
Optimal constructions for ID-based one-way-function key

predistribution schemes realizing specified communication graphs

Maura B. Paterson
Department of Economics, Mathematics and Statistics

Birkbeck, University of London, Malet Street, London WC1E 7HX, UK

Douglas R. Stinson∗

David R. Cheriton School of Computer Science
University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

March 6, 2014

Abstract

We study a method for key predistribution in a network of n users where pairwise keys are
computed by hashing users’ IDs along with secret information that has been (pre)distributed to
the network users by a trusted entity. A communication graph G can be specified to indicate
which pairs of users should be able to compute keys. We determine necessary and sufficient
conditions for schemes of this type to be secure. We also consider the problem of minimizing
the storage requirements of such a scheme; we are interested in the total storage as well as
the maximum storage required by any user. Minimizing the total storage is NP-hard, whereas
minimizing the maximum storage required by a user can be computed in polynomial time.

1 Introduction

Suppose we have a network of n users and we want every pair of users to have a secure pairwise
key. When keying information is distributed “ahead of time” by a trusted authority, we have a
key predistribution scheme, or KPS. The trivial KPS assigns n − 1 distinct pairwise keys to each
user, so we say that each user has storage equal to n − 1. The total storage in the trivial scheme
is n(n − 1), since each of the n users has storage equal to n − 1. Assuming the pairwise keys are
chosen independently and uniformly at random from a specified keyspace, the trivial scheme is
secure against (maximum size) coalitions of size n − 2, since each pairwise key is known only to
two participants and cannot be computed even if all the remaining n− 2 participants collude.

An interesting way to reduce the storage requirement, as compared to the trivial scheme, is to
use a Blom Scheme [3]. The Blom Scheme incorporates a security parameter denoted by k; pairwise
keys are unconditionally secure against coalitions of up to k users. Each user’s storage requirement
in the Blom Scheme is k + 1 and this storage requirement is shown to be optimal by Blundo et al.
[4].

∗D. Stinson’s research is supported by NSERC discovery grant 203114-11

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/42133484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Another approach, due to Lee and Stinson [7], is called an ID-based one-way-function key
predistribution scheme, also known as IOS. Here, pairwise keys are computed by hashing public
information along with secret information. This technique can be used to construct a secure scheme
in which every pair of n users has a pairwise key. Here we obtain security against maximum size
coalitions, but the security depends on the hash function used to construct the keys. We will assume
that the hash function can be modelled as a random function, i.e, the security analysis will be done
in the standard random oracle model [2]. The storage requirement of this scheme is reduced by
almost half as compared to the trivial scheme. In [5], a very similar scheme was described that has
the same storage requirement as IOS.

It is also possible to consider a more general setting where we specify a communication graph G
consisting of all the pairs of users who we want to be able to share a secret key. A trivial KPS for a
given communication graph G would assign deg(u) keys to vertex u, for every vertex u in G, where
deg(u) denotes the degree of vertex u. In the case of unconditionally secure schemes secure against
coalitions of size k, Blundo et al. [4] gave a construction where a vertex u has storage requirement
min{k+ 1, deg(u)}, for every vertex u. Lee and Stinson’s construction [7] applies to regular graphs
of even degree d; the storage requirement for each vertex is 1 + d/2.

1.1 Our contributions

In Section 1.2, we introduce some graph-theoretic terminology and basic results that are required
later in the paper. In Section 2, we define a general model for IOS for a specified communication
graph G. In Section 2.1, we determine necessary and sufficient conditions for an IOS to be secure.
Our characterization of secure IOS involves certain key graphs. We then use our characterization
of secure IOS to investigate the storage requirements of the these types of schemes. We show in
Section 2.2 that it is sufficient to restrict our attention to schemes obtained by decomposing the
edges of the communication graph into “stars”. In Section 3.1, we investigate how to minimize
the total storage in the scheme. In general, this turns out to be equivalent to determining the
size of a maximum independent set of vertices in G, which is an NP-hard problem. For complete
graphs, however, it is easy to give an exact answer. In Sections 3.2 and 3.3, we turn to the problem
of minimizing the maximum storage required by any vertex of G. We give a complete solution
for regular graphs. For arbitrary graphs, we can show that the optimal maximum storage can be
determined in polynomial time by exploiting a connection with the minimum maximum indegree
problem. In Section 4, we discuss our results in comparison to the recent paper by Choi, Acharya
and Gouda [5].

1.2 Graph-theoretic terminology

Definition 1.1. A graph is a pair G = (V,E) where V is a finite set of vertices and E is a set of
edges, where every edge is a set of two vertices. We say that the edge e = {u, v} joins the vertices
u and v, and u and v are incident with e. We may also write an edge {u, v} as uv. If E is instead
a multiset, then we say that G = (V,E) is a multigraph.

