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ABSTRACT

Williams Syndrome (WS) is a neurodevelopmental disorder of known genetic origin, characterized by
serious delays in language onset yet relatively verbose, intelligible and fluent speech in late childhood
and adulthood. How do motor abilities relate to language in this group? We investigated planning and
co-ordination of the movement of the speech articulators (oromotor praxis) in 28 fluent-speaking in-
dividuals with WS, aged between 12 and 30 years. Results indicate that, despite their fluent language,
oromotor praxis was impaired in WS relative to two groups of typically-developing children, matched on
either vocabulary or visuospatial ability. These findings suggest that the ability to plan, co-ordinate and
execute complex sensorimotor movements contribute to an explanation of the delay in expressive lan-
guage early in development in this neurodevelopmental disorder. In the discussion, we turn to more
general issues of how individual variation in oromotor praxis may account for differences in speech/
language production abilities across developmental language disorders.

Williams syndrome

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Williams Syndrome (WS) is a neurodevelopmental disorder caused
by a hemizygous submicroscopic deletion of some 28 contiguous
genes on chromosome 7q11 +23 (Ewart et al, 1993; Donnai and
Karmiloff-Smith, 2000). Although original estimates of the prevalence
of WS were around 1:20,000 (Kaplan et al., 2001; Morris et al., 1988;
Donnai and Karmiloff-Smith, 2000), a more recent study rates pre-
valence at close to 1:7,500 (Stremme et al., 2002). WS is associated
with cardiac problems, distinctive facial morphology and slow physical
growth. The linguistic profile of individuals with WS is typified by
relatively verbose, fluent speech from late childhood onwards, a
characteristic all the more striking given the fairly considerable delay
in language development over infancy and toddlerhood (Singer-Harris
et al., 1997; Paterson et al., 1999). However, very little is known about
oromotor praxis (that is, the ability to plan and co-ordinate move-
ments of the speech articulators) in WS, a motor ability that is
particularly important for speech and language development. In the
current study, we investigate oromotor praxis in a group of 12-30-
year-olds with WS to establish whether oromotor ability is typical or
atypical in this unusual neurodevelopmental disorder.

* Correspondence to: 17 Queen Square, London WC1N 3AR, UK.
E-mail address: s.krishnan@ucl.ac.uk (S. Krishnan).
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We first review studies that indicate that expressive language is
a relative strength in the cognitive profile of WS, we then discuss
why motor skills may be relevant to language development in this
group, and finally, we outline the measures used in the present
study.

1.1. Expressive language in WS

Individuals with WS present with an uneven and unusual
cognitive profile. In adulthood, the language abilities of in-
dividuals with WS are usually better than their spatial cognition
skills (Donnai and Karmiloff-Smith, 2000; Jarrold et al., 1998).
Udwin and Yule (1990) studied conversational exchanges of 43
school-age children with WS. Eighty-four percent of these
children were classified as having fluent, articulate speech. In a
direct comparison of children with WS to children with specific
language impairment (SLI) or Down Syndrome (DS), Laws and
Bishop (2004) found that children with WS between the ages
of 6-15 years outperformed the other two disorder groups on
the speech sub-scale of the Childhood Communication Check-
list. Other evidence for expressive language strength comes
from studies of oral narrative production in WS, where the
stories of individuals with Williams syndrome were more
descriptive and engaging than the stories of those with DS
(Reilly et al., 1990).

0028-3932/© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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Within language, phonological skill generally, and phonological
short-term memory more specifically, are considered to be
strengths in WS (Vicari et al., 1996; Nichols et al., 2004). Relative to
children with DS, children with WS performed better on tasks
relying on phonological short-term memory such as digit span
(Wang and Bellugi, 1994; Jarrold et al., 1999), word span (Vicari
et al., 2004), or verbal repetition (Vicari et al., 2002). This was the
case despite similar or poorer performance by individuals with WS
on visuo-spatial memory tasks such as the Corsi block span. While
reliance on phonology was originally hypothesized to be unusual
in WS (Vicari et al., 1996), more recent studies suggest that pho-
nology is a relative strength but not atypical (Majerus et al., 2003;
also reviewed in Brock, 2007). Indeed, phonological abilities are
comparable to those of typically developing children matched on
verbal or nonverbal skill (Brock, 2005; Grant et al., 1997, Laing
et al.,, 2005).

