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Abstract 

 

The capacity of visual working memory for faces is extremely limited, but the 

reasons for these limitations remain unknown. We employed event-related brain potential 

(ERP) measures to demonstrate that individual faces have to be focally attended in order to 

be maintained in working memory, and that attention is allocated to only a single face at a 

time. When two faces have to be memorized simultaneously in a face identity matching 

task, the focus of spatial attention during encoding predicts which of these faces can be 

successfully maintained in working memory and matched to a subsequent test face. We also 

show that memory representations of attended faces are maintained in a position-

dependent fashion. These findings demonstrate that the limited capacity of face memory is 

directly linked to capacity limits of spatial attention during the encoding and maintenance of 

individual face representations. We suggest that the capacity and distribution of selective 

spatial attention is a dynamic resource that constrains the capacity and fidelity of working 

memory for faces. 

 

 

 

Keywords: working memory, face memory, spatial attention, memory capacity, 

event-related potentials 
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 Our ability to maintain individual faces in working memory is surprisingly limited. 

While three or four simple objects such as coloured squares can be simultaneously held in 

memory (Luck and Vogel 1997), working memory capacity is lower for more complex objects 

(Alvarez and Cavanagh 2004; Eng et al. 2005), and in particular for faces. When observers 

have to memorize a set of briefly presented individual faces, only a single face can be 

successfully maintained on most trials (Eng et al. 2005; Curby and Gauthier 2007). What is 

responsible for these extreme capacity limitations of visual face memory? In the current 

study, we demonstrate that the difficulty of simultaneously maintaining multiple faces in 

working memory is directly linked to the limited capacity of selective attention.  

 Current models of working memory postulate that visual objects are stored in the 

same posterior cortical areas that are also involved in the visual processing of these objects 

(the “sensory recruitment” hypothesis; see Postle 2006; D’Esposito 2007; Harrison and Tong 

2009; Sreenivasan et al. 2014). Attentional mechanisms are critically involved not only in the 

initial selection of visual objects for encoding into working memory, but also in their 

subsequent short-term storage. This selective retention of an object in sensory-perceptual 

areas that are recruited for working memory is assumed to be mediated by the allocation 

and maintenance of focal spatial attention (Awh et al. 2001; Awh et al. 2006; see also Chun 

et al., 2011). Because working memory depends on attention, the capacity limitations of 

visual face memory could be caused by an attentional bottleneck. The successful encoding 

and retention of an individual face representation in working memory may require a single 

undivided focus of attention that can only be allocated to one particular face at a time. 

When two or more faces have to be encoded and maintained simultaneously, they will 

compete for focal attentional processing, and only the winner of this competition can be 

successfully retained for subsequent recall. 

 While the attentional competition during encoding account for the limited capacity 

of visual face memory is in line with emerging ideas about sensory recruitment and 

attentional selectivity in working memory, there is so far no direct evidence that the focus 

of spatial attention during the encoding and short-term retention of individual faces 

determines whether a particular face can be successfully maintained. In fact, Awh et al. 

(2007) have argued that the performance deficits which are usually interpreted as evidence 

of the limited memory capacity for complex objects such as faces do not arise during 

encoding and maintenance, but instead at a later stage where working memory 
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representations are compared to test items. These authors demonstrated that when sample 

and test stimuli were perceptually dissimilar, thereby minimizing the probability of 

comparison errors, working memory capacity estimates were equivalent for simple features 

and complex objects. According to Awh et al. (2007), the number of objects that can be 

simultaneously represented in working memory is independent of their complexity, but the 

resolution of these representations decreases with increasing memory load. As a result, 

sample-test comparison errors are more frequent for more complex objects.  

 The aim of the present study was to find out whether the limited capacity of visual 

working memory for individual faces is caused by attentional limitations during their 

encoding and retention, or is generated at a later memory comparison stage. We recorded 

event-related potentials while participants performed a face identity matching task, where 

they had to report whether a face in a memory display (S1) was repeated in a subsequent 

test display (S2). Participants had to press one response button when a face repetition was 

detected, and different button when the S2 face was not present in the S1 display. Memory 

displays contained two objects on opposite sides, and test displays always contained a single 

face at fixation (Figure 1). In the Load One condition, memory displays showed a task-

relevant face and an irrelevant distractor object (a house). On identity repetition trials, the 

S1 face was repeated in the test display. On identity change trials, a different face appeared 

as S2. In the critical Load Two condition, the memory display contained two different faces. 

Both of these faces had to be memorized, because either of them was equally likely to 

reappear as S2 on identity repetition trials. To minimize the time demands of face memory 

maintenance, the interval between the memory and test displays was very brief (200 ms).  

 Participants were expected to detect the presence or absence of a face repetition on 

almost all trials in the Load One condition. In this condition, attention can be immediately 

allocated to the single face in the memory display, which will then be selectively encoded 

and maintained, and successfully compared to the test face. If maintaining an individual face 

in working memory requires the full allocation of focal attention to this face, identity 

matching performance should be strongly impaired in the Load Two condition. In this 

condition, the two faces in the memory displays will compete for attentional processing, 

resulting in the allocation of focal attention to only one of them. This attended face will be 

encoded into working memory and can be successfully detected if it reappears at test. In 

contrast, the repetition of the other (unattended) face in the memory display is likely to go 
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undetected, which should result in an overall poor identity matching performance in the 

Load Two condition. 