Definition 1.2. For a vertex u in a graph G, The degree of u ∈ V , denoted deg(u), is the number
of edges that are incident with v. A graph is m-regular if every vertex has degree equal to m.

For a graph G = (V,E), we will denote the number of vertices (i.e., |V |) by n and the number
of edges (i.e., |E|) by ε.

2

Definition 1.3. Suppose G = (V,E) is a graph and u, v ∈ V , u 6= v. A (u, v)-path is a sequence
of the form v1, e1, v2, e2, . . . , e`, v`+1, where v1, . . . , v`+1 ∈ V are distinct vertices, e1, . . . , e` ∈ E,
v1 = u, v`+1 = v, and ei is incident with vi and vi+1 for 1 ≤ i ≤ `.

Definition 1.4. A graph is connected if, for all distinct vertices u and v, there exists a (u, v)-path.

Definition 1.5. A directed graph is a pair G = (V,E) where V is a finite set of vertices and E is a
set of directed edges, where every edge is an ordered pair of two distinct vertices. The indegree of
a vertex v ∈ V is the number of directed edges (u, v) ∈ E. The outdegree of a vertex v ∈ V is the
number of directed edges (v, u) ∈ E.

Definition 1.6. A connected graph (or multigraph) G = (V,E) has an eulerian circuit if there ex-
ists a circuit in which every edge is used exactly once. It is well-known that a connected (multi)graph
has an eulerian circuit if and only if every vertex has even degree.

Definition 1.7. A complete graph Kn is a graph on n vertices where every pair of vertices are
joined by an edge.

Definition 1.8. A complete bipartite graph Kn1,n2 is a graph on n1 + n2 vertices V = V1 ∪ V2,
where |V1| = n1, |V2| = n2, and E = {{v1, v2} : v1 ∈ V1, v2 ∈ V2}.

Definition 1.9. A star is a complete bipartite graph K1,m for some m ≥ 1. If m > 1, then the
centre of the graph is the (unique) vertex of degree m. If m = 1, then the graph is a single edge
and we can specify either endpoint to be the centre of the star. Vertices in a star that are not the
centre will be termed leaves. A directed star is obtained from a star by directing every edge from
the leaf to the centre.

Definition 1.10. Given a graph G = (V,E), an independent set is a subset of vertices V0 ⊆ V
such that {u, v} 6∈ E for every u, v ∈ V0. The size of a maximum independent set of vertices in a
graph G is denoted by α(G).

Theorem 1.1 (Rosenfeld [8]). In any m-regular graph G = (V,E), we have

α(G) ≤ min{bn/2c, n−m},

where n = |V |.

Definition 1.11. Given a graph G = (V,E), the complement of G is the graph G = (V,E), where
{u, v} ∈ E if and only if {u, v} 6∈ E, for every u, v ∈ V , u 6= v.

Definition 1.12. Let G = (V,E) and H = (W,F) be graphs, where V ∩W = ∅. The join of G
and H, is the graph denoted as G ∨H. The vertex set of G ∨H is V ∪W . The edges of G ∨H
consist of all edges in E or F , and all {v, w} with v ∈ V and w ∈W .

Definition 1.13. Let G = (V,E) be a graph and let W ⊆ V . The subgraph of G induced by W is
the graph H = (W,F), where F = {{u, v} ∈ E : u, v ∈W}.

3

2 A general model for ID-based one-way-function KPS

In an ID-based one-way-function key predistribution scheme (or IOS), pairwise keys are constructed
by hashing public information along with secret information. We describe a general model for IOS
for a given communication graph G = (V,E) on n vertices. We identify the n vertices in V with a
set of n users, say U . Our first goal is to obtain a KPS in which two users u, v ∈ U have a pairwise
key Lu,v whenever{u, v} ∈ E. Security of the scheme will be addressed in Section 2.1.

Let f : E(G) → {1, . . . , t} be a publicly known surjective function and let R1, . . . , Rt ∈ {0, 1}σ
be secret values chosen uniformly at random from {0, 1}σ. Let h : {0, 1}∗ → {0, 1}σ be a hash
function (which we model as a random oracle). The length of the Ri’s, namely σ, is the same as
the length of the output of h. A suitable value for σ is σ = 128. The function h will be used as a
key derivation function.

Every pairwise key Lu,v will be computed as

Lu,v = Lv,u = h(Rf({u,v}) ‖ ID(u) ‖ ID(v)), (1)

where

(1) for every u ∈ U , ID(u) denotes public identifying information for user u, and

(2) u < v (this requirement ensures that Lu,v = Lv,u in (1)).