Despite later strengths in expressive language, during the in-
fant and toddler years, individuals with WS present with very
clear delays in language development. The onset of the first words
is delayed in infants with WS and tends to occur between 18 and
24 months of age (Masataka, 2001). Parental questionnaires in-
dicate that infants with WS have similar levels of word production
and comprehension as infants with DS (Singer-Harris et al., 1997).
Furthermore, they produce fewer manual gestures (such as
pointing) than infants with DS (Laing et al., 2002; Singer-Harris
et al.,, 1997). In experimental studies, infants with WS have shorter
looking times to named objects relative to chronological age-
matched controls and their performance resembles that of chil-
dren with DS (Paterson et al., 1999). Nazzi et al. (2003) observed
that although infants with WS could segment words with a
strong-weak stress pattern in fluent speech, they were delayed
when they had to extract words with a weak-strong stress pattern
from fluent speech. Therefore, it is clear that infants with WS have
early delays in lexical and phonological development. Delays in
abilities relevant to language continue at later stages of develop-
ment, for example, toddlers with WS are impaired in triadic joint
interaction as well as comprehension and production of pointing
(Laing et al., 2002). Differences in language development are ob-
served even in the preschool years, for instance, preschoolers with
WS are slower at word learning than their typically developing
peers (Havy et al., 2010). Vicari et al. (2004) show that the
strengths in receptive vocabulary and sentence repetition typically
associated with WS only emerge by late childhood/ adolescence. It
remains unclear why these initial delays arise in language devel-
opment and how children with WS overcome them to become
relatively proficient language producers later in development.

1.2. Links between language and motor abilities

In other neurodevelopmental disorders where speech and
language deficits have been identified, concomitant motor diffi-
culties are frequently observed. For example, Brookman et al.
(2013) have reported poorer imitation of body postures and hand
movements in SLI (also see Hill, 2001). Fine motor ability in the
early years has been found to predict later speech fluency in
children with autism (Gernsbacher et al.,, 2008; LeBarton and
Iverson, 2013). Leonard and Hill (2014) have suggested that ge-
netic disorders like Williams syndrome offer an opportunity to
understand relationships between motor and language abilities
through the lifespan. Yet, in contrast to the increasing literature on
motor abilities in behaviourally-defined developmental disorders
like autism (Torres et al., 2013), relatively little is known about
oromotor abilities in WS.

A motor ability that we refer to as ‘oromotor praxis’ is an index
of an individual's ability to imitate and sequence complex oral
movements. Oromotor praxis relates to language development at

ages beyond the measures of motor control taken in infancy. In
typically developing children of around 21 months of age, or-
omotor praxis is associated with scores on language production,
comprehension and grammatical complexity (Alcock and Krawc-
zyk, 2010). Further, our own research has identified links between
oromotor praxis and nonword repetition, one which lasts through
the school years (Krishnan et al., 2013a) and suggests that this
relationship taps into the reliance of both tasks on planning and
coordinating oral movements. Even in atypically developing chil-
dren, oromotor praxis appears to be associated with language
outcomes. For instance, a link between oromotor praxis and
phonological skill is seen in specific language impairment (Stark
and Blackwell, 1997) and Elliott et al. (1990) report deficits of or-
omotor praxis in DS. Given that speech fluency is considered a
characteristic strength in this neurodevelopmental disorder (Rossi
et al.,, 2011), it is of particular interest to establish whether or-
omotor praxis ability relates to verbal ability in WS. In particular,
this would allow us to explore whether the emergence of rela-
tively good oromotor skills could influence the improvement in
language proficiency.

While a handful of studies indicate that infant motor mile-
stones are delayed in WS (Lenhoff et al., 1997; Masataka, 2001;
Tsai et al., 2008), very little is known about speech motor ability or
oromotor praxis in children, adolescents and adults with WS. To
date, one unpublished study indicates that fine motor control of
the speech articulators is affected (Mervis and Velleman, 2011).
However, it has not been established if oromotor ability is related
to the strengths in verbal ability. As the discrepancy between
verbal and visuospatial ability only appears to develop over time
(Vicari et al., 2004), it is possible that strengths in oromotor ability
may only be apparent at the same time or slightly earlier than
strengths in verbal ability. Furthermore, strengths in oromotor
praxis may only emerge over time. As children with WS have a
proclivity for social interaction, their interest in conversation may
lead them to imitate words and sentences more than other chil-
dren with developmental disorders. It is plausible that greater
experience producing speech (relative to other children with
neurodevelopmental disorders) could contribute to the improve-
ment in oromotor praxis, as children gain increased practice with
sequencing and coordinating articulators to produce sounds and
words in their own language. Additionally, developmental im-
provements in phonological proficiency might also shape and
change oromotor co-ordination for speech. Currently, it is not
known what levels of oromotor ability individuals with WS attain
by the time verbal strengths are apparent. In addition to the pre-
viously described strengths in spoken language, speech fluency is
a characteristic strength in this group and this strength is apparent
by relatively early childhood (Rossi et al., 2011). Therefore, in the
current study, we have focused on oromotor skills in older in-
dividuals with WS who would be likely to show the relative
strengths in spoken language and speech fluency. Consequently,
we expected to see concomitant strengths in oromotor skills for
individuals with WS with verbal mental ages approximating those
of 7-12 year olds.

1.3. The present study

In this study, we compare oromotor praxis in individuals with
WS to both vocabulary age-matched and visuospatial age-matched
controls. Given reported strengths in speech fluency in childhood
in WS, we expected that oromotor praxis would be at a par with
typically developing children of similar verbal ability and better
than typically developing with similar visuospatial ability.