 To track the allocation of spatial attention and the spatially selective activation of 

visual face memory in the interval after a memory display has been presented, we 

measured the N2pc component and the contralateral delay activity (CDA) in response to 

these displays in the Load One and Two conditions. The N2pc is an enhanced negativity that 

is elicited around 200 ms after stimulus onset at posterior electrodes contralateral to task-

relevant visual objects, and reflects their spatial selection in ventral visual cortex (e.g., Luck 

and Hillyard 1994; Eimer 1996; Hopf et al. 2000). The CDA is a sustained posterior negativity 

that emerges approximately 300 ms after the presentation of a memory display over 

extrastriate visual cortex contralateral to the side where memorized items have been 

presented (Vogel and Machizawa 2004). The CDA is sensitive to the number of memorized 

objects and to individual differences in working memory capacity (e.g., Anderson et al. 

2011), suggesting that this component reflects the recruitment of visual-perceptual brain 

areas for the short-term storage of visual objects (Vogel and Machizawa 2004) that is 

mediated by focal spatial attention (LaRocque et al. 2013).  

 For the face/house memory displays in the Load One condition, the allocation of 

spatial attention to the face and its subsequent encoding into working memory should be 

reflected by distinct contralateral N2pc and CDA components. Critically, we employed the 

same two components to track the focus of spatial attention and the spatially selective 

activation of visual face memory in response to the face/face memory displays in the Load 

Two condition. If the focus of attention determines which of these two faces will be 

encoded and retained in working memory, the polarity of N2pc and CDA components should 

predict the success or failure of the face matching process on specific Load Two identity 

repetition trials. On trials where attention is allocated to the “wrong” (i.e., non-repeated) 

face in the memory display, this face will be encoded and retained in working memory, at 

the expense of the other (repeated) face. Therefore, N2pc and CDA components should 

emerge contralateral to the non-repeated face in the memory display on trials where 

observers fail to report a face identity repetition. In contrast, when attention is directed to 

the “correct” face (i.e., the face that later reappears as S2) in the memory display, as 

reflected by N2pc and CDA components over the hemisphere contralateral to this face, a 

face repetition should be correctly reported. Variations in the degree to which attention is 
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selectively allocated to the repeated face in Load Two memory displays may affect the 

degree to which a corresponding working memory representation is selectively activated, 

and thus the efficiency of the subsequent face identity matching process on individual trials. 

To test this hypothesis, we compared N2pc and CDA components when a face repetition 

was correctly reported between trials with fast or slow response times (RTs). If focal 

attention determines the activation level of visual face memory representations, these 

components should be larger on trials with fast correct identity repetition responses. In 

contrast, if two faces can be simultaneously represented in working memory, and if capacity 

limitations of visual face memory only arise during the later sample-test comparison process 

(Awh et al. 2007), there should be no lateralised N2pc and CDA components in response to 

Load Two memory displays, as both face representations will be activated concurrently.  

 In addition to tracking the allocation of attention during the encoding and retention 

of memory displays, we also studied how the spatially selective activation of visual face 

memory affects the subsequent processing of centrally presented test faces. If working 

memory representations of individual faces depend on focal attention, these 

representations should be position-dependent, because attention operates in a space-based 

fashion. The selective allocation of attention to one face in the memory display will activate 

a corresponding visual face representation in the contralateral hemisphere (as reflected by 

the polarity of CDA components to these displays). To investigate how the perceptual and 

identity-related processing of test faces was affected by the represented location of an 

attended face in the preceding memory display, we measured N170 and N250r components 

to test faces. The face-sensitive N170 component is generated during the perceptual 

structural encoding of faces (e.g., Eimer 2011; Rossion and Jacques 2011). When two faces 

appear in rapid succession, N170 amplitudes to the second face are reduced (e.g., Jacques 

and Rossion 2004, 2006; Eimer et al. 2010), because both faces activate overlapping neural 

populations. Importantly, such N170 adaptation effects are position-dependent (Kovacs et 

al. 2005). If working memory representations of attended faces are stored in the 

contralateral hemisphere, spatially specific N170 adaptation effects should be found to test 

faces in the present study, in spite of the fact that these faces always appeared at fixation. 

More specifically, N170 amplitudes should be attenuated over the hemisphere contralateral 

to the attended (i.e., memorized) face, reflecting a selective reduction of the sensory 

response to a test face in this hemisphere.  
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 The activation of position-dependent working memory representations of attended 

memory display faces in the contralateral hemisphere may also affect the face identity 

matching process itself. To test this hypothesis, we measured N250r components on trials 

where an identity repetition was successfully detected. The N250r component is an 

enhanced posterior negativity elicited by repetitions of same individual face relative to face 

identity changes (e.g., Schweinberger et al. 2002, 2004), and reflects the match between a 

perceived face and a stored working memory representation of the same face. If this 

identity matching process is sensitive to the represented location of an attended memorized 

face, N250r components to test faces should be larger over the hemisphere contralateral to 

the side where the repeated face appeared in the preceding memory display. 