Suppose a value Rf({u,v}) is not known to a coalition of users. Recall that Rf({u,v}) was chosen
uniformly at random from a set of size 2σ. Also, the key Lu,v is the output of a random function h
that takes on values from a set of size 2σ. Therefore this key can be regarded as a secure σ-bit key.

Eventually, we will investigate whether secret values may be “repeated”, i.e., used for the
computation of more than one key, without compromising security. The motivation is that this
might enable the storage of the scheme to be reduced. This question will be addressed in Section
2.1.

Remark 2.1. As described above, the public inputs to the hash function are taken to be (public)
IDs. Actually, it doesn’t really matter what the public inputs to h are, as long as there do not exist
two keys that have the same public and secret inputs and we ensure that Lu,v = Lv,u.

It is obvious that if {u, v} ∈ E and f({u, v}) = j, then users u and v each must store one of Rj
or Lu,v. We will assume that neither u nor v stores both Rj and Lu,v, since Lu,v can be computed
if Rj is known.

Definition 2.1. For 1 ≤ j ≤ t, define

Ej = f−1(j) = {{u, v} ∈ E : f({u, v}) = j}

and let Vj be the vertices spanned by Ej . (Vj , Ej) is a graph that we term the jth key graph.
Let

Wj = {v ∈ Vj : v stores Rj}

and define W = (W1, . . . ,Wt). Since we are assuming that f is surjective, it follows that |Ej | ≥ 1
and |Vj | ≥ 2 for all j ∈ {1, . . . , t}.

An IOS is fully specified by f and W, so we will refer to (f,W) as a G-IOS.

4

To summarize, here is all the keying information that is stored in a G-IOS, (f,W). Suppose
u ∈ V is any vertex and {u, v} ∈ E is any edge that is incident with u. If {u, v} ∈ Ej , then the
vertex u stores Rj when u ∈Wj , and it stores Lu,v, otherwise.

Example 2.1. Consider the graph G = (V,E), where

V = {1, 2, 3, 4, 5} and E = {12, 13, 14, 15, 23, 25, 34, 45}.

Suppose we define

f(12) = f(13) = f(14) = 1 W1 = {1}
f(15) = f(25) = f(45) = 2 W2 = {5}
f(23) = f(34) = 3 W3 = {3}.

Then it is easy to see that

E1 = {12, 13, 14} V1 = {1, 2, 3, 4}
E2 = {15, 25, 45} V2 = {1, 2, 4, 5}
E3 = {23, 34} V3 = {2, 3, 4}.

The keying material held by each user is as follows:

user 1 stores R1, L1,5

user 2 stores L1,2, L2,3, L2,5

user 3 stores R3, L1,3

user 4 stores L1,4, L3,4, L4,5

user 5 stores R2.

�

2.1 Secure IOS

Suppose that (f,W) is a G-IOS. We say that (f,W) is secure if there does not exist a user w who
can compute a key Lu,v where {u, v} ∈ E and w 6= u, v. This security condition will be satisfied
provided that w does not know either of the values Rj or Lu,v (where j = f({u, v})). Note that a
secure IOS is automatically secure against maximum size coalitions.

We now consider when a G-IOS, as defined above, will be secure. We prove a sequence of simple
lemmas that culminate in a characterization of secure G-IOS. The first lemma is obvious.

Lemma 2.1. Suppose (f,W) is a G-IOS, {u, v} ∈ E and w stores Lu,v, where w 6= u, v. Then
(f,W) is not secure.

Lemma 2.2. Suppose (f,W) is a secure G-IOS and w stores Rj. Then w ∈ Vj.

Proof. Suppose w stores Rj but w 6∈ Vj . Let {u, v} ∈ Ej ; then w 6= u, v because w 6∈ Vj . But then
w can compute Lu,v, so (f,W) is not secure.

Lemma 2.3. Suppose (f,W) is a G-IOS and {u, v}, {u, v′} ∈ Ej, where v 6= v′. If v ∈ Wj or
v′ ∈Wj, then (f,W) is not secure.

5

Proof. If v ∈Wj , then v can compute Lu,v′ . Similarly, if v′ ∈Wj , then v′ can compute Lu,v.

Lemma 2.4. Suppose (f,W) is a G-IOS and {u, v}, {u′, v′} ∈ Ej, where {u, v} ∩ {u′, v′} = ∅. If
{u, u′, v, v′} ∩Wj 6= ∅, then (f,W) is not secure.