In addition to the comparison of oromotor praxis across groups,
we explore whether potential group differences will be reflected
across other manual, oral and verbal tasks (visuomotor imitation,
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oral diadochokinetic tasks and nonword repetition). Using multi-
ple tasks that make differential demands on visuospatial, verbal,
and motor skills allows us to build a profile of the strengths and
weaknesses associated with memory, phonology, and motor skill
in this group. We include measures of phonological and visuos-
patial short-term memory to ascertain whether memory demands
in either domain influence oromotor praxis. A speeded oral dia-
dochokinetic task is used to assess whether potential differences
in oromotor praxis are consistent with broader oromotor ability.
Diadochokinetic tasks test the ability to perform rapid repetitive
muscle movements of the arm, hand or fingers and are an im-
portant aspect of neurological examination; these movements
require a reversal of the pattern of reciprocal innervation of ago-
nists and antagonists (Ziegler, 2002). Similarly, rapid repetitions of
a syllable such as ‘puh’, ‘tuh’ or ‘kuh’ are used to assess the mus-
cular system for speech (Robin et al., 1997). Nonword repetition is
assessed to explore whether the demands of the oromotor praxis
task are similar to those for putting together familiar phonological
syllables in a novel sequence.

2. Methods

Prior to testing, informed consent was obtained from all par-
ticipants. The study received approval from the Birkbeck Research
Ethics Committee.

2.1. Participants

Twenty-eight children and adults with WS (CA: 12.7-28.4
years; mean: 16.5 years; 11 females) were recruited via the Wil-
liams Syndrome Foundation, UK. All participants had previously
been clinically diagnosed with WS and had their diagnosis con-
firmed by a positive fluorescent in situ hybridisation testing (FISH)
test for the Elastin deletion on one copy of chromosome 7.

We were fortunate to have already-collected, rich datasets from
two cohorts of typically developing (TD) children. These TD data
have been reported previously (Krishnan et al, 2013a, under
review). Both these groups of TD children had also completed the
sight word reading efficiency subtest of the Test of Word Reading
Efficiency (TOWRE); and had standard scores above 80; indicating
no overt learning/reading difficulties and confirming that they
were developing typically. According to parental report, the TD
children had no speech, language, hearing or academic difficulties.

Participants with WS were compared to these two previously
tested cohorts of TD children, the first consisting of 39 children
(CA: 71-12.5 years; mean: 10.1 years; 19 females) and the second
of 35 children (CA: 5.4-8.6 years, mean: 7.1 years; 15 females). The
age range of the first TD cohort corresponded with the verbal
mental age of the WS group (assessed via the BPVS-II, Dunn et al.,
1997). The ‘verbal mental age’ of the WS group ranged between
6.0 and 14.4 years (mean: 9.8 years) and was not significantly
different from the chronological age of the TD children in this
cohort (p=0.529). This TD cohort is henceforth referred to as the
VMA (vocabulary age-matched) controls. The age range of the
second cohort was comparable to the WS participants in terms of
visuospatial mental age (assessed by the Ravens Colored Pro-
gressive Matrices, Raven et al., 1992). The participants with WS
performed similarly to 5.5-10.5 year olds (mean: 7.4 years) on this
visuospatial task; this was not significantly different to the ages of
the TD children in the second cohort (p=0.173). Henceforth, this
cohort is referred to as the VSMA (visuospatial age-matched)
controls.

Other researchers (Jarrold and Brock, 2004) have commented
on the limitations of using control groups matched on age (rather
than IQ measures). As our control groups were previously-tested

cohorts rather than individually matched children, we could not
obtain the same normative measures. We did confirm that the
children in our control groups were TD using standard scores on
the TOWRE, which associates strongly with aspects of language
ability such as syntax (Leech et al., 2007), phonology (Nation and
Hulme, 2010) and vocabulary (Ricketts et al., 2007). Further, large
sample sizes and extensive behavioural testing for the control
groups also allow us to assess individual variability in TD children,
which remains important in this age range (Krishnan et al., 2013b;
Leech et al., 2007).

2.2. Procedure

Participants performed all the tasks listed below in a single
session, with multiple breaks. A subset of the WS participants was
also part of a longitudinal study. These participants completed
attentional (Test of Everyday Attention in Children, Manly et al.,
2001) and academic achievement measures (Weschler Objective
Numerical Dimensions, Wechsler, 1996) in a second session (ty-
pically 2-4 weeks after the initial testing). All participants (in-
cluding the TD children) were tested in a sound-attenuated room
in the lab. The order of tasks during testing was consistent for all
participants in the WS and VSMA groups; however, the order of
tasks was counterbalanced for the VMA controls as they com-
pleted behavioural measures as part of a larger neuroimaging
study.