 

 

Materials and Methods 

 

Participants 

 Sixteen paid volunteers (six female, mean age 30.8 years, one left-handed) were 

tested. All had normal or corrected-to normal vision, and gave written and verbal informed 

consent prior to testing.  

 

Stimuli and procedure 

 The stimulus set consisted of ten unfamiliar Caucasian male faces and ten images of 

houses. Faces were obtained from the PUT Face Database (Kasiński et al. 2008), and house 

images were selected from Google Images. All images were converted to greyscale, and 

were edited using Adobe Photoshop to homogenise overall luminance, and (for faces) skin 

tone and hair. Distinguishing characteristics (e.g., piercings or blemishes) were removed 

from the face images. All stimuli were presented on a CRT monitor against a dark grey 

background (0.4 cd/m2) at a viewing distance of 100 cm. They occupied a visual angle of 5.8° 

x 8°, and their average luminance was 21 cd/m2.  

 Stimulus presentation, timing, and response recording were controlled by the 

Cogent 2000 toolbox (http://www.vislab.ucl.ac.uk/cogent.php) for MATLAB (Mathworks). 

On each trial, a bilateral stimulus display (S1) was followed in rapid succession by a second 

display (S2) that contained a single face image at fixation (see Figure 1). In the Load One 



8 
 

condition, the S1 display contained one face image and one house image that were 

presented simultaneously for 200 ms to the left and right of fixation at an eccentricity of 4° 

(measured relative to the centre of each image). Face and house images were presented 

with equal probability and unpredictably in the left visual field (LVF) and right visual field 

(RVF), or vice versa. Each S1 display was followed after a 200 ms interstimulus interval by an 

S2 display (200 ms duration) that contained a single face image at fixation. The intertrial 

interval between the offset of S2 and the onset of S1 on the next trial was 1500 ms. The 

Load Two condition was identical to Load One, except that S1 displays contained images of 

two different faces on opposite sides. 

 In the Load One condition, participants’ task was to decide whether the face that 

was presented in the S1 display together with a house was repeated as S2. Ten successive 

blocks were run, with 40 trials per block. On 20 trials, the S1 face was repeated as S2 

(identity repetition trials). On the other 20 trials, the S1 and S2 faces showed two different 

individuals (identity change trials). There were 10 trials for each of the four possible 

combinations of S1 face location (LVF, RVF) and trial type (identity repetition, identity 

change). In the Load Two condition, participants’ task was to decide whether the S2 face 

matched one of the two faces that appeared in the preceding S1 display. They were 

explicitly instructed to attend to both faces in the memory display, because either of them 

was equally likely to re-appear as S2. Ten successive blocks with 30 trials per block were run. 

On 10 trials, the S2 face matched neither of the two S1 faces (identity change trials). On 10 

trials, the S2 face matched the S1 face that was presented in the LVF, and on another 10 

trials, it matched the S1 face in the RVF (LVF and RVF identity repetition trials, respectively).  

 Participants were instructed to maintain central fixation throughout each trial, and 

to press a response button with the index finger of one hand when they detected an 

identity repetition, and another button with the middle finger of the same hand when there 

was no identity repetition. Response hand was counterbalanced across participants, as was 

the order of the two load conditions.  

 

EEG recording and data analysis 

 EEG was DC-recorded with a BrainAmps DC amplifier (upper cut-off frequency 40Hz, 

500 Hz sampling rate) and Ag-AgCI electrodes mounted on an elastic cap from 25 scalp sites 

Fpz, F7, F3, Fz, F4, F8, FC5, FC6, T7, C3, Cz, C4, T8, CP5, CP6, P7, P9, P3, Pz, P4, P8, PO7, PO8, 
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P10 and Oz, according to the extended international 10-20 system). Bipolar horizontal 

electrooculogram (HEOG) was recorded from the outer canthi of both eyes. An electrode 

placed on the left earlobe served as reference for online recording, and EEG was re-

referenced off-line to the common average of all scalp electrodes. Electrode impedances 

were kept below 5 kΩ. No additional off-line filters were applied. To obtain ERPs to memory 

displays (S1), EEG was segmented offline from 100 ms before to 500 ms after S1 onset, 

relative to a 100 ms pre-stimulus baseline. ERPs in response to test face displays (S2) were 

computed on the basis of EEG epochs obtained between 50 ms before to 500 ms after 

stimulus onset, relative to a 100 ms baseline from 50ms before to 50ms after S2 onset. 

Epochs with activity exceeding ±30 μV in the HEOG channel (reflecting horizontal eye 

movements) or ±60 μV at Fpz (indicating eye blinks or vertical eye movements) were 

excluded from all analyses, as were epochs with voltages exceeding ±80 μV at any other 

electrode.  

