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Abstract

We analyze a market populated by expected utility maximizers and
smooth ambiguity-averse consumers. We study conditions under which
ambiguity-averse consumers survive and a¤ect prices in the limit. If
ambiguity vanishes with time or if the economy exhibits no aggregate
risk, ambiguity-averse consumers survive, but have no long-run impact on
prices. In both scenarios, ambiguity-averse consumers are fully insured
against ambiguity in equilibrium and, thus, behave as expected utility
maximizers with correct beliefs. If ambiguity-averse consumers are not
fully insured against ambiguity, they behave as expected utility maximiz-
ers with e¤ectively wrong beliefs and an e¤ective discount factor which
might be higher or lower than their actual discount factor. Using this in-
sight, we demonstrate that consumers with constant absolute ambiguity
aversion vanish in expectations, whenever the economy faces aggregate
risk. In contrast, consumers with constant relative (and thus, decreas-
ing absolute) ambiguity aversion survive in expectation and with positive
probability and have a non-trivial impact on prices in the limit.
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1 Introduction

Theories of ambiguity aversion have established themselves as a viable alterna-
tive to expected utility maximization. They capture experimentally observed
behavior and have been used to explain some of the empirical phenomena doc-
umented in �nancial markets, such as the home bias (Uppal and Wang (2003))
and the equity premium puzzle (Epstein and Scneider (2008)). Such explana-
tions, however, are robust only if we can show that ambiguity-averse investors
will exert persistent in�uence on market prices.
In this paper we ask about the survival of ambiguity-averse investors in a

�nancial market. So far this question has been analyzed only for the case of
max-min expected utility maximizers (as axiomatized by Gilboa and Schmei-
dler (1989)): Condie (2008) �nds that, unless there is no aggregate risk, these
investors disappear from the market. The case of no aggregate risk, however, is
special in that ambiguity averse investors are fully insured and, thus, have no
e¤ect on prices. Hence even when ambiguity-averse investors survive, market
outcomes look as if all investors were expected utility maximisers. Condie�s
approach has two main shortcomings: �rst, the framework of the max-min ex-
pected utility does not allow for a distinction between ambiguity and ambiguity
attitude. Hence, it is not clear whether the fact that max�min investors vanish
should be attributed to their ambiguity aversion, or to information asymme-
tries: while max-min-investors face uncertainty about the actual distribution
of returns, expected utility maximizers know the correct distribution. Second,
even if one were to attribute the e¤ect to ambiguity aversion, the max-min ex-
pected utility only allows for a very extreme form of ambiguity-aversion: the
decision maker always chooses the worst probability distribution to evaluate a
given act. This raises the question of whether the degree of ambiguity aversion
can in�uence survival.
Our paper addresses these issues by examining a market populated by ex-

pected utility maximizers and smooth ambiguity-averse investors, as in Klibano¤,
Marinacci and Mukerji (2009), henceforth KMM (2009). We choose this model,
because it allows us to separate the objective ambiguity present on the market,
to which all investors are exposed, from the subjective attitude towards ambi-
guity. Furthermore, it also allows us to vary the degree of ambiguity aversion
and relate it to the investor�s chances to survive.
We assume that the market exhibits two levels of uncertainty: the �rst is

the uncertainty about the investors�endowments, the second is the uncertainty
about the probability distribution determining the evolution of endowments.
We refer to the �rst type of uncertainty as risk and to the second type of
uncertainty as ambiguity. Ambiguity is described by the set of probability
distributions which can govern the endowment process. The main di¤erence
between ambiguity and risk in our model consists in the fact that the realization
of the risky state (realization of endowments) is interpersonally veri�able, while
the realization of the ambiguous state (the distribution of endowments) is not.
Hence, asset payo¤s and prices can only depend on the realization of the risky
variables, but not on the realization of the ambiguous ones. Similarly, trades
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cannot be made contingent on the ambiguous states, i.e., on the distribution
governing the endowment streams. We assume that the economy has a complete
set of Arrow securities with payo¤s contingent on the realization of the risky
state. No assets with payo¤s contingent on the realization of the ambiguous
states are available.
In our model, both types of investors have the same information about the

structure of uncertainty. Both ambiguity-averse investors and expected utility
maximizers are averse towards risk. However, while ambiguity-averse investors
prefer to reduce their exposure to ambiguity, expected utility maximizers are
indi¤erent towards it. Hence, if both types of investors have identical discount
factors and correct beliefs, then di¤erences in their ability to survive can only
be attributed to the di¤erence in their attitude towards ambiguity.
The main �nding of our paper is that if ambiguity is persistent and the econ-