2.3. Experimental measures

We first describe the measures that were completed by the
participants with WS. All typically-developing children performed
a subset of these measures, including the same oromotor praxis,
nonword repetition and sight word efficiency measures. The VSMA
controls also completed the same digit span and oral diadocho-
kinetic tasks as well as a similar tone sequence reproduction
measure. Further details on the other tasks completed by the two
TD cohorts are described in Krishnan et al. (2013a and under re-
view).

Table 1
Means and standard deviations for all three groups.

Williams VMA VSMA
syndrome controls controls
N 28 39 35
Chronological Age (years) 16.5 (2.9) 10.1 (1.5) 7.1 (1.0)
Pure Tone Average (Left Ear) 13.3 (10.4) - -
Pure Tone Average (Right Ear) 14.0 (9.8) - -
BPVS Age 9.8 (2.1) - -
Raven's Progressive Matrices 7.4 (1.0) - -
Age
Reading efficiency 42.7 (22.1) 73 (12.5) 55 (14.7)
(raw scores)

Nonword repetition 12.2 (2.3) 15.2 (1.5) 12.8 (2.5)
Oromotor total 80.4 (20.8) 109.9 (4.7)  93.7 (10.1)
Simultaneous without 23.0 (4.6) 289 (1.2) 25.6 (2.7)

memory gap
Simultaneous with 21.6 (5.3) 28.2 (1.5) 243 (3.4)
memory gap
Sequential without 18.8 (7.1) 272 (2.1) 23.0(3.9)
memory gap
Sequential with memory 17.0 (6.4) 25.7 (2.5) 20.8 (4.1)
gap
Alternating DDK rate 0.22 (0.04) - 0.21 (0.02)
(syllables/second)
Sequential DDK rate 0.79 (0.33) - 0.72 (0.14)
(trisyllables/second)
Digit span 4(0.8) - 4.7 (0.8)
Tone sequence reproduction 4.4 (0.7) - 5.3 (1.0)
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Table 1 shows descriptive statistics for all the experimental
measures.

Participants with WS completed a brief hearing screening. Pure
tone average thresholds ranged between 3 and 57 dB for the left
ear and 2 and 42 dB for the right ear. To ensure that our data were
not unduly affected by participants' hearing status, all stimuli for
our tasks were presented to both ears, or in free-field listening
conditions. We established that all our participants had a hearing
threshold below 20 dB (considered normal) in at least one ear. We
also observed no significant correlations between hearing
thresholds in either ear with age, oromotor measures or nonword
repetition (p > 0.15).

2.3.1. Standardized measures

British Picture Vocabulary Scales (BPVS) II, (Dunn et al., 1997):
We used this measure to assess vocabulary levels. A word is spo-
ken, children are shown four line drawings and they have to point
to the drawing that best represents the word. This test has been
used extensively to match individuals with WS to TD populations
(for example, Rhodes et al., 2010).

Raven's Coloured Progressive Matrices (RCPM), (Raven et al.,
1992): We used this measure to assess non-verbal ability in in-
dividuals with WS. Here, children are shown a colored matrix with
a piece missing. They are given six options to complete the figure,
only one of which is correct. Previous assays have shown that this
is a well-grounded measure to use for matching individuals with
WS to control groups (Van Herwegen et al., 2011).

2.3.2. Measures of phonological proficiency

Test of Word Reading Efficiency (TOWRE), (Torgesen et al., 1999):
The sight word reading efficiency subtest was administered. This is
a simple test of fluency, which involves reading a list of progres-
sively more complex words within 45 s. The child's score on this
test is the number of words accurately read. In TD school-age
children, TOWRE scores are correlated with nonword repetition
(Nation and Hulme, 2010).

Nonword repetition: The NWR subtest was taken from the
Comprehensive Test of Phonological Processing (CTOPP; Wagner
et al,, 1999). The 18 nonwords from the test (ranging from one to
six syllables) were recorded by a native British English speaker and
presented to children over headphones (see also Nation and
Hulme, 2010; Nation et al., 2010). Children were asked to repeat
the word they had just heard. Three practice trials were provided,
followed by the 18 test items. Audio recordings of the children's
responses were scored. Fractional scores were awarded on the
basis of accuracy. An independent researcher scored thirty percent
of these recordings. Inter-rater reliability was > 0.85.

2.3.3. Measures of praxis and motor ability

Oromotor praxis (Alcock et al., 2000; Krishnan et al.,, 2013a): In
this task, participants were seated in front of a computer screen
and shown video-recordings of a researcher making non-linguistic
oral movements. They were asked to imitate exactly what the
researcher did, and their movements were video-recorded.

The oral movements were non-linguistic and occurred in non-
linguistic contexts (for example, spreading lips as in smiling,
sticking one's tongue out and so on). All movements were pro-
duced by a single person. There were two types of stimuli, si-
multaneous movements (where three articulators had to be
moved at the same time and therefore precisely coordinated, for
example, round lips, open mouth wide and stick tongue out) and
sequential movements (where movements involving three differ-
ent articulators had to be sequenced, for example, round lips, open
mouth and then bring teeth together). In previous studies, these
movements have been shown to be more complex than making
the same movement repeatedly and they assess aspects of

oromotor skill necessary for fluent, coordinated speech. The si-
multaneous movements we use necessitate the movement of
multiple articulators at the same time with precise timing. This
allows for the assessment of temporal programming of move-
ments over different articulators. In contrast, the sequential
movements allow for the assessment of temporal and spatial
programming of articulators.