 Following artifact rejection, EEG waveforms were averaged separately for memory 

and test displays (S1 and S2). In the Load One condition, ERPs were obtained for trials with 

correct responses only. For S1 displays, separate ERPs were computed for trials where the 

face appeared in the LVF or RVF. ERPs to S2 displays were computed separately for the four 

combinations of trial type (identity repetition, identity change) and S1 face location (LVF, 

RVF). For the Load Two condition, ERPs on trials with correct responses were computed 

separately for trials with fast and slow reaction times, based on RT median splits performed 

for each individual participant. Mean RTs for trials with fast versus slow responses (averaged 

across all participants) were 467 ms versus 658 ms (identity repetition trials) and 530 ms 

versus 702 ms (identity change trials). ERPs were also obtained for identity repetition trials 

with incorrect responses (i.e., trials where a face identity repetition was missed). ERPs to S1 

and S2 displays in the Load Two condition were computed for each combination of three 

types of identity repetition trials (repetition detected – fast RT, repetition detected – slow 

RT, repetition undetected) and the location of repeated face in the memory display (LVF, 

RVF). For S2 displays in Load Two, ERPs were also computed for identity change trials with 

fast and slow correct responses, separately for trials where the S1 face appeared in the LVF 

or RVF. ERP mean amplitudes were measured at three lateral posterior electrode sites over 

the left hemisphere (P7, PO7 and P9), and at the corresponding electrodes over the right 

hemisphere (P8, PO8, and P10), and were averaged across these three electrode locations 
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on either side. For ERPs to S1 displays, mean amplitudes were analysed with repeated 

measures analyses of variance (ANOVAs) for three post-stimulus time intervals, which 

correspond to the latencies of the N170 (130 -190 ms), N2pc (190 – 290 ms) and CDA (300 – 

500 ms) components. For ERPs to S2 display, ANOVAs were conducted for ERP mean 

amplitudes obtained within post-stimulus time windows centred on the N170 (130 - 190 ms) 

and N250r (250 – 320 ms) components. Additional ANOVAs were conducted for RTs and 

error rates. For both performance and ERP measures, paired t-tests were employed for 

specific comparisons between experimental conditions. 

 

Results 

 

Behaviour 

RTs on trials with correct responses were faster in Load One relative to Load Two 

(482 ms versus 573 ms), and faster on identity repetition as compared to identity change 

trials (501 ms versus 554 ms). An ANOVA conducted on RTs for the factors load (One versus 

Two) and trial type (identity repetition versus change) revealed main effects of load, F(1,15) 

= 105.8, p < .001, 𝜂𝜌2  = .88, and trial type, F(1,15) = 13.7, p < .002, 𝜂𝜌2  = .60. There was no 

interaction between these two factors, F<1. RTs on identity repetition trials did not differ 

between trials where the repeated face appeared on the left or right visual side in the S1 

display, and this was the case both for Load One and Load Two, both t<1. Errors were more 

frequent with Load Two relative to Load One (22.1% versus 3.4%), resulting in a main effect 

of load, F(1,15) = 336.4, p < .001, 𝜂𝜌2  = .96 in the ANOVA conducted for error rates. There 

was also an interaction between load and trial type, F(1,15) = 31.9, p < .001, 𝜂𝜌2  = .68. For 

Load One, error rates did not differ between identity repetition and identity change trials 

(3.1% versus 3.7%; t<1). In Load Two, failures to report a face repetition were more 

frequent than incorrect reports of a repetition on identity change trials (30.4% versus 

13.8%; t(15) = 4.71, p < .001). The position of a repeated face on the left or right side of S1 

displays did not affect the probability that this repetition was missed in either Load One or 

Load Two, both t<1. Face working memory capacity in Load Two, as determined by Cowan’s 

formula (memory capacity K = [hit rate + correct rejection rate – 1] × memory set size; 
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Cowan, 2001) yielded a value for K of 1.12, demonstrating that only one of the two faces in 

the memory display was successfully maintained on most Load Two trials.  

 

Lateralised ERP components to bilateral memory displays 

 Figure 2 shows ERPs triggered at lateral posterior electrodes in response to memory 

displays in the Load One and Load Two condition. For bilateral face/house S1 memory 

displays in Load One, ERPs are shown for electrodes contralateral to the face and electrodes 

contralateral to the house in the memory displays, collapsed across identity repetition and 

identity change trials. As can be seen in the difference wave generated by subtracting these 

two ERP waveforms (Figure 2, top right panel), the face-sensitive N170 component was 

larger over the hemisphere contralateral to the face, and was followed by a contralateral 

N2pc and a contralateral delay activity (CDA). An ANOVA was conducted for N170 mean 

amplitudes (measured during a 130-190 ms post-stimulus window) for the factors laterality 

(electrodes contralateral versus ipsilateral to the side of the face in the memory display) and 

hemisphere (electrodes over the left versus right hemisphere). This analysis showed that the 

N170 was enhanced at electrodes contralateral to the side the face relative to electrodes 

contralateral to the house, as reflected by a main effect of laterality, F(1,15) = 38.52, p < 

.001, 𝜂𝜌2  = .72. This confirms previous observations that N170 components elicited in 

response to bilateral face/nonface displays are confined to the contralateral hemisphere 

(Towler and Eimer 2015). Significant main effects of laterality were also obtained in 

corresponding ANOVAs for the two subsequent time windows centred in the N2pc and CDA 

components (190-290 ms and 300-500 ms; F(1,15) = 14.8, 𝜂𝜌2  = .50, and F(1,15) = 45.3, 𝜂𝜌2  = 

.76, respectively, both p < .001), demonstrating that attention was rapidly allocated to the 

face, and that this face was then encoded into working memory in a position-dependent 

fashion. N2pc and CDA amplitudes did not differ between the left and right hemisphere, 

both F<1.  

