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The nuclei of higher eukaryotic cells display compartmentalization and certain

nuclear compartments have been shown to follow a degree of spatial organiz-

ation. To date, the study of nuclear organization has often involved simple

quantitative procedures that struggle with both the irregularity of the nuclear

boundary and the problem of handling replicate images. Such studies typically

focus on inter-object distance, rather than spatial location within the nucleus.

The concern of this paper is the spatial preference of nuclear compartments,

for which we have developed statistical tools to quantitatively study and explore

nuclear organization. These tools combine replicate images to generate ‘aggre-

gate maps’ which represent the spatial preferences of nuclear compartments.

We present two examples of different compartments in mammalian fibroblasts

(WI-38 and MRC-5) that demonstrate new knowledge of spatial preference

within the cell nucleus. Specifically, the spatial preference of RNA polymerase

II is preserved across normal and immortalized cells, whereas PML nuclear

bodies exhibit a change in spatial preference from avoiding the centre in

normal cells to exhibiting a preference for the centre in immortalized cells.

In addition, we show that SC35 splicing speckles are excluded from the nuclear

boundary and localize throughout the nucleoplasm and in the interchromatin

space in non-transformed WI-38 cells. This new methodology is thus able to

reveal the effect of large-scale perturbation on spatial architecture and

preferences that would not be obvious from single cell imaging.
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1. Introduction
The eukaryotic cell nucleus does not contain membrane-bound compartments

yet shows a high degree of internal organization [1,2]. However, the principles

that determine and regulate such organization—the locational preferences of

compartments within the nucleus—are mainly unknown. A complicating

factor is that nuclear architecture is dynamic [2,3] and can undergo reorganiz-

ation during cell differentiation, proliferation and tumorigenesis [4], although

many of the emerging models suggest self-organization as a mechanism for func-

tional organization [5–7]. Several studies have shown that a number of nuclear

bodies (NBs) can be formed through self-association and some have preferred

spatial associations with specific gene loci [6,8]. However, it is still unclear

whether the functional compartments have common spatial preferences within

the nuclei and also whether such preferences are cell-type or cell-state specific.

In order to characterize any spatial organization found within the cell

nucleus, extensive replicate data are required. However, with multiple
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Figure 1. Functional compartments of the nucleus of (a) MRC-5 and (b) WI-38 fibroblasts, (c) SV40-transformed MRC-5 cells and (d ) SV40-transformed WI-38 cells.
Nuclei were imaged using indirect immunofluorescence and confocal microscopy in MRC-5 and WI-38 human diploid fibroblasts, and their SV40 T antigen-
transformed MRC-5 and WI-38 counterparts. PML protein, which localizes to PML nuclear bodies (PML NBs), was also stained via indirect immunofluorescence
in all images (green). The nuclear volume was delineated using indirect immunofluorescence directed against lamin B (blue), a protein of the nuclear lamina.
Finally, nucleoli (red) have been imaged but are not the focus of this paper due to their extent which makes modelling their location by a point pattern problematic.
These images are two-dimensional projections generated from the image data. The full three-dimensional data consists of image stacks, where each nucleus is
represented by approximately 20 sequential slices of either 250 � 250 or 300 � 300 pixels. More details regarding the imaging can be found in electronic sup-
plementary material, note 1.
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images, the task of revealing spatial organization can yield

ambiguous results when the images are analysed individu-

ally. Furthermore, current methods for information

aggregation across images are prone to the high variability

inherent to biological processes. Statements about the

global organization of the nucleus are difficult because

the nucleus contains no easily identifiable ‘landmarks’ that

allow nuclei to be transformed into a common coordinate

system. The geometric centre of the nucleus is often used as

a landmark from which the location of nuclear compartments

can be calculated using ‘radial analysis’ [9]. Usually, location

is expressed as the distance between the centroid of the com-

partment and the nuclear centre, crudely normalized to

remove variation in nuclear size but not shape. However,

the centre of the nucleus has little functional relevance [9].

Furthermore, radial analysis offers a very limited description

of spatial preference based on the distance(s) and angle(s)

between compartments and the nuclear centroid. A different

approach entails an exploratory spatial hypothesis test to

determine if the observed pattern is consistent with the sim-

plest spatial model: complete spatial randomness (CSR).

However, we have previously shown that standard spatial

statistics tools can miss underlying spatial structures,

especially when the intensity of the signal (i.e. the number

of nuclear compartments) is low [10].