Simultaneous and sequential movements were crossed with
the presence of a five-second silent memory gap between ob-
servation and execution of the oral movement. This gap was in-
troduced to unveil potentially subtle differences in reproduction
memory (see Diamond, 1985, and Stiles, 2012, for uses of such a
gap). Participants were told to imitate the movement only after
they heard a pleasant xylophone sound. For the movements
without a memory gap, this sound was played immediately, and
for the movements with a gap, the xylophone sound was played
five seconds after the completion of the video of the oral
movement.

Care was taken to ensure that an auditory strategy would be
insufficient to succeed, as different visible movements could be
associated with the same sound. Three practice trials were given
before the set of movements with the memory gap as well as the
set of movements without the memory gap. Participants received
verbal feedback on their performance on the practice trials. They
then imitated ten movements from the set.

The task was scored using the rating system developed by
Square-Storer (1989), where each constituent movement in the set
could be rated between 0 and 2. A score of 2 was awarded for a
completely accurate repetition, 1 for a partially correct repetition
or a mis-ordered sequence, and O for an incorrect or omitted
movement. Each three-part trial therefore received a score be-
tween 0 and 6, and over the task, scores could range between
0 and 120. Thirty percent of the videos were randomly chosen to
be coded by an independent rater; reliability was > 0.85 over the
four conditions.

Oral diadochokinesis (DDK): Even though speech fluency is
considered a characteristic strength in the profile of individuals
with WS, more recent studies suggest that in narrative tasks
children with WS have a slower speech rate and produce fewer
syllables/minute than mental-age matched TD children (Rossi
et al., 2011). It is unclear whether these differences in speed relate
to motor ability or difficulties with conceptual planning and lexical
retrieval for narrative production. For this reason, we obtained
speeded measures of articulation using an oral diadochokinesis
task. This task involves repetitive movement of one articulatory
movement (for example, “[pa][pa][pa]...”) as quickly as possible,
or a performing repetitive motor sequence of three positions as
soon as possible.

The child was asked to repeat the syllables [pa], [ta] and [ka]
and the trisyllablic sequence [pataka], in each case 12 times, as fast
as possible and on a single expiration (Rvachew et al., 2006;
Krishnan et al., under review). The task was modeled by the ex-
perimenter and followed by a practice trial. Three test trials were
recorded. The average length of each syllable or syllable sequence
was calculated by dividing the total duration of articulation by the
number of syllables (or syllable sequence in the case of [pataka]) in
each production. The sequential diadochokinetic rate equals the
fastest rate for the syllable sequence [pataka]. The alternating
diadochokinetic rate was calculated by averaging the fastest rates
for each of the single syllables [pa], [ta] and [ka].

2.3.4. Measures of memory

Digit Span: The forward digit span subtest from the Working
Memory Test Battery for Children (WMTB-C; Pickering and Gath-
ercole, 2001) was administered. In this task, the participant was
required to remember a sequence of digits in the order of their
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presentation. At each level, the number of digits in a sequence
increases by one. A level has six sequences and the participant
continues to progress up the levels until > 50% of the sequences
are incorrect. The participant's score is the final level s/he reaches.

Tone sequence reproduction: We assessed non-linguistic se-
quence reproduction using a task presented on an iPad. This task
was akin to SIMON, a popular children's game that is thought to
rely on visuospatial working memory (Baniqued et al., 2013). An
advantage of using this task was that individuals with WS could
respond simply by pressing virtual buttons. The gaming interface
comprised a circular arrangement of four buttons. Four tones
(262 Hz [C4]; 327.5 Hz [E4]; 393 Hz [G4]; 524 Hz [C5]) were used
and each was uniquely paired with a single button at random.
These pairings remained fixed for the duration of the game.

At the start of a sequence, a single virtual button was illumi-
nated and the associated tone played. If the participant clicked the
correct button, the length of the sequence was expanded by one
button +tone. The participant then had to imitate the two-element
sequence. The length of the sequence continued to increase until
the participant imitated the sequence incorrectly, or until the
maximum length of 21 items was reached. The participant's score
for the trial was the maximum sequence length they imitated.
Participants were given three practice trials after the experimenter
explained how to play the game. Participants had to score >3 on
each of the trials during practice to proceed; if they failed to meet
this criterion, they were given one more practice set. They then
completed ten trials, and an average sequence length was calcu-
lated for all sequences where sequence length > 1.