omy faces aggregate risk, survival is not independent of the degree of ambiguity
aversion. This is true, even though all investors in the economy are assumed
to have correct beliefs and identical discount factors. The intuition behind this
result is as follows: a smooth ambiguity-averse investor with correct beliefs and
a constant discount factor e¤ectively behaves as an expected utility maximizer
with incorrect beliefs and a time-dependent discount factor. The factors modify-
ing the beliefs and the discount rate depend on the decision maker�s equilibrium
consumption and on the function describing his attitude towards ambiguity. In
particular, if the ambiguity-averse investor were completely insured against am-
biguity, he would be indistinguishable from an expected utility maximizer with a
constant discount factor and correct beliefs. However, we show that if the econ-
omy faces aggregate risk, the ambiguity-averse investor will not be completely
insured against ambiguity and, hence, his ambiguity aversion will in�uence both
his e¤ective beliefs and his e¤ective discount factor. His e¤ectively wrong beliefs
always inhibit his chances of survival compared to an expected utility maximizer
with correct beliefs. However, changes in his e¤ective discount factor can o¤set
this e¤ect.
We analyze three classes of functions representing the investor�s attitude

towards ambiguity: functions exhibiting constant absolute ambiguity aversion,
� (y) = �e��y; functions exhibiting constant relative ambiguity aversion and,
thus, decreasing absolute ambiguity aversion, � (y) = ln y and � (y) = y
 ;
and functions exhibiting increasing absolute ambiguity aversion of the type
� (y) = by � ayr. For these three classes of functions, we compute the e¤ective
discount factor of the ambiguity-averse investor. The e¤ective discount factor is
equivalent to the actual discount factor for the class of functions exhibiting con-
stant absolute ambiguity aversion. It is larger than the actual discount factor
for the class of functions with constant relative, and hence, decreasing absolute
ambiguity aversion; and it is smaller for the subclass of functions with increas-
ing absolute ambiguity aversion which have a decreasing second derivative. We
then use these results to derive implications for the survival of ambiguity averse
investors.
Since the e¤ective discount factor for an ambiguity-averse investor with con-

stant relative ambiguity aversion is larger than his actual discount factor, it
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forces him to save more, and thus, enhances his chances of survival. It turns
out that (in expectations) this e¤ect o¤sets the e¤ect caused by wrong beliefs.
Hence, investors exhibiting constant relative ambiguity aversion survive with
positive probability and in expectations. Since these investors are not com-
pletely insured against risk in equilibrium, they have a non-trivial impact on
prices and allocations even in the limit of those paths on which they survive. In
particular, such paths will exhibit higher equity premium than predicted using
standard models of expected utility maximization.
For the case of constant and increasing absolute ambiguity aversion, the

e¤ective discount factor of the ambiguity-averse investors either remains un-
changed or is less than their actual discount factor, while their e¤ective beliefs
di¤er from the truth. Hence, unless they are fully insured against ambiguity,
in expectations, such investors vanish from the market, even though their ac-
tual beliefs are correct and their discount factor is identical to the one of the
expected utility maximizers.
The intuition behind these results is simple: in the smooth model of am-

biguity, ambiguity aversion has an intertemporal e¤ect, forcing the investor to
save more relative to an ambiguity-neutral investor. When an investor exhibits
decreasing ambiguity aversion, this e¤ect is especially pronounced for wealth
levels close to 0, thus preventing his consumption from converging to 0. In con-
trast, increasing absolute ambiguity aversion, leads to a reduction in savings at
low levels of wealth, driving the investors out of the market.
It is important to note that the dependence of survival on ambiguity aversion

arises only for cases in which: (i) the economy faces aggregate risk, and (ii)
the ambiguity is persistent. To indicate the importance of aggregate risk, we
analyze the case in which the total endowment of the economy is certain. We
show that in this scenario, all investors will be fully insured against risk, and
thus, also against ambiguity. It follows that ambiguity-averse investors with
correct beliefs will survive, but their ambiguity-aversion will not matter for
prices and allocations. To highlight the e¤ect of persistent ambiguity, we study
the case in which the probability distribution of asset payo¤s is determined once
and for all in the �rst period and, therefore, the investors can learn it as time
evolves by observing the endowment realizations. In this case, only beliefs and
discount factors determine survival. In particular, ambiguity-averse investors
with correct beliefs and discount factors equal to those of the expected utility
maximizers survive. However, since ambiguity vanishes in the limit, ambiguity-
aversion has no long-run impact in this scenario.
The remainder of the paper is organized as follows: the next section provides

a short overview of the related literature. Section 3 presents the model of a mar-
ket with expected utility maximizers and smooth ambiguity-averse consumers.
Section 4 de�nes and shows the existence of an interior equilibrium for such an
economy. Section 5 analyzes the question of survival with ambiguity-aversion
and states our main results. Section 6 concludes. All proofs and derivations are
collected in the Appendix.
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2 Related Literature