Spatial nuclear organization and its association with func-

tional organization is not well understood. This is due in part

to the shortcomings of extant methodology. Thus, we devel-

oped computational and statistical tools to better characterize

the spatial preferences of functional compartments in cell

nuclei imaged using indirect immunofluorescence and confo-

cal microscopy. These tools are designed to analyse

compartments that are point-like and hence are amenable

to spatial point pattern analysis. Using shape analysis and

image registration methods (e.g. [11,12]), to aggregate spatial

information across replicate images, we construct an atlas of

these spatial preferences which we term an ‘aggregate map’

(AM). The AM can be thought of as a consensus represen-

tation of the nucleus and its functional components that has

been computed from replicate images. The AM approach

offers the opportunity to uncover the three-dimensional

spatial organization of nuclear compartments which cannot

be established from analysis of individual images.

Many standard techniques attempt to assess the spatial

locations of a compartment of interest through its location
relative to other compartments which themselves have an

unknown spatial preference. This can mask the global spatial

preference of the compartment of interest. New technologies

such as 3C, 4C, 5C and Hi-C have been developed to capture

chromosome conformation and further enable the analysis of

nuclear organization [13,14]. These technologies facilitate

the mapping of chromatin interactions not through direct

visualization but indirectly via biochemical proximity and

subsequent modelling and have contributed to an improved

understanding of genome structure. In addition, the need

for computational models to help analyse the large amounts

of experimental data generated is very clear; these models

allow full advantage to be taken of the powerful insight

that conformation capture methods can provide into the

architecture and organization of the nucleus [15]. The AM

approach is directly focused on global spatial preferences.

Implicit in our analysis of replicate images using AMs is

the premise that any aspects of global nuclear organization,

as opposed to localized and specific dynamic events, are

present throughout a collection of cell nuclei [16].

Experiments were performed on the MRC-5 and WI-38

cell lines in a variety of conditions. Figure 1 shows examples

of cell nuclei images in two-dimensional (2D) projection. It is

clear from this figure that cell nuclei exhibit a large variation

in boundary shape which complicates the spatial point pat-

tern analysis. In addition, extra care is needed to reason

about two-dimensional projections of three-dimensional

objects. The AM methodology is designed to address both

these issues.
2. Results
2.1. Construction of aggregate maps: image

segmentation
We begin with an RGB confocal microscopy z-stack image of a

suitably prepared and selected cell nucleus, such as those in

figure 1. The first step is to extract objects of interest from

each image. Central to the AM methodology is the nuclear

envelope, delineated by staining the protein, lamin B, in the

blue channel (figure 1). Nuclear boundary voxels are segmen-

ted using the SCT [17] thresholding algorithm (although

manual thresholding or other suitable segmentation algorithms

could be used), followed by the construction of the convex hull.

http://rsif.royalsocietypublishing.org/
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Figure 3. (a) Two-dimensional illustration of the landmark locations on cell nuclei. Landmarks are placed at regular intervals over the entire boundary in order to
capture its shape. Correspondence between landmarks allows for the construction of a mean shape. Note that in this image, the landmarks are two-dimensional
projections from a three-dimensional shape. (b) The three-dimensional mean shape derived from 50 nuclei from a normal, asynchronous MRC-5 dataset. This image
also includes the landmark locations.

(a) (b) (c)

Figure 2. Two-dimensional illustration of the extraction of PML NB locations from image data. (a) Original raw image. (b) The boundary of the nuclear envelope and
the PML NBs are segmented from an image (blue and green channels, respectively). The red channel represents nucleoli that are ignored in this analysis. (c) Each
PML NB is replaced by its centre of gravity. Adapted from [10].
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Informally, the convex hull of a set of points is a boundary that

envelops all the points as tightly as possible and which has no

indentations. The convex hull delineation is justified by the

regular (smooth and convex) shape of MRC-5 and WI-38

fibroblast nuclei. Next, we identify compartment voxels. In

figure 2a, the green channel refers to PML NBs which are

selected by global thresholding using the SCT algorithm [17].