Proof. If u ∈ Wj , then u can compute Lu′,v′ . If v ∈ Wj , then v can compute Lu′,v′ . If u′ ∈ Wj ,
then u′ can compute Lu,v. If v′ ∈Wj , then v′ can compute Lu,v.

Lemma 2.5. Suppose (f,W) is a secure G-IOS and u, v ∈Wj. Then the key graph Ej consists of
a single edge {{u, v}}.

Proof. First suppose that {u, v} 6∈ Ej . Suppose {u, u′} ∈ Ej and {v, v′} ∈ Ej . If u′ 6= v′, then
Lemma 2.4 is contradicted. If u′ = v′, then Lemma 2.3 is contradicted. Therefore it follows that
{u, v} ∈ Ej . Suppose that there is some other edge {u′, v′} ∈ Ej . If {u, v} ∩ {u′, v′} = ∅, then
Lemma 2.4 is contradicted. Otherwise, suppose without loss of generality that u = u′. Then
Lemma 2.3 is contradicted.

Lemma 2.6. Suppose (f,W) is a secure G-IOS. Then, for every j, |Wj | = 0, 1 or 2.

Proof. Suppose |Wj | ≥ 3 and suppose Wj contains three distinct elements u, v, w. We now apply
Lemma 2.5: since u, v ∈ Wj , we have that Ej = {{u, v}}. Furthermore, since u,w ∈ Wj , we have
that Ej = {{u,w}}. This is impossible because v 6= w.

Lemma 2.7. Suppose (f,W) is a secure G-IOS. If |Wj | = 1, say Wj = {v}, then the jth key graph
is a star with centre v.

Proof. Suppose there is an edge {u, u′} ∈ Ej where v 6= u, u′. Then v can compute Lu,u′ .

The above conditions are necessary for a G-IOS, say (f,W), to be secure; we now show that
they are also sufficient to provide security.

Theorem 2.8. Suppose (f,W) is a G-IOS. Then (f,W) is secure if and only if the following
conditions hold:

(1) |Wj | ≤ 2 for all j;

(2) for any j with |Wj | = 1, say Wj = {v}, the jth key graph is a star with centre v; and

(3) for any j with |Wj | = 2, say Wj = {u, v}, the jth key graph consists of the single edge {{u, v}}.

Proof. These three conditions are shown to be necessary for (f,W) to be secure in Lemmas 2.5–2.7.
We now show they are sufficient for the scheme to be secure. Suppose the three conditions hold
but (f,W) is not secure. We will obtain a contradiction.

If (f,W) is not secure, then some user w 6= u, v can compute a key Lu,v where {u, v} ∈ E. Let
f({u, v}) = j. Since w does not store Lu,v (Lemma 2.1), it follows from Lemma 2.2 that w ∈ Wj

and hence |Wj | ≥ 1. Applying Lemma 2.6, we have that |Wj | = 1 or 2.
Suppose |Wj | = 2. Clearly u, v, w ∈ Vj and hence |Vj | ≥ 3. This contradicts Lemma 2.5 which

says that Ej consists of a single edge.
Suppose |Wj | = 1 (so Wj = {w}). From Lemma 2.7, it follows that Ej is a star with centre w.

But then the existence of the edge {u, v} ∈ Ej yields a contradiction.

6

It may be helpful to summarize the cases enumerated in Theorem 2.8 in more descriptive
language. We will say that the jth key graph is of type i if |Wj | = i. Then Theorem 2.8 can be
restated by saying that every key graph is of type 0, 1 or 2. Furthermore, the structure of a key
graph of a specified type is as follows:

type 0 In a key graph (Vj , Ej) of type 0, no vertex in Vj stores the value Rj . Hence, for
every vertex u ∈ Vj and every edge {u, v} ∈ Ej that is incident with u, the vertex
u stores the key Lu,v. There is no restriction on the number of edges in Ej or the
structure of Ej .

type 1 A key graph (Vj , Ej) of type 1 is a star whose centre (say u) stores the value Rj .
Any leaf v ∈ Vj stores the key Lu,v.

type 2 A key graph (Vj , Ej) of type 2 consists of a single edge {u, v} where u and u both
store the value Rj .

Remark 2.2. The IOS considered in Example 2.1 consists of three key graphs of type 1.

2.2 Edge-decompositions into stars

We say that a (secure) G-IOS (f,W) is a star-IOS if every key graph is of type 1. That is, the
KPS is based on an edge-decomposition of G into stars. This was the model introduced by Lee and
Stinson [7]. In this section, we show that the any secure G-IOS can be transformed into a (secure)
G-star-IOS in which the storage of each vertex is the same in the two schemes.