 Figure 2 (bottom panel) shows ERPs elicited by memory displays on identity 

repetition trials in the Load Two condition at electrodes contralateral to the face that would 

later be repeated as S2 and at electrodes contralateral to the other (non-repeated) face. 

Separate ERPs are shown for trials with fast and correct identity repetition responses, 

incorrect response trials where participants failed to report an identity repetition, and trials 



12 
 

with slow correct responses. These results demonstrate that the spatial focus of attention 

during encoding and working memory retention determined participants’ performance in 

the face identity matching task. On trials with fast correct responses, N2pc and CDA 

components were elicited over the hemisphere contralateral to the S1 face that would later 

reappear as S2. On trials where participants failed to detect an identity repetition, these 

components were present over the opposite hemisphere, that is, contralateral to the non-

repeated S1 face. For the statistical analyses of Load Two trials, the factor laterality was 

defined relative to the side of the repeated face in the memory display. The ANOVA for 

trials with incorrect responses confirmed the presence of reliable N2pc and CDA 

components at electrodes contralateral to the side of the face that was not repeated in the 

S2 display, F(1,15) = 18.93, 𝜂𝜌2  = .58, and F(1,15) = 15.02, p < .001, 𝜂𝜌2  = .52, respectively, 

demonstrating that attention was allocated to the “wrong” face on these trials. Analyses of 

identity repetition trials with correct responses included the additional factor response 

speed (fast versus slow). For the CDA component, a main effect of laterality, F(1,15) = 24.85, 

p < .001, 𝜂𝜌2  = .62, indicated a strong tendency towards encoding the “correct” face into 

working memory on these trials. Importantly, there was an interaction between laterality 

and response speed, F(1,15) = 11.11, p = .005, 𝜂𝜌2  = .43, due to the fact that the CDA was 

much larger on trials where an identity repetition was reported rapidly than on trials with 

slow RTs. Analyses conducted separately for identity repetition trials with fast or slow 

correct responses revealed that a significant CDA component was elicited contralateral to 

the side of the repeated face on trials with fast correct responses, t(15) = 4.8, p < .001, 

whereas no reliable CDA was present on trials with slow RTs, t<1.2. A similar pattern was 

observed for the N2pc component that preceded the CDA. There was a main effect of 

laterality, F(1,15) = 6.96, p < .05, 𝜂𝜌2  = .32, but also, critically, an interaction between 

laterality and response speed, F(1,15) = 6.16, p < .05, 𝜂𝜌2  = .29. A significant N2pc was 

elicited contralateral to the S1 face that was repeated as S2 on trials with fast correct 

responses, t(15) = 2.97, p < .01, but not on trials with slow RTs, t<1. No significant N2pc and 

CDA amplitude differences between the left and right hemisphere were obtained in any of 

these analyses conducted for the Load Two condition. 
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ERPs to centrally presented test faces  

Figure 3 (top panel) shows N170 components triggered by test face displays in the 

Load One condition (collapsed across identity repetition and change trials). N170 amplitudes 

to test faces were strongly attenuated at electrodes contralateral to the visual field of the 

face in the preceding face/house memory display. This location-specific N170 adaptation 

effect was confirmed in an ANOVA by a main effect of laterality, F(1,15) = 17.07, p < .001, 

𝜂𝜌2  = .53, on N170 mean amplitudes, demonstrating that the spatially selective maintenance 

of a face representation in one hemisphere reduced the neural response to a centrally 

presented test face in the same hemisphere. Figure 3 (bottom panel) shows N170 

components to test face displays on identity repetition trials in the Load Two condition, at 

electrodes contralateral to the repeated S1 face and at electrodes contralateral to the other 

non-repeated S1 face. N170 components are shown separately for trials with fast or slow 

correct responses and for trials with incorrect responses. N170 adaptation effects reflected 

which of the two faces in the S1 displays was selectively attended. On trials where 

participants failed to detect a face identity repetition, the N170 component to test faces 

was attenuated at electrodes contralateral to the non-repeated S1 face, F(1,15) = 21.66, p < 

.001, 𝜂𝜌2  = .61, which was the face that was selectively maintained in working memory on 

these trials (see above). For trials where an identity repetition was correctly reported, an 

ANOVA was conducted for the factors laterality and response speed. There was a main 

effect of laterality, F(1,15) = 9.52, p < .01, 𝜂𝜌2  = .39, and a significant interaction between 

laterality and response speed, F(1,15) = 11.67, p < .004, 𝜂𝜌2  = .44. On trials with fast correct 

responses, N170 amplitude was reliably reduced at electrodes contralateral to the repeated 

S1 face, t(15) = 3.82, p = .002, which was the face that was selectively retained on these 

trials (see above). In contrast, there was no lateralised N170 adaptation effect on trials with 

slow correct responses, t<1.  