To facilitate the spatial point pattern analysis, we replace

each compartment with its centre of gravity.
2.2. Construction of aggregate maps: identification
of nuclear landmarks and computation of
average nucleus

Having segmented a set of images, the next objective is to

compute an average nuclear boundary to serve as the basis

of the AM. We primarily employ standard techniques from

statistical shape analysis [11,12] to construct this average

boundary. However, we require landmarks—points of corre-

spondence—on each nuclear envelope to calculate the

average boundary. As noted in the Introduction, nuclei

have no common biologically meaningful landmarks. To
resolve this, we use the shape of the boundary to determine

an ‘ovoid tip’, which is the location of the most pointed

end of the nuclear boundary under two-dimensional projec-

tion. The nuclei shown in figures 3a and 4a are all rotated

such that the so-called ovoid tip is rightmost on each nuclear

boundary. The location of this tip and the direction of gravity

are used to orient the nuclei (see electronic supplementary

material, note 2). In order to capture the shape of the nuclear

boundary, we add regularly spaced landmarks on the bound-

ary starting from the ovoid tip, figure 3 shows an example of

the result of this process. Note that this marking is performed

in three dimensions, as discussed in more detail in electronic

supplementary material, note 2. At this stage, an image has

been reduced to a set of landmarks on the boundary and

the interior locations of the compartments.

The critical aspect is that landmarks correspond across all

replicate images. Having identified these corresponding land-

marks, we are in a position to compute the average nuclear

boundary which is computed using a statistical shape analy-

sis procedure known as generalized procrustes analysis

(GPA) [11]. The method selects parameters for shifts,

rotations and scalings (the Euclidean similarity transforms),

to minimize a sum of squares criterion, subject to a constraint

http://rsif.royalsocietypublishing.org/
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Figure 4. Two-dimensional illustration mapping compartments from cell
nuclei (a) into a common frame of reference (b). This common frame of refer-
ence is based on the mean shape of the cell nuclei. The four nuclei shown in
(a) have differing shapes and cannot be compared on an equal footing, or
simply overlaid, as the nuclei are quite different (even in two dimensions).
The compartment of interest from each cell has been projected into the mean
shape and collectively these constitute the aggregate map (AM).

0.020

0.015
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0.005

Figure 5. Two-dimensional orthogonal projection of PML NB centres and
intensity estimates from normal, asynchronous MRC-5 cell nuclei. The dots
represent the centres of all PML NBs mapped to the mean shape. The
colour bar represents the estimate for the expected number of centres per
unit volume (the intensity estimate). For this two-dimensional representation,
the locations are orthogonally projected and we show the mean intensity
estimate along the line of projection.
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on scale [11]. GPA yields a set of average landmarks associ-

ated with the minimizing solution, which characterize the

average shape of all nuclei in the experiment. This process

is illustrated in figure 3a and a real example of a mean

shape is shown in figure 3b.
2.3. Construction of aggregate maps: image registration
and intensity estimation

The next stage of our methodology transforms each pro-

cessed image into the average boundary, as represented by

the average landmarks. This requires a nonlinear spatial

transformation (known as a deformation) of the landmarks

from each nucleus to match the landmarks of the average

shape. This crucial ‘registration’ stage places all the compart-

ments of interest from each replicate into a common frame of

reference (figure 4).

For each processed nucleus (the source), we transform its

landmarks to those of the average nucleus (the target) using

thin-plate splines [11,12]. This transformation places the

source landmarks in exact correspondence with the associated

target landmarks using rigid and non-rigid deformations. Natu-

rally, the use of a non-rigid deformation may raise concerns.

Such concerns are addressed in electronic supplementary

material, note 4.

For convex objects, such as the nuclei we study, this map-

ping will always transform interior source voxels to the

interior of the average boundary. The next step is ‘image

fusion’, in which transformed nuclear compartments from

all nuclei are combined. This yields a set of data which we
refer to as an AM, that is, boundary landmarks, and compart-

ments of interest transformed into the average boundary.

Visualizing AMs requires further processing as there is

usually significant over-plotting of compartment voxels,

due to the potentially high number of images registered.

A useful representation of the AM involves estimating the

intensity, informally defined as the expected number of com-

partment centres at any given location. It is at this stage, we

voxelize the AM: this is a common practice in brain mapping

[18] and simplifies the process of intensity estimation which

entails spatial smoothing of the observed point pattern.

Three-dimensional spatial intensity estimation is difficult as

methods frequently require the determination of a so-called

bandwidth parameter that controls the degree of smoothing.

To avoid the computationally demanding effort of determin-

ing such a parameter, we have developed our own approach

called the natural neighbour intensity estimation algorithm

which is described in detail in electronic supplementary

material, note 3. For example, figure 5 shows the intensity

estimate for the MRC-5 asynchronous AM, with the locations

of PML NB centres overlaid.