Basically, we need to describe how to change type 0 and 2 key graphs into type 1 key graphs.
Let’s begin by considering a type 2 key graph, say (Vj , Ej), which consists of single edge {u, v}.
Both vertices u and v store Rj . If we stipulate that one of vertices u or v stores Rj and the
other one stores Lu,v, then Ej has been transformed to a type 1 key graph with the same storage
requirements.

Now we suppose we have a type 0 key graph, (Vj , Ej). No vertex in Vj stores the value Rj . In
this case, we can split this key graph into |Ej | key graphs of type 1, each of which is isomorphic
to K1,1. Every edge is now assigned a different random value by the function f . Furthermore,
for every edge e = {u, v} ∈ Ej , one endpoint stores the (new) random value f(e) and the other
endpoint stores the (new) key Lu,v.

Summarizing the above discussion, we have the following theorem.

Theorem 2.9. If (f,W) is a secure G-IOS, then there exists a secure G-star-KPS in which the
storage of every vertex is the same in both schemes.

3 Optimal storage of IOS

In this section, we focus on secure G-IOS that have minimum possible storage requirements. In
view of Theorem 2.9, we can restrict our attention to G-star-IOS. We are interested in the total
storage required in such a scheme, as well as the (maximum) storage required by an individual user.

3.1 Total storage

Let G = (V,E) be a graph with |V | = n and |E| = ε. Suppose that (f,W) is a secure G-star-
IOS. Then the storage requirement of a node u, denoted s(u), is defined to be the number of stars

7

(i.e., key graphs) that contain u. The total storage requirement of the IOS, denoted by S(f,W), is
defined as

S(f,W) =
∑
u∈V

s(u).

Let c(u) denote the number of stars for which u is the centre and let `(u) denote the number of
stars for which u is a leaf. Then

s(u) = c(u) + `(u) (2)

and hence
S(f,W) =

∑
u∈V

(c(u) + `(u)).

If we define
C =

∑
u∈V

c(u),

then we have that
S(f,W) = C +

∑
u∈V

`(u). (3)

Example 3.1. In Example 2.1, we have the following storage requirements:

i c(i) `(i) s(i)

1 1 1 2
2 0 3 3
3 1 1 2
4 0 3 3
5 1 0 1

The total storage of the scheme is 11. �

We now consider each star in the edge-decomposition to be directed as defined in Definition
1.9, i.e., each edge is directed from the leaf to the centre of the star containing it.

Lemma 3.1.
∑

u∈V `(u) = ε.

Proof. It is obvious that `(u) = d+(u) (i.e., the outdegree of u). Clearly
∑

u∈V d
+(u) = ε, and the

result follows.

It follows from (3.1) and Lemma 3 that

S(f,W) = ε+ C. (4)

Further, it is easy to see that
c(u) = 0 if d−(u) = 0
c(u) ≥ 1 if d−(u) > 0.

(5)

We are interested in minimizing the total storage, we will denote by S∗(G) the minimum value
of S(f,W) over all secure G-star-IOS. In order to compute S∗(G), we need to minimize the value
of C in (4). It is convenient to let Cmin(G) denote the minimum possible value of C over all
edge-decompositions of G into stars.

8

Lemma 3.2. Let α = α(G) denote the size of a maximum independent set of vertices in G. Then
Cmin(G) = n− α. Furthermore, C = Cmin(G) only if c(u) ∈ {0, 1} for all vertices u.

Proof. Let V0 be a set of α independent vertices in V . Direct all edges that are incident with a vertex
v ∈ V0 away from v, and direct any remaining edges arbitrarily. This shows that Cmin ≤ n− α.

Conversely, observe that the set of vertices for which c(u) = 0 form an independent set in G.
This yields the bound Cmin ≥ n − α. Further, in order for this bound to be met with equality,
c(u) ≤ 1 for all vertices u.

Theorem 3.3. For any graph G, S∗(G) = n+ ε− α.

Remark 3.1. For the graph considered in Example 2.1, it is easy to see that α = 2. Theorem 3.3
then yields S∗(G) = 11. The scheme constructed in Example 2.1 has total storage 11, as noted in
Example 3.1. Therefore this scheme has optimal total storage.

We now consider the situation where G is a complete graph Kn. The following result is an
immediate corollary of Theorem 3.3; it improves the constructions given in [7, 5] by one.

Corollary 3.4. S∗(Kn) =
(
n+1
2

)
− 1. Further, an edge-decomposition of Kn into stars meets this

bound with equality if and only if there is a (necessarily unique) vertex v with d−(v) = 0.

It is well-known that computing the exact value of α(G) is NP-hard. Thus we also have the
following corollary of Theorem 3.3.