The paper which is most closely related to our work is Condie (2008), which
analyzes the issue of survival of max-min expected utility maximizers. Condie
shows that even when the true probability distribution is contained in the prior
of a max-min consumer, this consumer vanishes, unless he is completely insured.
The intuition behind this result is simple: at any period, a max-min consumer
can be represented as an expected utility maximizer by choosing beliefs in such
a way that they support the equilibrium consumption stream at the equilibrium
prices. These e¤ective beliefs will correspond to the truth only if the max-min
consumer is completely insured, but will be wrong otherwise. Hence, max-min
expected utility maximizers can survive only in economies, in which there is
no persistent aggregate risk. More generally, Rigotti, Shannon and Strzalecki
(2008) show how e¤ective beliefs can be derived for all known models of ambigu-
ity aversion. While we use a similar technique to analyze the conditions for the
survival of a smooth ambiguity-averse consumer, in our in�nite-horizon model
there are two e¤ects at work: ambiguity-aversion causes the consumer to behave
as an expected utility maximizer with incorrect beliefs, but it may also force
him to save more thereby increasing his e¤ective discount factor. This second
e¤ect can compensate for the �rst one and thus result in survival. Hence, our
paper extends the results by Condie (2008) by considering a more general class
of ambiguity-averse consumers, clearly di¤erentiating between objective ambi-
guity and subjective ambiguity attitude and highlighting the role of di¤erent
degrees of ambiguity aversion for survival.
More generally, our paper contributes to the literature on survival in �nan-

cial markets by reexamining the question of whether correct beliefs are the only
determinant of survival. As it is well-known from the work of Sandroni (2000)
and Blume and Easley (2006), in complete markets populated by expected util-
ity maximizers, market participants with identical discount factors survive if and
only if they have correct beliefs1 . Our framework deviates from these studies in
two respects: �rst, markets are incomplete in that they do not allow for bets on
ambiguous events; second, decision makers�preferences deviate from expected
utility maximization and in particular are not time-separable. The market in-
completeness prevents ambiguity-averse agents from insuring completely against
ambiguity. The time-inseparability of preferences leads to the di¤erence between
the actual and the e¤ective discount factor used by ambiguity-averse agents.
We consider two special cases in which market incompleteness and time-

inseparability do not matter: the case of vanishing ambiguity, in which betting
on in�nite endowment streams coincides with betting on the ambiguous states
of the economy; and the case of no aggregate risk, in which insuring everyone

1The assumption of bounded endowments is also crucial for these results: Kogan, Ross,
Wang and Wester�eld (2008) and Yan (2008) provide models of a growing economy, in
which the consumer�s risk attitude in�uences his ability to survive, together with his discount
factor and beliefs. While in our model ambiguity aversion, discount factors and beliefs jointly
determine the investors�chances to survive, our results are derived in the context of bounded
endowments.
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against risk in equilibrium automatically guarantees that all agents are also
completely insured against ambiguity. In these two cases, the only relevant
characteristic for survival are the consumer�s beliefs. Ambiguity-averse investors
behave exactly as expected utility maximizers.
In general, however, market incompleteness and time-inseparability will have

an e¤ect on the equilibrium allocations. When the ambiguity-averse consumers
are not able to fully insure themselves against ambiguity, survival is dependent
on the ambiguity attitude. In this sense, our paper is related to the research on
survival in incomplete �nancial markets. Coury and Sciubba (2012) show that
it is always possible to construct an equilibrium in which an agent with incorrect
beliefs survives. Beker and Chattopadhyay (2010) demonstrate that the dynam-
ics of an economy with incomplete markets is highly non-trivial: in some cases
an agent with correct beliefs can vanish, in others the economy might exhibit
cycles in which the consumption of each of the agents approaches 0 in�nitely
often. While these papers look at rather general forms of incompleteness, in our
paper the incompleteness arises from the presence of ambiguity and is, there-
fore, quite speci�c, in that it only matters for the ambiguity-averse consumers.
If all consumers were expected utility maximizers, equilibrium allocations in our
setting would be Pareto-optimal and the survival results for complete markets
would go through.
Borovicka (2010) examines survival in the context of Epstein and Zin (1989)

preferences2 . He also shows that time-nonseparability has an e¤ect on survival
as compared to the case of time-separable preferences. Similarly to Kogan,
Ross, Wang et al. (2008) and Yan (2008), his model uses a Brownian motion
to model the distribution of endowments, while our results are derived for the
case of bounded economy.