Figure 4 shows N250r components triggered by test faces on identity repetition as 

compared to identity change trials in the Load One and Load Two conditions. Face identity 

matching processes, as reflected by the N250r, were affected by the side where a repeated 

face was encountered in the S1 memory display, with larger N250r amplitudes over the 

contralateral hemisphere. For the Load One condition, an analysis of N250r mean 

amplitudes (measured in the 250-320 ms post-stimulus time window) revealed a main effect 
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of trial type (identity repetition versus identity change), F(1,15) = 21.94, p < .001, 𝜂𝜌2  = .59, 

confirming the presence of a reliable N250r component. Critically, a significant interaction 

between trial type and laterality, F(1,15) = 7.43, p < .02, 𝜂𝜌2  = .33, confirmed that this N250r 

was larger at electrodes contralateral to the visual field of the S1 face. Follow-up analyses 

showed that an N250r was reliably present not only at contralateral electrodes, F(1,15) = 

24.40, p < .001, 𝜂𝜌2  = .61, but also ipsilaterally, F(1,15) = 19.17, p < .001, 𝜂𝜌2  = .56.  

Figure 4 (middle panel) shows Load Two ERPs on identity repetition trials 

contralateral and ipsilateral to the repeated S1 face and on identity change trials, separately 

for trials with fast and slow correct responses. Because both S1 faces differed from the S2 

face on identity change trials, test face ERPs for these trials cannot be classified as ipsilateral 

versus contralateral. The same identity change ERP waveforms were therefore compared to 

contralateral and ipsilateral ERPs on identity repetition trials for Load Two. Contralateral 

and ipsilateral N250r components were assessed statistically in two separate ANOVAs with 

the factors trial type (identity repetition versus identity change) and response speed (fast 

versus slow). There were main effects of trial type at contralateral electrodes, F(1,15) = 

36.50, p < .001, 𝜂𝜌2  = .71, as well as ipsilateral electrodes, F(1,15) = 12.83, p < .01, 𝜂𝜌2  = .46, 

confirming that N250r components were present both contralaterally and ipsilaterally. 

Interactions between trial type and response speed at both contralateral and ipsilateral 

electrodes, F(1,15) = 4.77, p < .05, 𝜂𝜌2  = .24, and, F(1,15) = 6.61, p < .05, 𝜂𝜌2  = .31, reflected 

the fact that N250r amplitudes were larger on trials with fast RTs. To confirm that N250r 

components in the Load Two condition were larger over the hemisphere contralateral to the 

side where the matching face had appeared in the memory display, N250r mean amplitudes 

measured on identity repetition trials only were analysed with the factors laterality 

(contralateral versus ipsilateral to the repeated memory display face) and response speed. 

There was a main effect of response speed, F(1,15) = 9.68, p < .01, 𝜂𝜌2  = .39, again 

demonstrating that N250r amplitudes were larger on trials with fast identity matching 

responses. Importantly, a main effect of laterality, F(1,15) = 7.24, p < .02, 𝜂𝜌2  = .33, confirmed 

that the N250r component was larger contralaterally. There was no interaction between 

laterality and response speed, F<1.5. The contralateral dominance of the N250r component 

in both Load conditions (as illustrated in the contralateral-ipsilateral difference waveforms 
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in Figure 4, bottom panel) demonstrates that face identity matching processes are sensitive 

to the represented location of an individual face in visual working memory. 

 

Discussion 

 

 The current study has provided real-time electrophysiological evidence that the 

limited capacity of visual memory for individual faces directly reflects the capacity 

limitations of focal spatial attention. Our results show that focal attention is critical for the 

successful encoding and maintenance of individual faces, and that attention can only be 

allocated to one face at a time. In the Load One condition, N2pc and CDA components were 

elicited contralateral to the side of the face in the face/house memory displays, indicating 

that attention was rapidly allocated to this face, which was then encoded in working 

memory. As a result, this face was successfully matched to the centrally presented test face 

on almost all Load One trials. In the Load Two condition, where two different faces had to 

be simultaneously encoded and retained, face identity matching performance was strongly 

impaired, in spite of the fact that the interval between memory and test displays was very 

brief (200 ms). The estimated working memory capacity in Load Two was close to 1, which 

implies that only one of the two memory display faces could be selectively maintained on 

most trials. This is in line with an attentional competition scenario, where these two faces 

compete for focal attention, and only the winner of this competition is successfully encoded 

and retained in working memory. 

 The ERP results observed for Load Two memory displays provide strong support for 

this attentional competition account. They demonstrate that the success or failure of 

detecting identity repetitions was determined by the allocation of spatial attention to one of 

the two faces in the memory display. On trials where a face repetition went undetected, 

ERP markers of attentional object selection (N2pc) and working memory maintenance (CDA) 

revealed that the “wrong” non-repeated face was selectively attended and encoded into 

working memory. In other words, participants were unable to report that an S1 face 

reappeared as S2 when this face had failed to attract focal attention during encoding, and 

no memory representation of this face was available for an identity match with the 

subsequent test face. On Load Two trials where an identity repetition was rapidly detected 

(i.e., trials with fast correct responses), N2pc and CDA components were elicited 
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contralateral to the repeated face, demonstrating that the “correct” face had been 

attentionally selected and encoded into working memory.  These results are incompatible 

with the hypothesis that performance costs in working memory tasks observed for complex 

objects such as faces do not reflect limitations in the number of objects that can be 

simultaneously retained, but only arise during the comparison between sample and test 

items (Awh et al. 2007). If this were the case, participants should have been able to 

simultaneously select and maintain both faces in Load Two memory displays, and no 

lateralised N2pc and CDA components should have been elicited in response to these 

displays. 