Corollary 3.5. Given a graph G, computing S∗(G) is NP-hard.

3.2 Maximum storage

It is also of interest to consider the maximum storage of a secure G-IOS, say (f,W), which is defined
to be Smax(f,W) = max{s(u) : u ∈ V }. Define S∗max(G) to be the minimum value of Smax(f,W)
over all (f,W) that are secure G-IOS. As before, we can restrict our attention to (f,W) that are
secure G-star-IOS.

We begin with a lemma that states a simplification we can make without loss of generality.

Lemma 3.6. For any graph G, there exists a secure G-IOS having optimal maximum storage
S∗max(G) in which c(u) ∈ {0, 1} for all vertices u.

Proof. Consider the star-decomposition associated with a secure G-IOS having optimal maximum
storage S∗max(G). If c(u) > 1 for some vertex u, then merge all the stars having centre u. This
reduces the storage s(u) and leaves the storage of all other vertices unchanged. Repeat this process
until c(u) ∈ {0, 1} for all vertices u.

We next give a construction that yields an upper bound on S∗(G). This is a slight modification
of a construction given by Lee and Stinson [7] that only applied to regular graphs of even degree.

Theorem 3.7. Let G = (V,E) be a graph and let d denote the maximum degree of any vertex in
V . Then

S∗max(G) ≤

{
d+3
2 if d is odd,
d+2
2 if d is even.

9

Proof. We first assume that G is connected. Let V0 ⊆ V be the vertices in V that have odd degree.
Clearly |V0| is even. Let M be any matching of the vertices in V0; M consists of |V0|/2 disjoint
edges. Now consider the multigraph G′ = (V,E′ = E ∪M). Every vertex in G′ has even degree, so
G′ has a (directed) eulerian circuit, say D.

The important property is that, with respect to this orientation defined on the edges in E′,
d+(u) = d−(u) for every vertex u. Now remove the edges in M and consider the resulting orientation
on the edges in E. We have |d−(v) − d+(v)| ≤ 1 if d(v) is odd and d−(v) = d+(v) if d(v) is even.
This orientation gives rise to an associated decomposition of E into stars, where each star consists
of the edges directed into a vertex.

To complete the proof, we observe that any vertex v has storage

s(v) = c(v) + `(v) = c(v) + d−(v) ≤ 1 + d−(v).

If d is even, then d−(v) ≤ d/2 for all v, and if d is odd, then d−(v) ≤ (d + 1)/2 for all v. The
desired result follows.

If G is not connected, then apply the above-described technique to every connected component
of G.

If we start with a regular graph degree at least two, then we can show that the result obtained
above is optimal.

Theorem 3.8. Let G = (V,E) be a graph that is regular of even degree d > 0. Then S∗max(G) =
(d+ 2)/2.

Proof. We have that S∗(G) = n+ ε− α. Here ε = nd/2 since G is d-regular. Therefore,

S∗max(G) ≥
⌈
n+ ε− α

n

⌉
=

⌈
1 +

d

2
− α

n

⌉
.

Since 1 ≤ α < n, it follows that S∗max(G) ≥ 1 + d/2. We S∗max(G) ≤ 1 + d/2 from Theorem 3.7, so
the result follows.

For regular graphs of odd degree, we have the following similar result.

Theorem 3.9. Let G = (V,E) be a graph that is regular of odd degree d ≥ 3. Then S∗max(G) =
(d+ 3)/2.

Proof. As in the proof of the Theorem 3.8,

S∗(G) ≥
⌈
n+ ε− α

n

⌉
=

⌈
1 +

d

2
− α

n

⌉
.

In any m-regular graph, we have α ≤ n/2 from Theorem 1.1. Therefore

S∗max(G) ≥
⌈

1 +
d

2
− n/2

n

⌉
≥
⌈

1 +
d− 1

2

⌉
=
d+ 1

2
.

Now, in order for this bound to be met with equality, it must happen that C = α = n/2 and
the total storage S∗(G) = n(d + 1)/2. In this case there will be n/2 vertices with s(v) = 1 and
n/2 vertices with s(v) = d. So S∗max(G) = d. However, (d + 1)/2 < d when d ≥ 3, so we have a
contradiction. Therefore, S∗max(G) ≥ (d+1)/2+ 1 = (d+3)/2. S∗max(G) ≤ (d+3)/2 from Theorem
3.7, so the result follows.

Remark 3.2. A 1-regular graph G is a union of disjoint edges. If is easy to see that S∗max(G) = 1
for such a graph G.