Since the WS group was tested somewhat later than the TD
children, we used an improved version of this memory task with
them, but first verifying that it yielded similar results with typical
adults. The new version comprised sequences drawn from a
probabilistic language consisting of four triplets. In this language,
first-order transition probabilities were greater within triplets
(p=1), compared to between triplets (p=0.33). In the older se-
quences (which were completed by the VSMA controls), there was
no triplet structure and first-order probabilities were always 0.25.
Pilot data showed that there were no significant differences in
completed sequence length for adults completing these two dif-
ferent sets (p=0.65).

3. Results

Descriptive statistics (means and standard deviation) for all the
measures are shown in Table 1.

3.1. Oromotor control/imitation skills are weaker in WS relative to
VMA and VSMA controls (Fig. 1)

When oromotor praxis scores were compared across groups,
we found main effects of group F(2,96)=42.463, p <0.001,
1n*>=0.469, oromotor sub-scale (sequential/ simultaneous), F
(1,96)=98.593, p < 0.001, #>=0.507, memory gap (with/without
memory gap), F(1,96)=39.205, p < 0.001, >=0.290 as well as an
interaction between simultaneous/sequential movements and
group, F(2,96)=4.025, p=0.021, #2=0.077. Bonferroni corrected
post-hoc t-tests showed that all three groups significantly differed
from each other (p <0.001) with the VMA controls (M=27.49,
se=0.54) and VSMA controls (M=23.41, se=0.54) more accurate
than the WS group (M=20.09, se=0.61). The main effect of or-
omotor sub-scale was driven by higher scores for simultaneous
movements (M=25.27, se=0.29) relative to sequential move-
ments (M=22.06, se=0.43). Further, Bonferroni corrected post-
hoc t-tests showed that the interaction between oromotor sub-
scale and group was driven by the WS group who performed less
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Fig. 1. Scores for subscales of the oromotor praxis task; all groups are significantly
different from each other. Error bars show + 1 standard error. The interaction
between oromotor subscale and group is highlighted in the figure.

accurately than VMA controls particularly when given sequential
movements rather than simultaneous, p=0.017. The main effect of
memory gap was driven by greater accuracy when oromotor
praxis was assessed without a memory gap (M=24.41, se=0.33)
relative to when a memory gap was introduced (M=22.92,
se=0.36). Fig. 1.

3.2. Nonword repetition in WS is poorer than VMA controls, but
comparable to VSMA controls (Fig. 2)

To ascertain whether individuals with WS had verbal abilities
similar to those found in vocabulary-matched TD children, we
compared nonword repetition accuracy across our three groups.
We found a significant effect of group, F(2,101)=20.333, p < 0.001,
n?=0.291. We followed this up with Bonferroni corrected post-hoc
tests, which revealed that the WS group and the VSMA controls
were both significantly less accurate than the VMA controls
(p<0.001), but not significantly different from each other
(p=0.763) (Fig. 2).

18 .

15

12

Nonword repetition

Fig. 2. Differences in nonword repetition across VMA controls, VSMA controls and
individuals with WS. The WS group is significantly different from the VMA group
but not from the VSMA group. Error bars show + 1 standard error.
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This finding replicates results from Grant et al. (1997) who used
a different nonword repetition test (CNRep) and found that per-
formance for children with WS was comparable to a group mat-
ched on Raven's ability but that they were significantly poorer
than the group matched on vocabulary ability. However, these
results do suggest that oromotor abilities of WS should at least be
at par with the VSMA controls - which they are not.

3.3. Pattern of differences relative to VSMA controls (Fig. 3)

We did not have scores for the VMA controls for the full set of
tasks that the participants with WS completed. However, the
VSMA controls completed all these tasks. Compared to the VSMA
controls, we found that participants with WS had lower scores on
the memory measures of digit span, t(61)=3.205, p=0.002, and
tone sequence reproduction, t(61)=3.765, p < 0.001. In contrast,
we found no significant differences across these two groups for
both alternating (p=0.403) and sequential DDK rate (p=0.329).

For all the WS participants, z-scores for each of these tasks
were calculated (relative to the distributions of the VSMA controls)
to understand the relative strengths and weaknesses in their
cognitive profile. A repeated-measures ANOVA yielded a sig-
nificant interaction of task, F(1,27)=5.335, p < 0.001. Bonferroni-
corrected post-hoc t-tests indicated that individuals with WS had
higher z-scores for nonword repetition relative to their scores on
tone sequence reproduction (p=0.039) and digit span (p=0.048)

(Fig. 3).
3.4. Summary of findings

We have shown that oromotor praxis scores are lower in the
WS group compared to both sets of TD controls. Relative to the
younger TD controls, individuals with WS had lower scores on
both the digit span and tone sequence reproduction tasks. How-
ever, on nonword repetition tasks as well as the diadochokinetic
tasks, individuals with WS performed at a level equivalent to that
of the VSMA controls.

