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Scientific findings based on computer simulation evoke sceptical responses because data 

generated by simulation models does not appear to have an objective status comparable with 

data captured by observation or experiment.  Counter to this, philosophers sympathetic to 

computational science, such as Winsberg (2010) and Humphreys (2004), emphasise parallels 

between experiment and simulation.  Winsberg compares the strategies of simulationists with 

those of experimenters in augmenting our “reasonable belief” in their results.  He extends to 

simulation Hacking’s notion that experimental practice is self-vindicating.  Practices such as 

parameterisation and tricks to overcome computational difficulties “carry with them their 

own credentials”. 

Lenhard & Winsberg (2010) argue that complex simulation models face epistemological 

challenges associated with a novel kind of “confirmation holism”.  Whereas Duhem argued 

that no single hypothesis can be tested in isolation, Lenhard & Winsberg claim that it is 

impossible to locate the sources of the failure of any complex simulation to match known 

data, because of three characteristics which they regard as intrinsic to the practice of complex 

systems modelling. These are identified as “fuzzy modularity”, “kludging” and “generative 

entrenchment”.  Modularity should provide a way of managing complexity; but here the 

accumulation of more and more interactive sub-models does not break down a complex 

system into separately manageable pieces, so that it must stand or fall as a whole.   

Three related issues are posed by this work: is confirmation holism essential to and 

unavoidable in complex systems modelling and/or embedded in the specific disciplinary 

practices of climate science and/or an in-principle remediable failure to observe, recognise 

and apply available and well-established sound software engineering practices when 

developing simulation software? 

Let us consider the three alleged sources of this novel confirmation holism.  “Fuzzy 

modularity” speaks for itself: the different modules simulate different parts of the climate 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/42133223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

system, and these are in continual interaction, such that the behaviour of the sub-models is 

strongly influenced by the higher level models and through the higher level the sub-models 

possibly influence one another.  Thus it has proved difficult to define clean interfaces 

between the components of the model.  In some respects this problem most readily evokes 

sympathy in the critic: accepting fuzziness may be seen to enhance the realism of the overall 

model.  But as fuzzy modularity impairs the testability of the software, it can be argued that 

the price is paid in poor data reliability. 

Kludges and Generative Entrenchment are intimately interrelated.  A kludge is an inelegant, 

‘botched together’ piece of program, very complex, unprincipled in its design, ill-understood, 

hard to prove complete or sound and therefore having unknown limitations, and hard to 

maintain or extend.  Generative Entrenchment refers to the historical inheritance of hard-to-

alter features from predecessor models:  “… complex simulation models in general, and 

climate models in particular, are – due to fuzzy modularity, kludging and generative 

entrenchment – the products of their contingent respective histories … As such, climate 

models are analytically impenetrable in the sense that we have been unable, and are likely to 

continue to be unable, to attribute the various sources of their successes and failures to their 

internal modelling assumptions.” (Lenhard & Winsberg p 261) 

Now let us consider large, complex software systems from the viewpoint of Software 

Engineering Science, in which the problem of emergent “Architectural Defects” has attracted 

significant research efforts.   A software architecture captures basic design decisions which 

address qualities central to the system’s success, such as performance, reliability, security, 

maintainability and interoperation.  As many as 20% of the defects in a large system can be 

attributed to architectural decisions, and these can involve twice as much effort to correct as 

defects arising from mistakes in requirements specification or in the implementation of 

software components.  Li et al (2011) point out that architectural decisions typically affect 

multiple interacting software components, and as a result architectural defects typically span 

more than one component: they therefore concentrated on the problems of finding and 

correcting “multiple-component defects” (MCDs).  To this end, they conducted a case study 

based on the defect records of a large commercial software system which had gone through 

six releases over a period of 17 years.  Compared to single component defects they found that 

MCDs required more than 20 times as many changes to correct, and that an MCD was 6 to 8 

times more likely to persist from one release to another.  They identified “architectural 

hotspots” consisting of 20% of software components in which 80% of MCDs were 
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concentrated, and these architectural hotspots tended to persist over multiple system releases.  

This research provides an excellent example of the part played by the “Engineering Science” 

of Software Engineering in using a large corpus of data to develop a relevant body of theory 

upon which design and development practice in Software Engineering can build.  It 

exemplifies practices contrary to Humphreys’ acceptance of opacity as a sign of the 

obsolescence of human centred epistemology, or Lenhard & Winsberg’s acceptance of 

confirmation holism with respect to complex system models.   

In the practice of software engineering, defects are to be expected, because software 

development is a human activity which is error-prone, and the more complex the software 

product the more prone to defects it will be and the harder the defects will be to eliminate.  

Thus the results of simulation and computational science should never be taken “on trust”.   

Similarly, the fact that a kludge may reflect the model’s historical development is in no sense 

a credential of the model.  Kludging in the early stages of a software project creates 

“Technical Debt” on which interest will accrue in the form of error and maintenance through 

the lifecycle (Brown et al, 2010; Kruchten et al, 2012).  If a simulation is to produce data of 

sufficient quality to provide guidance for future action, whether in the sphere of engineering 

or in that of public policy, it must be calibrated using well-attested empirical data.  Absent an 

understanding of the factors that cause a simulation to diverge from past observations (or 

from empirically-grounded estimates of past trends), the predictive data produced by the 

simulation have no better standing than mere speculation.  Even where the causes of 

divergence are understood, there is no guarantee that the application of a correction factor 

will increase the reliability of the predictive outputs; indeed the opposite effect may be 

produced.    

There are growing movements to apply to software the criteria and techniques of rigour that 

have developed in other sciences, and there is at least some research to suggest that not all 

climate models are as analytically impenetrable as Lenhard & Winsberg suggest (Pipitone & 

Easterbrook, 2012).  Thus the argument from the essential epistemic opacity of computational 

science to a non-anthropocentric epistemology runs counter to best practice in software 

engineering and to empirical results of software engineering science.  In software intensive 

science as elsewhere, data quality depends ultimately upon human scepticism, vigilance and 

judgment.  
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