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Corrigendum
Involution Products in Coxeter Groups
J. Group Theory 14 (2011), no.2, 251 - 259

S.B. Hart and P.J. Rowley

In [1], Theorem 2.4 states a well-known result on Coxeter groups which gives conditions under
which the stabilizer of a nonzero vector is a proper parabolic subgroup. However the hypothesis
of this result is incorrectly stated in our paper: it holds for finite Coxeter groups but is not true in
general for infinite Coxeter groups. We are grateful to an anonymous referee of a subsequent paper
for pointing this out. As a consequence, the proof of Theorem 1.1 in [1], which uses Theorem 2.4,
is incomplete. Here we complete the proof of Theorem 1.1 without recourse to Theorem 2.4.

Theorem 1.1 states that if X is a strongly real conjugacy class of a Coxeter group W (not nec-
essarily finite), then there exists w, € X such that e(w,) = 0. That is to say, there are involutions
o, 7 of W such that w, = o7 and ¢(w) = £(0) + ¢(7). At the point in the proof where Theorem
2.4 is used, we have established that zy is an element of X where z and y are involutions with the
following properties. First, y is the central involution of some standard parabolic subgroup W;
of W. The involution z has the property that ¢(gzg~') > ¢(z) for all ¢ € W;. It follows that if
l(zr) < {(z) for any r € J, then rzr = z and z - a, = —ay.

Now let K = {r € J : {(zr) < {(z)}. From the above we know that z -, = —a, for all r € K.
If K is nonempty then, as ®;. C N(z), ®}. is finite. Therefore Wy has a unique longest element
wg, which is an involution, and N(wg) = ®}. If K = () we set wx = 1. In all cases, since y is
central in W; and wg € W, we see that wgy = ywg is an involution. Moreover zr = rz for all
r € K, and thus zwg is also an involution. Let ¢ = zwg and 7 = wgy. Then o7 = 2y € X.
Moreover z and y both act as —1 on ®}. Thus, by Lemma 2.2,

N(o) = N(2)\ [-z - N(wk)] = N(2) \ N(wk)

and
N(r) =N\ [~y N(wg)] = N(y) \ N(wg) = 5\ N(wg).

Consider r € J. If r € K, then o, € N(wg) and so o ¢ N(z) \ N(wg) = N(o). On the other
hand if r € J\ K then by definition of K, o, ¢ N(z) and hence «, ¢ N(o), which is after all a
subset of N(z). Hence for all r € J we have a,. ¢ N(c). This implies that N(o)N®F = 0, because
every positive root in ®7 is a positive linear combination of some «,.,r € J. But N(7) C & and
therefore N (o) N N(7) = 0. Hence, by Lemma 2.2, {(o7) = {(0) + £(7). Setting w, = o7 we have
w* € X and e(w,) = 0, so completing the proof of Theorem 1.1. O
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