10

3.3 Minimizing maximum indegree and outdegree

The problem of computing S∗max(G) is closely related to the minimum maximum indegree problem
[6, 9], which is defined as follows. Given a graph G, the goal is to direct the edges in G so as to
minimize the maximum indegree of a vertex of the resulting directed graph. Suppose we denote this
quantity by MMI(G). It was shown in [9] that MMI(G) can be computed in polynomial time, more
specifically in time O(ε2), where ε is the number of edges in the graph. An improved algorithm can
be found in [1]. These algorithms also find an orientation attaining the optimal value MMI(G).

We will use the following simple result a bit later.

Lemma 3.10. MMI(G) ≥ d εne.

Proof. Given any orientation of the edges of a graph G, the average indegree is ε/n.

We can analogously define the minimum maximum outdegree problem and the associated quan-
tity MMO(G) in the obvious way. Observe that MMO(G) = MMI(G), simply by reversing the
directions of all edges in an optimal solution.

Here is our result linking maximum storage of a G-IOS to MMO(G).

Theorem 3.11. For any graph G, we have MMO(G) ≤ S∗max(G) ≤ MMO(G) + 1.

Proof. Suppose we have with a star-decomposition of G that minimizes S∗max(G) and suppose that
all edges are directed towards the centres of the stars in the decomposition, as usual. From (2),
the storage of a vertex u is s(u) = `(u) + c(u). The value `(u) is clearly equal to the outdegree of
u. From Lemma 3.6, we can assume c(0) = 0 or 1. The result follows.

We expect for “most” graphs that S∗max(G) = MMO(G) + 1. The only way it can occur that
MMO(G) = S∗max(G) is if every vertex whose outdegree is equal to MMO(G) has indegree equal
to 0. Nevertheless, this can occur: we show that there are infinitely many graphs for which
MMO(G) = S∗max(G).

Theorem 3.12. For any integer n > 15, there exists a graph G having n vertices such that
MMO(G) = S∗max(G).

Proof. For any integer t > 10, let G = K5 ∨Kt (i.e., G is the join of K5 and a set of t independent
vertices; see Definition 1.12). This graph has n = t+5 vertices and ε = 5t+10 edges. From Lemma
3.10, since t > 10, we see that MMO(G) ≥ 5. We can construct an orientation of the edges of G in
which the t vertices in the Kt each have outdegree 5 and indegree 0, and the vertices in the K5 each
have outdegree 2 and indegree t+ 2. This shows that MMO(G) ≤ 5, whence MMO(G) = 5. Since
the vertices of outdegree 5 all have indegree equal to 0, the resulting star decomposition proves
that S∗max(G) = MMO(G) = 5.

Since MMO(G) can be computed in polynomial time, Theorem 3.11 establishes that we can
compute an integer T such that value S∗max(G) = T or T + 1, in polynomial time. In fact, as we
now show, it is possible to compute the exact value of S∗max(G) in polynomial time.

Theorem 3.13. Let G = (V,E) be a graph and let

W = {v ∈ V : deg(v) > MMO(G)}.

Let H = (W,F) be the subgraph of G induced by W . Then MMO(G) = S∗max(G) if and only if
MMO(H) < MMO(G).

11

Figure 1: An algorithm to compute S∗max(G)

1. Compute MMO(G).

2. Construct the graph H.

3. Compute MMO(H).

4. If MMO(H) < MMO(G) then S∗max(G) = MMO(G) else S∗max(G) = MMO(G) + 1.

Proof. Suppose MMO(G) = S∗max(G) and consider an orientation of the edges in E so that the
maximum outdegree of any vertex is MMO(G). Let w ∈ W ; then w has indegree greater than 0.
It follows that s(w) = 1 + `(w), where `(w) equals the outdegree of w. Therefore

`(w) < s(w) ≤ S∗max(G) = MMO(G).

Since this holds for every vertex w ∈W , we have MMO(H) < MMO(G).
Conversely, suppose that MMO(H) < MMO(G). Consider an orientation of the edges in F so

that the maximum outdegree of any vertex in W is at most MMO(H). Next, direct any edges
having one endpoint in W towards the incident vertex in W . At this point, we have

s(w) ≤ 1 + `(w) ≤ 1 + MMO(H) ≤ MMO(G)

for every vertex w ∈W . Finally, direct any edges with both endpoints in V \W arbitrarily. Then,
for any vertex v ∈ V \W , we have

s(v) ≤ deg(v) ≤ MMO(G).

Thus MMO(G) = S∗max(G).

Example 3.2. Let us return again to the graph G considered in Example 2.1. It is easy to see that
MMO(G) = 2. Further, H = G and hence S∗max(G) = 3. Thus the scheme constructed in Example
2.1 has optimal maximum storage.

