.099 0.068 0.056 0.051
0.2 0.4 0 0.131 0.059 0.043 0.041 0.042 0.043 0.468 0.183 0.084 0.053 0.041 0.035
0.2 0.4 0.5 0.128 0.055 0.041 0.037 0.037 0.040 0.477 0.176 0.084 0.048 0.034 0.030
0.2 0.4 0.9 0.123 0.056 0.036 0.032 0.033 0.032 0.473 0.184 0.084 0.048 0.033 0.027
0.2 0.4 0.98 0.131 0.062 0.048 0.039 0.041 0.041 0.457 0.193 0.096 0.054 0.038 0.030
0.4 0.2 0 0.163 0.103 0.085 0.078 0.069 0.064 0.418 0.183 0.114 0.084 0.068 0.064
0.4 0.2 0.5 0.159 0.090 0.069 0.059 0.053 0.055 0.428 0.177 0.111 0.075 0.062 0.059
0.4 0.2 0.9 0.164 0.089 0.064 0.058 0.056 0.052 0.430 0.179 0.108 0.078 0.065 0.056
0.4 0.2 0.98 0.163 0.088 0.064 0.055 0.053 0.054 0.445 0.188 0.112 0.076 0.063 0.058
0.4 0.4 0 0.157 0.077 0.047 0.042 0.044 0.044 0.493 0.216 0.104 0.062 0.046 0.035
0.4 0.4 0.5 0.150 0.073 0.048 0.036 0.035 0.034 0.512 0.224 0.115 0.061 0.038 0.027
0.4 0.4 0.9 0.153 0.069 0.045 0.035 0.031 0.029 0.523 0.241 0.119 0.067 0.042 0.028
0.4 0.4 0.98 0.152 0.080 0.053 0.043 0.040 0.039 0.495 0.236 0.129 0.069 0.044 0.032

β1 = 0.2
0.2 0.2 0 0.089 0.193 0.348 0.619 0.894 0.996 0.073 0.170 0.316 0.606 0.894 0.995
0.2 0.2 0.5 0.100 0.192 0.378 0.655 0.925 0.997 0.077 0.171 0.341 0.634 0.914 0.997
0.2 0.2 0.9 0.101 0.213 0.412 0.690 0.948 0.999 0.074 0.172 0.366 0.640 0.938 0.999
0.2 0.2 0.98 0.102 0.219 0.431 0.730 0.959 1.000 0.064 0.168 0.375 0.690 0.947 0.999
0.2 0.4 0 0.106 0.269 0.525 0.838 0.987 1.000 0.059 0.138 0.320 0.620 0.936 0.999
0.2 0.4 0.5 0.106 0.258 0.554 0.844 0.983 1.000 0.057 0.124 0.279 0.542 0.855 0.990
0.2 0.4 0.9 0.126 0.279 0.522 0.820 0.980 1.000 0.052 0.107 0.222 0.456 0.750 0.954
0.2 0.4 0.98 0.107 0.253 0.501 0.806 0.979 1.000 0.065 0.136 0.273 0.558 0.842 0.988
0.4 0.2 0 0.105 0.188 0.344 0.584 0.862 0.991 0.069 0.167 0.318 0.576 0.859 0.988
0.4 0.2 0.5 0.105 0.192 0.359 0.622 0.888 0.995 0.078 0.167 0.325 0.603 0.875 0.995
0.4 0.2 0.9 0.103 0.201 0.372 0.646 0.909 0.996 0.069 0.166 0.332 0.601 0.897 0.995
0.4 0.2 0.98 0.111 0.213 0.378 0.660 0.925 0.998 0.075 0.179 0.329 0.619 0.908 0.997
0.4 0.4 0 0.111 0.233 0.446 0.766 0.965 1.000 0.070 0.152 0.277 0.522 0.838 0.986
0.4 0.4 0.5 0.107 0.245 0.473 0.742 0.957 0.998 0.063 0.142 0.252 0.441 0.739 0.948
0.4 0.4 0.9 0.121 0.245 0.448 0.736 0.940 0.995 0.061 0.128 0.206 0.380 0.623 0.861
0.4 0.4 0.98 0.116 0.237 0.417 0.722 0.946 0.998 0.066 0.151 0.237 0.455 0.734 0.932

β1 = 0.5
0.2 0.2 0 0.335 0.725 0.961 1.000 1.000 1.000 0.188 0.651 0.954 0.999 1.000 1.000
0.2 0.2 0.5 0.337 0.742 0.976 1.000 1.000 1.000 0.182 0.660 0.962 1.000 1.000 1.000
0.2 0.2 0.9 0.345 0.777 0.980 1.000 1.000 1.000 0.167 0.677 0.959 1.000 1.000 1.000
0.2 0.2 0.98 0.359 0.804 0.986 1.000 1.000 1.000 0.162 0.682 0.963 1.000 1.000 1.000
0.2 0.4 0 0.418 0.874 0.992 1.000 1.000 1.000 0.118 0.503 0.860 0.993 1.000 1.000
0.2 0.4 0.5 0.422 0.867 0.989 1.000 1.000 1.000 0.094 0.430 0.784 0.968 0.999 1.000
0.2 0.4 0.9 0.435 0.863 0.983 1.000 1.000 1.000 0.088 0.358 0.660 0.916 0.995 1.000
0.2 0.4 0.98 0.421 0.858 0.990 1.000 1.000 1.000 0.120 0.490 0.801 0.970 0.999 1.000
0.4 0.2 0 0.318 0.697 0.943 0.998 1.000 1.000 0.165 0.630 0.917 0.998 1.000 1.000
0.4 0.2 0.5 0.328 0.712 0.961 1.000 1.000 1.000 0.169 0.643 0.946 0.999 1.000 1.000
0.4 0.2 0.9 0.336 0.732 0.967 1.000 1.000 1.000 0.147 0.617 0.940 0.999 1.000 1.000
0.4 0.2 0.98 0.347 0.758 0.971 1.000 1.000 1.000 0.150 0.629 0.942 1.000 1.000 1.000
0.4 0.4 0 0.369 0.811 0.977 0.999 1.000 1.000 0.113 0.465 0.787 0.971 0.998 1.000
0.4 0.4 0.5 0.385 0.793 0.974 0.997 1.000 1.000 0.094 0.389 0.707 0.917 0.993 1.000
0.4 0.4 0.9 0.390 0.798 0.961 0.996 1.000 1.000 0.090 0.349 0.596 0.845 0.970 0.997
0.4 0.4 0.98 0.384 0.798 0.971 0.999 1.000 1.000 0.110 0.459 0.727 0.924 0.991 1.000
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Figure 1: Null rejection probabilities grouped according to ut process for T =
10, 11, . . . , 100
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Figure 2: Null rejection probabilities grouped according to test for T = 10, 11, . . . , 100
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