4. Discussion

Oromotor praxis scores were much lower in the WS group
compared to both TD controls matched on either vocabulary or
visuospatial ability. It is clear that the ability to reproduce novel
oral articulatory movements is not in line with the language ability
of this group. Moreover, while their performance on the oral DDK
and nonword repetition tasks was better than their oromotor
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praxis, the participants with WS performed only at similar levels
to the controls matched on visuospatial ability. This study has
revealed for the first time a relative weakness in oromotor praxis
for individuals with WS, where they were even less accurate than
the VSMA controls. Even in this older group who show relatively
good speech production skills (as indexed by oral DDK and non-
word repetition), we find that oromotor praxis is not a relative
strength. We argue that individual variation in oromotor praxis
may play an important role in explaining early delays in language
production.

4.1. Why would oromotor praxis be a relative weakness in WS?

It is surprising that the WS group performed especially poorly
on the oromotor praxis task relative to even the VSMA controls,
especially given the fact that their verbal ability was akin to the
VMA controls. In fact, in our battery, individuals with WS per-
formed at a level only equivalent to that of non-verbal age-mat-
ched controls in two tasks that involved sequencing linguistic
units (nonword repetition and oral DDK). Here, we discuss the
reasons why oromotor praxis might be a relative weakness in WS.

It is possible that the difficulties faced by participants with WS
stem from treating the oromotor praxis task as a spatial sensor-
imotor transformation task involving changing configurations of
the articulators. Indeed, Bohning et al. (2002) have demonstrated
that children with WS were impaired when reproducing syllables
presented visually but not when they were presented aurally.
However, this would not explain why their performance is worse
than the VSMA controls. An alternate or additional possibility is
that participants with WS have more stable auditory-motor
mappings relative to visuomotor mappings, and therefore find it
easier to execute these correctly. Such task differences could stem
from the support derived from phonological proficiency, which is
known to improve over development (Vicari et al, 2004). En-
hancements in phonological proficiency and practice articulating
linguistic tokens could explain why individuals with WS were
better at computing sensorimotor transformations for novel words
but not novel non-linguistic oromotor sequences. Further, even
though the oral DDK tasks were non-meaningful, participants
were reproducing a practised set of syllables from their phonolo-
gical repertoire.

This explanation would posit that children with WS would also
struggle in the initial phases of learning of auditory-motor sequences.
Indeed, this may be akin to the difficulties they face when learning
visuomotor sequences (Foti et al., 2013; Vicari et al,, 2001). Partici-
pants with WS may face greater problems with novel and un-
practiced visuomotor sequences than TD children because they do
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Fig. 3. Means and standard errors of z-scores. for the WS group relative to VSMA controls. Negative z-scores. indicate lower scores than the average of the VSMA group,

whereas positive z-scores. suggest that scores are higher.
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not extract and generalise common features from other domains
adequately. In this case, they are able to sequence oral movements
for speech, but unable to produce similar oral movements to com-
plete the non-linguistic oromotor task. Laing et al. (2002) suggested
that when the system is stretched when completing unfamiliar tasks,
those with WS tended to show different effects from typically de-
veloping children. For example, children with WS did not show
concreteness effects in a novel task where printed words had to be
associated with their spoken form, but they did show concreteness
effects in a spoken nonword repetition task (Laing et al., 2001, 2002).
Therefore, it is possible that initial difficulties in oromotor praxis
would be present in both auditory-motor and visuomotor tasks.
However, these oromotor difficulties could be compensated for in
language tasks, perhaps due to repetitive oral practice driven by the
intrinsic motivation that children with WS have to speak, or due to
improvements in phonological proficiency. However, these difficul-
ties would still be apparent on a novel task that involves computing a
slightly different sensorimotor transformation. This account leads to
a hypothesis that can be tested in future studies - the children per-
forming poorly on oromotor tasks should also perform poorly tasks
that involve generalizing a learnt skill.

An account of the difference between nonword repetition and
oromotor praxis must also explain the variation in the perfor-
mance of the WS participants for the oromotor tasks. Our results
indicated that participants with WS closely approximated the
performance of the VSMA controls for nonword repetition, and to
a greater extent than the two memory tasks (digit span and tone
sequence reproduction). However, much greater variability was
observed for the motor measures. Rather than an absolute differ-
ence, there is likely to be a gradient of difficulty in this group. This
suggests that there is more than one factor than contributes to
oromotor difficulties. In addition to the problems generalising
learnt movements to novel situations, difficulties with motor
control, planning and co-ordination in the performance of visuo-
motor tasks have recently been highlighted in WS (Hocking et al.,
2008; Cowie et al., 2011). In a rapid visuomotor aiming task, Elliott
et al. (2006) showed that individuals with WS exhibited poor
planning processes prior to movement initiation, reflected by their
slower peak velocities. Hocking et al. (2011) demonstrated that
adults with WS seemed to have particular difficulties in planning
and controlling movement under increasing demands of precision.
In a later study, Hocking et al. (2013) showed that watching their
own movements benefited children with WS in a visuomotor task.
The authors suggest that individuals with WS have difficulties
updating their limb representations with ongoing proprioceptive
feedback. The sensory feedback that is received during these tasks
may partially account for differences between visuomotor tasks
like oromotor praxis as compared to auditory-motor tasks like
nonword repetition and oral DDK. In both auditory-motor tasks,
participants received auditory as well as proprioceptive feedback.
However, in the oromotor praxis task, participants only receive
proprioceptive feedback and they cannot see their own articula-
tion. Such a difference in sensory feedback may be another reason
why individuals with WS perform better on linguistic tasks.