Example 3.3. In the construction given in the proof of Theorem 3.12, we see that H consists of
the five vertices in the K5 and hence MMO(H) = 2.

As an immediate corollary of Theorem 3.13, we obtain a polynomial-time algorithm to compute
S∗max(G). This algorithm is presented in Figure 1.

Remark 3.3. Using ideas from the proof of Theorem 3.13, the above algorithm can be modified
in a straightforward way to construct a scheme attaining the value S∗max(G).

4 Discussion and Summary

We have studied a general type of key redistribution scheme based on hashing secret values along
with users’ IDs. We gave necessary and sufficient conditions for schemes of this type to be secure,
and we studied the problem of minimizing users’ storage in these schemes.

12

Choi, Acharya and Gouda [5] also studied key predistibution in a similar setting. They only
considered the situation where the communication graph is a complete graph and they gave a
construction that is basically equivalent to the one found in [7]. They also considered lower bounds
on the total storage of schemes of this type. Their model is very similar to ours, but they do not
assume (as we did) that the key derivation function is a random oracle. In [5, Theorem 6], it is
stated that the total storage required by a secure scheme is at least n(n− 1)/2. The proof involves
analyzing the implications of an equation of the form

F (iv , ku) = F (iu, kv), (6)

where F is a public key derivation function, iu and iv are public values, and ku and kv are secret
values known to nodes u and v respectively.

The equation (6) ensures that nodes u and v will compute the same pairwise key. Moreover,
it is assumed ku and kv are each used for the computation of at least one other key, and then a
contradiction is derived. It is observed in [7] that, under these circumstances, it should be infeasible
to compute ku given iv and F (iu, kv), and it should also be infeasible to compute kv given iu and
F (iv , ku). It is then claimed that this means that values ku and kv satisfying (6) cannot be
computed when the scheme is set up. However, this last assertion does not seem to consider the
possibility that the entity that sets up the scheme can compute these values, even though the nodes
u and v might not be able to compute kv or ku, respectively.

The Blom scheme [3] illustrates how this can happen. For simplicity, we consider a Blom scheme
secure against individual nodes. Such a scheme is constructed by a trusted authority (TA) first
choosing a symmetric polynomial of the form g(x1, x2) = a+ b(x1 +x2) + cx1x2. A node u is given
the polynomial fu(z) = g(iu, z) and v is given the polynomial fv(z) = g(iv, z). The pairwise key
for nodes u and v is g(iu, iv) = g(iv , iu). Node u computes this key as fu(iv) and node v computes
fv(iu). Note that node u cannot compute fv and node v cannot compute fu, but the TA who sets
up the scheme knows the relationship between these polynomials.

In the setting we studied, where the key derivation function is a random oracle, the equation
(6) will not hold, so the above discussion does not apply. We were therefore able to prove stronger
lower bounds on the total storage, as we presented in Section 3.

References

[1] Yuichi Asahiro, Eiji Miyano, Hirotaka Ono, and Kouhei Zenmyo. Graph orientation algo-
rithms to minimize the maximum outdegree. International Journal of Foundations of Com-
puter Science 18 (2007).

[2] Mihir Bellare and Phillip Rogaway. Random oracles are practical: a paradigm for designing
efficient protocols. Proceedings of the 1st ACM Conference on Computer and Communications
Security, pages 62–73, ACM Press, 1993 (CCS ’93).

[3] Rolf Blom. Non-public key distribution. In Proceedings of CRYPTO ’82, pages 231–236,
Plenum Press, 1983.

[4] Carlo Blundo, Alfredo De Santis, Amir Herzberg, Shay Kutten, Ugo Vaccaro, and Moti Yung.
Perfectly-secure key distribution for dynamic conferences. Lecture Notes in Computer Science
740 (1993), 471–486 (CRYPTO 92 Proceedings).

13

[5] Taehwan Choi, H.B. Acharya, Mohamed G. Gouda. The best keying protocol for sensor
networks. Pervasive and Mobile Computing 9 (2013), 564–571.

[6] A. Frank and A. Gyárfás. How to orient the edges of a graph? Colloquia Mathematica Societas
János Bolyai, Combinatorics, Keszthely (1976), 353–364.

[7] Jooyoung Lee and Douglas R. Stinson. Deterministic key predistribution schemes for dis-
tributed sensor networks. Lecture Notes in Computer Science 3357 (2005), 294–307 (SAC
2004 Proceedings).

[8] M. Rosenfeld. Independent sets in regular graphs. Israel Journal of Mathematics 2 (1964),
262–272.

[9] V. Venkateswaran. Minimizing maximum indegree. Discrete Applied Mathematics 143 (2004),
374–378.

14