In order to assess the significance or otherwise in the fluc-

tuations in intensity over the AM, we perform a hypothesis

test, where the null hypothesis is that the true intensity func-

tion from each replicate corresponds to CSR. Testing all

voxels simultaneously, naturally leads to issues regarding mul-

tiple hypothesis testing, therefore we adopt an approach called

threshold-free cluster enhancement [16]. This involves measur-

ing the size of connected regions of high or low intensity and

calibrating against CSR using a Monte Carlo procedure.

Further details for this approach can be found in electronic

supplementary material, note 3. Figure 6 shows the intensity

values above CSR and the corresponding cluster sizes.
2.4. Aggregate map results
There are various ways to represent the AM, for example

figure 7 shows two-dimensional orthogonal projections and

their corresponding full three-dimensional representation. It

is useful to show an AM showing regions that are more

http://rsif.royalsocietypublishing.org/
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Figure 6. (a) Two-dimensional orthogonal projection of intensity above complete spatial randomness (CSR) for normal, asynchronous MRC-5 cell nuclei. At each
voxel location within the boundary, the expected number of PML NB centres per unit volume is estimated. The expected number of PML NB centres per unit volume
under CSR is subtracted with any values less than zero set to zero. The colour scale represents the mean of these values along the line of projection. This figure is
dominated by peaks in the intensity estimate. (b) Corresponding result after a cluster enhancement step [16] has been introduced, details for which can be found in
electronic supplementary material, note 3. The colour scale represents cluster size. The result is much smoother, in addition a hypothesis test based on the entire
image (rather than on individual voxel locations) can be usefully constructed using these cluster values (see electronic supplementary material, note 3).
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Figure 7. (a) The AM for the spatial preference of PML NBs in normal, asynchronous MRC-5 cells. The colour scale represents the probability that a voxel along the
line of projection rejects the null hypothesis of CSR due to the PML NB centres being more aggregated than expected under CSR. (b) Full three-dimensional
representation where each voxel that rejects the null is displayed. A segment from the nucleus has been removed to enable the centre of the map to be visualized.
(c) The AM for SV40-transformed asynchronous MRC-5 cells and (d ) the corresponding three-dimensional representation. Note the preference (a,c) for the centre in
the SV40-transformed cells in contrast to the normal non-transformed MRC-5 cells.
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Figure 8. (a,b) AMs for the spatial preference of PML NBs in normal, asynchronous MRC-5 cells. The colour scale represents the probability that a voxel along the
line of projection rejects the null hypothesis of CSR. In particular, panel (a) shows regions that reject the null due to the spatial preference being more aggregated
than expected under CSR and panel (b) shows regions that reject the null due to the spatial preference being more dispersed than expected under CSR. In all cases,
the colour blue denotes consistency with CSR. (c,d ) AMs for the spatial preference of PML NBs in SV40-transformed asynchronous MRC-5 cells. Note the preference
for the centre in the SV40-transformed cells in contrast to normal non-transformed MRC-5 cells.
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aggregated than is expected under CSR and another AM

showing regions that are more dispersed than expected

under CSR. It should be noted that boundary effects can

reduce the power of our approach. Specifically, regions near

the boundary may fail to reject the null hypothesis in the

presence of an alternative (see for example figure 12 and

the discussion in electronic supplementary material, note 4).

The AMs shown in the following figures are two-

dimensional orthogonal projections of three-dimensional

AMs. For each figure, the colour represents the proportion

of voxels that reject the null hypothesis of CSR along the

line of projection (along the z-axis). The first column shows

regions that are more aggregated than would be expected

under CSR and the second column shows regions that are

more dispersed than would be expected under CSR.

The colour scheme for the two-dimensional projections of

three-dimensional AMs ranges from darkest yellow, which

corresponds to all voxels along the line of projection rejecting

the null hypothesis, to darkest blue which represents the case

where no voxels reject the null. This two-dimensional rep-

resentation of the three-dimensional AM is straightforward

to interpret and allows all AMs to be displayed on the

same colour scale. However, displaying the proportion of
voxels that reject the null hypothesis can lead to a visual arte-

fact especially close to the edge of the two-dimensional

image. The total number of voxels along a line of projection

varies across the AM and hence the volume a particular

colour corresponds to varies across the image. Close to the

edge of a two-dimensional AM, the number of voxels can

be very small so it is possible to visually overestimate the

size of the region that rejects the null given the colour.