Finally, it is unlikely that the difficulties faced by the WS group
on the oromotor praxis task relate to short-term memory. Despite
the fact that participants with WS performed less accurately than
the VSMA controls for the digit span and tone sequence re-
production tasks, the minimum score obtained by the WS parti-
cipants for both these measures was three units. Our oromotor
sequences were short (three elements long). This indicates that it
was not specific difficulties with the retention of these three-unit
sequences that led to poorer performance. In addition, our group
and others have shown that praxis does not pattern with auditory
memory (Ayres et al., 1987; Krishnan et al., under review).

4.2. Relevance to the neural bases of oromotor praxis

Behavioural differences in oromotor praxis could be related to
structural neural differences in WS. Neural regions typically as-
sociated with articulatory control and praxis (such as the caudate
nucleus and the frontal operculum) are significantly different in
WS from TD children. For example, Campbell et al. (2009) note
that relative to typical development, children with WS had re-
duced volumes of the caudate nucleus and putamen as well as
reduced gray matter over the left putamen and cerebellum
(among other reductions). Meda et al. (2012) observed similar
atypicalities in adults with WS, that is, reduced volumes over the
basal ganglia circuit including the caudate nucleus, putamen and
thalamus. Van Essen et al. (2006) also examined cortical folding
and observed that over the frontal operculum, TD children had
deeper folds than adults with WS; however, this pattern was re-
versed over the inferior frontal gyrus. These structures have been
linked with speech/motor ability in other populations, most no-
tably, in individuals with developmental verbal dyspraxia (Wat-
kins et al., 2002).

While such brain-behaviour associations might suggest a
simple one-to-one relationship, we note that there was consider-
able inter-individual variability in oromotor praxis within the WS
group. For instance, some WS participants did as well as TD chil-
dren matched on verbal MA. Most studies that describe the WS
brain have only compared small groups of individuals with WS to
TD groups matched on chronological age. In fact, very few studies
have investigated brain-behaviour relationships at the individual
level for participants with WS. One possibility is that individuals
with WS differ in the extent to which neural circuits associated
with speech disorders are affected. However, it is also possible that
individuals with WS who have relatively good oromotor praxis/
nonword repetition ability use different strategies to compute
sensorimotor relationships (for instance, depending more on
phonological proficiency) and therefore rely on a different set of
neural circuits. Although the current study cannot tease these
questions apart, they are clearly relevant to understanding the
function of the basal ganglia nuclei and their contribution to motor
control in WS.

4.3. Variability in oromotor praxis across developmental disorders

Oromotor praxis has been found to be associated with language
ability in other developmental disorders. For example, Stark and
Blackwell (1997) found that oromotor praxis skills were associated
with nonword repetition in children with language impairment.
Moreover, fine motor difficulties predict later speech fluency in
children with autism (LeBarton and Iverson, 2013), and oromotor
praxis is also a problem area for individuals with Down Syndrome
(Elliott et al., 1990). The current study has identified underlying
oromotor praxis difficulties also in Williams syndrome.

Understanding oromotor praxis in neurodevelopmental dis-
orders could help to delineate differences in developmental tra-
jectories of these different disorders. Both WS and Down syn-
drome present with considerable and similar early language de-
lays. But the reasons for this may be very different. In Down
syndrome, praxic difficulties may occur in combination with more
general motor impairments. By contrast, in WS, problems appear
to be specific to oromotor praxis, as evidenced by the relatively
better performance on nonword repetition and oral DDK tasks. In
WS, oral movements for speech might become practised over
development (perhaps due to greater imitation of words, social
motivation or interest in language in WS), this would lead to the
establishment of stable auditory-motor mappings and better
speech fluency. Therefore, initial difficulties with oromotor praxis
may be tempered by factors that provide resilience during
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language development, such as phonological proficiency and in-
trinsic motivation to practice and produce speech. We speculate
that oromotor praxis difficulties may account for the early lan-
guage differences in WS (when they look comparable to young
children with DS). However, once more stable auditory-motor
mappings are formed, children with WS would start to outstrip
their peers with DS. However, these early oromotor difficulties
would still be apparent when individuals with WS cannot use their
established auditory-motor maps.

5. Summary and conclusions

In summary, we find that individuals with WS show surprisingly
poor imitation and sequencing of complex non-linguistic oral
movements as assessed by our oromotor praxis task, relative to TD
children matched on either verbal or visuospatial ability. We hy-
pothesize that initial difficulties in planning and coordinating the
production of novel oral movements may be one factor contributing
to the surprising language delay in early development in Williams
syndrome, an issue that the literature has hitherto failed to address.
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