 Interestingly, there were no reliable N2pc and CDA components in response to Load 

Two memory displays on identity repetition trials with slow correct responses. This suggests 

that attention was not selectively focused on either of the two memory display faces on 

these trials, in spite of the fact that participants were still able to detect an identity 

repetition. While this may seem inconsistent with the hypothesis that focal attention is 

necessary for the successful short-term retention of an individual face representation, two 

factors are likely to be jointly responsible for the absence of lateralised ERP components on 

these trials. The fact that face memory capacity was slightly above 1 in the Load Two 

condition suggests that a face identity repetition could sometimes be reported when spatial 

attention was divided between both faces in the memory display, although not as rapidly as 

with fully focused attention. In addition, the relatively high False Alarm rate on identity 

change trials in the Load Two condition (14%) shows that a considerable number of all face 

repetition responses were merely guesses that were made when no matching spatially 

focused visual face memory representation was available. 

 There was no evidence for any hemispheric asymmetries in the attentional selection 

and subsequent encoding of faces in the Load One and Load Two conditions. Identity 

matching performance did not differ between trials where the repeated face appeared on 

the left or right side of a memory display. N2pc and CDA components to these memory 

displays were equally large over the left and right hemisphere in both Load conditions, 

suggesting that there was no bias towards one hemisphere during the attention-based 

maintenance of a particular face for a subsequent memory match.    

 The allocation of spatial attention to one face in the memory display, and the 

resulting activation of a position-dependent working memory representation in the 
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contralateral hemisphere also affected the subsequent perceptual and identity-related 

processing of test faces, in spite of the fact that these faces always appeared at central 

fixation. Face-sensitive N170 components to test faces were attenuated contralateral to the 

side of the attended face in the memory display. In the Load One condition, such N170 

adaptation effects were observed contralateral to the face in the face/house memory 

displays. In the Load Two condition, N170 adaptation effects reflected the focus of attention 

on one of the two faces in the preceding memory displays. On Load Two identity repetition 

trials with fast correct responses, N170 amplitude was reduced contralateral to the face that 

was then repeated as S2. On Load Two trials where an identity repetition was missed, N170 

adaptation was observed contralateral to the other non-repeated face. On identity 

repetition trials with slow correct RTs, where spatial attention was not selectively focused 

(see above), no lateralised N170 adaptation was found. This very systematic pattern of 

position-specific N170 adaptation effects demonstrates that working memory 

representations of an attended face were maintained in the hemisphere contralateral to the 

side where this face was encountered during encoding, and that the presence of an active 

face memory representation in this hemisphere attenuated the sensory response to a 

subsequent centrally presented face in the same hemisphere. 

 In addition to modulating perceptual face processing, as reflected by N170 

adaptation effects, the attentional activation of face memory representations in the 

contralateral hemisphere also affected subsequent face identity matching processes. In 

both Load conditions, N250r components triggered by face repetitions were larger over the 

hemisphere contralateral to the side of the repeated face in the preceding memory display. 

The N250r reflects a match between a seen face and a stored visual representation of this 

face (e.g., Schweinberger et al. 2002). This match could result in an enhanced activation of 

on-line perceptual representations, of working memory representations, or both. The 

contralateral dominance of N250r components shows that position-dependent visual face 

memory representations were selectively activated by a face identity match. The presence 

of a reliable N250r over the ipsilateral hemisphere is likely to reflect the additional match-

induced activation of perceptual representations of test faces. Interestingly, N250r 

components to face repetitions in the Load Two condition were larger on trials where these 

repetitions were detected rapidly (and a working memory representation of the repeated 

face was selectively activated, see above) relative to trials with slow responses (and spatial 
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attention was divided across both memory display faces). This observation supports the 

hypothesis that focal attention determines the activation level of individual face 

representations. The neural response triggered by a match between a stored face 

representation and a perceptual representation of the same face, as reflected by N250r 

amplitudes, is likely to be modulated by the degree to which the matching face memory 

representation is selectively activated through the allocation of spatial attention. When two 

face representations are activated in parallel, the process of matching one of them to a test 

face is impaired, resulting in smaller N250r components and delayed identity matching 

responses. In line with earlier findings by Awh et al. (2007), this demonstrates that 

attentional capacity limitations during the encoding and retention of complex objects also 

affect the subsequent comparison between memorized and test objects. 

 In previous ERP research, identity-sensitive N250r components were found to be 

strongly reduced when a competitor face was simultaneously present during face encoding, 

and this was interpreted as evidence for face-specific attentional resource limitations that 

allow only one face to be processed at a time (e.g., Neumann and Schweinberger 2009). The 

results from the present study confirm and extend these observations by demonstrating 

that the encoding and retention of individual faces depends on focal attention, and that 

only a single face representation can be maintained through the selective allocation of 

spatial attention. In this context, it is important to note that the participants in the present 

study were explicitly instructed to focus their attention on both faces in the Load Two 

memory display, because either of them was equally likely to be repeated as S2. Instead of 

dividing attentional resources equally between both faces, the pattern of N2pc and CDA 

components observed in response to Load Two memory displays demonstrated that 

participants selectively directed attention to one of these faces on the majority of all trials. 