Figure 8 shows the AM for PML NBs in normal, asynchro-

nous MRC-5 cells and SV40-transformed asynchronous

MRC-5 cells. Notably, there is a preference in the normal

non-transformed cells which is mainly annular with polar

preferences. A similar pattern of behaviour can be seen

using the WI-38 cell line (figure 9).

Figures 10 and 11 show corresponding AMs for RNA

polymerase II (RNAP II). Strikingly, the spatial regularity of

RNAP II is preserved between normal, asynchronous cells

and their SV40-transformed counterparts and reveals an

annular preference surrounding the nuclear envelope. This

suggests that RNAP II spatial regularity in the nucleus

must be preserved even when a cell undergoes immortaliza-

tion, such as upon transformation with the SV40 antigen and

that high-levels of transcriptional activity may occur near the

http://rsif.royalsocietypublishing.org/
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Figure 9. (a,b) AMs for the spatial preference of PML NBs in normal, asynchronous WI-38 cells and (c,d ) SV40-transformed asynchronous WI-38 cells. The colour
scale represents the probability that a voxel along the line of projection rejects the null hypothesis of CSR. (a,c) Regions that reject the null due to the spatial
preference being more aggregated than expected under CSR and (b,d ) regions that reject the null due to the spatial preference being more dispersed than expected
under CSR. In all cases, the colour blue denotes consistency with CSR. Note the preference for the centre in the SV40-transformed cells in contrast to normal
non-transformed cells. This is a similar to the behaviour of PML NBs in MRC-5 cells.
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nuclear periphery but not at the nuclear envelope. Given the

resolution of our analyses, our observations are consistent

with transcription occurring within the perichromatin

region [19]. Our results do however indicate a preference

for transcriptional activity that is excluded from the central

part of the nucleus. It is important to note that our AM

maps show spatial propensity of the imaged compartments

and thus do not exclude compartments occuring anywhere

within the nucleus.

There were no major differences between the AM patterns

for all of the nuclear compartments we studied in the SV40-

transformed MRC-5 and the SV40-transformed WI-38 cell

lines. Overall, this suggests that the higher order organization

of transformed cells is conserved across similar cell types

(fibroblasts). Despite our observations that SV40 transform-

ation appears to lead to significant changes in higher order

organization when compared to the organization of normal,

non-transformed nuclei, the effects of such a transformation

are similar across alternative transformed cell lines. It is

possible that cell cycle differences between normal and

transformed cells could affect the patterns we observe [20],

nevertheless, our observations are consistent for four

different cell lines.
Finally, figure 12 shows the AM for SC35 splicing speckles

in normal, asynchronous WI-38 nuclei. This AM confirms that

SC35 splicing speckles are excluded from the nuclear bound-

ary and appear to be localized throughout the nucleoplasm

and in the interchromatin space [21].
3. Discussion
Image processing and subsequent analysis is hugely impor-

tant for cell biology. The amount of image data in this field

is growing rapidly, driven by advances in microscopy tech-

nology (e.g. high-throughput microscopy and increased

resolution). As a result, there is an increasing need to replace

qualitative visual assessment and manual measurements of

microscope images with quantitative automated image

analysis methods, especially for replicate images.

Here, we present a new technique to explore spatial prefer-

ence within the cell nucleus using biological confocal

microscopy image data. The strength of this methodology

derives from the principled way replicates are combined

where the shape of each nuclear boundary is respected. This

necessitates the analysis to be performed in full three dimensions.

http://rsif.royalsocietypublishing.org/
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Figure 10. (a,b) AMs for the spatial preference of RNAP II in normal, asynchronous MRC-5 cells and (c,d ) SV40-transformed asynchronous MRC-5 cells. The colour
scale represents the probability that a voxel along the line of projection rejects the null hypothesis of CSR. (a,c) Regions that reject the null due to the spatial
preference being more aggregated than expected under CSR and (b,d ) regions that reject the null due to the spatial preference being more dispersed than expected
under CSR. In all cases, the colour blue denotes consistency with CSR. The spatial preference of RNAP II is mapped for both normal, asynchronous MRC-5 cells (top
row) and SV40-transformed asynchronous MRC-5 cells (bottom row) and is shown to be preserved upon SV40 transformation.
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Our approach to combining replicates involves a non-

linear projection which can produce artefacts in the AM,

however we have shown through simulation that these arte-

facts are small and localized. Furthermore, the effect of

artefacts is mitigated through our method for making a

formal inference decision regarding a null hypothesis of

CSR. In our approach, the null distribution is constructed

by generating CSR replicates that are then projected into

the AM. In other words, the AMs drawn from the null

distribution are generated from CSR replicates that have

themselves been similarly nonlinearly transformed.

Central to the AM construction is the ability to find corre-

spondences between replicates, for this we use the location of

an ovoid tip that is determined automatically. This does not

preclude manual intervention in cases where the presence

of an ovoid tip is not strongly evident. Other than this scen-

ario, the construction of an AM requires little to no input

from the user. There are two main parameters that the user

might wish to tune. First, the number of landmarks used to

represent the convex hull of the nuclear boundary, this is

unlikely to need any fine tuning due to the relative simplicity
of this shape. Second, for the intensity estimation, the con-

tents of the AM are discretized, a very small voxel size

relative to the size of the AM is unlikely to add any further

relevant detail to the AM (but will substantially increase

the computation) hence it unlikely that there will be a need

to change the default number of voxels used in all the results

shown in this paper.

By applying the AM methodology to visualize a number

of nuclear compartments including PML NBs and RNAP II,

we have identified interesting spatial preferences that have

not been observed previously. These observations provide a

framework to explore further nuclear compartments and cel-

lular perturbations to define high-level relationships between

spatial preference and cellular function. Much of the previous

work on nuclear compartment associations has been carried

out using single-cell imaging or biochemical cross-linking

techniques. Both approaches have revealed significant

information about nuclear organization but can potentially

mask meso-level spatial preferences. In an attempt to

provide a more global view of nuclear organization, [22]

developed a computational probability approach to analyse

http://rsif.royalsocietypublishing.org/
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Figure 11. (a,b) AMs for the spatial preference of RNAP II in normal, asynchronous WI-38 cells and (c,d ) SV40-transformed asynchronous WI-38 cells. The colour
scale represents the probability that a voxel along the line of projection rejects the null hypothesis of CSR. (a,c) Regions that reject the null due to the spatial
preference being more aggregated than expected under CSR and (b,d ) regions that reject the null due to the spatial preference being more dispersed than expected
under CSR. In all cases, the colour blue denotes consistency with CSR. The spatial preference of RNAP II is mapped for both normal, asynchronous WI-38 cells (top
row) and SV40-transformed asynchronous WI-38 cells (bottom row) and is shown to be preserved upon SV40 transformation.
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Figure 12. AMs for SC35 splicing speckles in normal, asynchronous WI-38 cells. The colour scale represents the probability that a voxel along the line of projection
rejects the null hypothesis of CSR. (a) Regions that reject the null due to the spatial preference being more aggregated than expected under CSR and (b) regions that
reject the null due to the spatial preference being more dispersed than expected under CSR. In all cases, the colour blue denotes consistency with CSR. In both cases,
blue denotes consistency with CSR. Note that SC35 splicing speckles are excluded from the nuclear boundary consistent with localization throughout the nucleoplasm
and interchromatin space.
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nuclear organization in budding yeast and found distinct

association preferences. Here, we have developed a different

technique and applied it to mammalian interphase nuclei,
and similar to [22] we also observe distinct preferences and

associations. A full description of these associations will be

published elsewhere.
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rsif.royalsoc

10

 on February 9, 2015http://rsif.royalsocietypublishing.org/Downloaded from 
The AM and other such tools are becoming essential as

they reduce substantial manual labour and more importantly

remove subjective bias. In addition, such quantitative methods

can increase the accuracy, sensitivity and reproducibility of

data analysis.
ietypublishing.org
J.R.Soc.
4. Material and methods
Further details on the cells investigated, including experimental

methods for cell staining, indirect immunofluorescence and confo-

cal microscopy can be found in electronic supplementary

material, note 1. Briefly, we chose to analyse two primary human

diploid cell lines, MRC-5 and WI-38 fetal lung fibroblasts, and

their SV40 T-antigen-transformed counterparts in order to avoid
complications with disease-derived cell lines. By using immunola-

belling and confocal microscopy to collect z-stack images, we

captured over 1000 image stacks of nuclei labelled for the nuclear

envelope (lamin B protein), and the nuclear compartment known

as PML NBs (see figure 1 for example images).

Data accessibility. The three-dimensional spatial locations of objects of
interest used in the analysis and raw image data for figure 12 can
be found at Dryad doi:10.5061/dryad.d3mr7.
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