This choice is likely to directly reflect the attentional capacity limitations of visual face 

memory: Participants opted to attend to one particular face rather than both faces because 

focal attention was necessary to successfully encode and retain at least one of the two faces 

in the memory display.  

The current findings also have implications for whether working memory should be 

conceptualised as being composed of discrete fixed slots or as a flexible dynamic resource 

where precision of stored items is variable (e.g., Luck and Vogel 2013; Ma et al. 2014). The 

observation that participants selected and maintained a single face on the majority of Load 
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Two trials is consistent with the idea that face representations occupy discrete slots in 

working memory, and that only a single slot is available for the retention of individual faces. 

However, we also found that attention was divided between both memory display faces on 

some Load Two trials. Discrete slot-based accounts acknowledge that the number of slots 

may vary from trial to trial, but also assume that when an object representation occupies 

one of these slots, its precision will be uniformly high. However, our results show that 

encoding two faces simultaneously incurs a substantial cost. Identity matching responses 

were delayed and N250r components were attenuated on trials where attention was 

divided between two faces, suggesting that the resolution of face memory representations 

was lower than on trials where a single face was focally attended. In line with variable 

precision models of working memory (Ma et al. 2014), this trade-off between the number of 

items represented and the precision of working memory representations suggests that the 

distribution of selective spatial attention is a dynamic resource that constrains both the 

capacity and the resolution of visual working memory. 

 The limited capacity of visual face memory could be a direct consequence of the 

position-dependence of visual face representations. According to the sensory recruitment 

account of working memory, visual objects are maintained in posterior visual areas that are 

also responsible for the perceptual processing of these objects (e.g., Postle 2006). Because 

object-selective visual cortex is organised topographically (e.g., Kravitz et al. 2013), working 

memory representations in these areas should be position-dependent, particularly if their 

maintenance is mediated by selective spatial attention. The limited capacity of working 

memory reflects a general limitation in the ability to simultaneously select and maintain 

spatially distinct object representations in topographic visual cortical maps, and these 

limitations are particularly pronounced for more complex objects (Franconeri et al. 2013). 

Maintaining multiple representations of individual faces is especially challenging because 

faces are complex, and because faces of different individuals share visual features and are 

similar in terms of their global spatial configurations. This may be the principle reason why 

only a single individuated representation of a particular face can be attentionally selected, 

encoded and retained in working memory at any given time.  
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Figure Legends 

 

Figure 1. Examples of individual trials in the Load One and Load Two conditions. On each 

trial, a bilateral memory display was followed after a 200 ms interval by a test display that 

contained a single centrally located face. Memory displays contained a face and a house on 

opposite sides (Load One or two different faces (Load Two. Participants’ task was to report 

whether or not the test face was identical to a face in the preceding memory display. The 

examples show an identity change trial for Load One and an identity repetition trial for Load 

Two. 

 

Figure 2. Grand-averaged ERPs elicited at lateral posterior electrodes (averaged across P7/8, 

PO7/8, and P9/10 in response to memory displays in the 500 ms post-stimulus interval. Top 

panel: ERPs in the Load One condition at electrodes contralateral and ipsilateral to the side 

of the face in the face/house memory displays (left, together with a difference waveform 

computed by subtracting ipsilateral from contralateral ERPs. Three ERP components were 

elicited contralateral to the side of the face. The face-sensitive N170 component, the N2pc, 

and the contralateral delay activity (CDA were all elicited contralateral to the side of the 

face. Bottom panel: ERPs in the Load Two condition on identity repetition trials with correct 

fast responses, incorrect responses, or correct slow responses. On trials with correct fast 

responses, N2pc and CDA components were triggered contralateral to the side of the face 

that was then repeated as test face. On trials where face repetitions went undetected, N2pc 

and CDA components were elicited contralateral to the other non-repeated face. 

 

Figure 3. N170 components elicited at lateral posterior electrodes in response to test faces 

in the 300 ms interval after test display onset. Top panel: N170 adaptation effect in the Load 

One condition. N170 amplitudes were reduced contralateral to the side of the face in the 

preceding memory display (S1 relative to electrodes contralateral to the S1 house. Bottom 

panel: N170 adaptation effects in the Load Two condition on identity repetition trials with 

fast correct responses, incorrect responses, or slow correct responses. N170 amplitudes 

were reduced contralateral to the repeated S1 face on fast correct trials, and contralateral 

to the non-repeated S1 face on trials with incorrect responses. No lateralised N170 

adaptation was present on slow correct trials. 
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Figure 4. N250r components elicited in response to test faces in the 500 ms interval after 

test display onset on identity repetition trials as compared to identity change trials with 

correct responses. Top panel: N250r components in the Load One condition at electrodes 

contralateral and ipsilateral to the side of the face in the preceding memory display. Middle 

panel: N250r components in the Load Two condition at electrodes contralateral and 

ipsilateral to the side of the repeated memory display face, shown separately for trials with 

fast and slow responses. Note that identical ipsilateral and contralateral ERP waveforms are 

shown for identity change trials (see text for details. Bottom panel: N250r difference 

waveforms obtained by subtracting identity change ERPs from identity repetition ERPs, 

separately for contralateral and ipsilateral electrodes (collapsed across Loads One and Two, 

illustrating the contralateral enhancement of the N250r component. 
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