3 The Model

3.1 Modelling the Uncertainty

Let N = f1; 2; ::g denote the set of time periods. Uncertainty is modelled
through a sequence of random variables fStg1t=1 which take value from a �-
nite set St. Denote by st 2 St the realization of random variable St. Denote
by � =

Y
t

St the set of all possible observation paths, with representative ele-

ment � = (s1; s2; :::; st; :::). Finally denote by �t =
tY

�=1

St the collection of all

�nite paths of length t, with representative element �t = (s1; s2; :::; st). Each
�nite observation path �t identi�es a decision/observation node and the set of
all possible observation paths � can also be seen as the set of all nodes.

2Mathematically, Epstein-Zin preferences represent a special case of the KMM�s (2009)
recursive model of smooth ambiguity aversion. We thank Viktor Tsyrennikov for pointing
this out.
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We can represent the information revelation process in this economy through
a sequence of �nite partitions of the state space �. In particular, de�ne the
cylinder with base on �t 2 �t, t 2 N as C(�t) = f� 2 �j� = (�t; ::)g. Let
Ft = fC(�t) : �t 2 �tg be a partition of the set �. Clearly, F =(F0; ::;Ft; ::)
denotes a sequence of �nite partitions of � such that F0=� and Ft is �ner
than Ft�1: We assume that all agents have identical information and that the
information revelation process is represented by the sequence F.
Let Ft be the �-algebra generated by partition Ft. De�ne F0 as the trivial

�-algebra. Let F = � ([t2NFt). It can be shown that fFtgt2N is a �ltration.
We de�ne on (�;F) a family of probability distributions f�ngNn=1 and through-

out we assume �n(C(�t)) > 0;8�t. In what follows, for brevity, we abuse nota-
tion slightly by denoting �n(C(�t)) = �n(�t) = �n(s1; s2; :::; st):
For any E 2 � de�ne the conditional distribution of �n given �t as �n(E j �t)

where:

�n(E j �t) = f
�n(E\C(�t))

�n(�t)
if t 2 N

�n(E) if t = 0
for any E 2 �

In words, �n(E j �t) is the probability under distribution �n that the obser-
vation path will belong to E, given that we have reached node �t.
The one-step-ahead probability distribution �n(st+1;�t) at node �t is deter-

mined by:

�n(st+1;�t) = �n(s1; ::st; st+1 j s1; ::st) =
�n(s1; ::st; st+1)

�n(s1; ::st)
for any st+1 2 St+1

In words, �n(st+1;�t) is the probability under distribution �n that the next
observation will be st+1 given that we have reached node �t.
Denote by � : f�ngNn=1 ! [0; 1] the (true) prior probability distribution over

the set of probability distributions f�ngNn=1, with �n = �(�n) denoting the prior
probability of distribution �n. Given any �n 2 f�ngNn=1 and any �t 2 �t, the
posterior distribution is de�ned as:

��t(�n) = �(�n j �t) =
�n(�t)�(�n)PN
j=1 �j(�t)�j

.

Hence there are two sources of uncertainty in the economy: uncertainty
about the realization of the state of the world st, captured by the probability
distributions �n, and uncertainty about the actual probability measure which
governs the realization of the state of the world. We will refer to the �rst source
of uncertainty as risk, while the term ambiguity is used with regard to the
second.
Two benchmark cases will be of particular interest. First, consider the situa-

tion, in which a probability distribution �n is drawn at the beginning of period 1
according to a distribution � = (�1:::�n) and then, for each t 2 N, the variables
st 2 St = S are distributed identically and independently according to �n, i.e.:

�n (s j �t) = �n (s)
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for all �t 2 �t. We will refer to this situation as the case of vanishing ambiguity :
in this case, it is possible to learn the true probability distribution �n by observ-
ing the state of the world st in each period and using Bayesian updating on the
prior �. The posterior ��t (�n) converges to 1, whenever �n is the realization
of the initial draw.
Now consider a situation, in which the probability distribution �n (�t) de-

termining the realization of the state of the world st+1 is drawn anew at each
node. Suppose that �n (�t) are i.i.d. according to a distribution � = (�1:::�n).
We refer to this situation as the case of persisting ambiguity : since the distri-
bution � which determines the state of the world changes in each period, past
observations of the state of the world st do not provide any information about
the future realizations of �. The posteriors satisfy ��t(�n) = �n for all nodes
�t.

3.2 Preferences and Beliefs

There is a single good and I in�nitely lived consumers, each with consumption

set R+. A consumption plan c : �!
1Y
t=1

R+ is a sequence of R+-valued functions

fc(�t)g1t=1 in which each c (�t) is Ft-measurable. Each consumer is endowed
with a particular consumption plan, called the endowment stream. Consumer
i�s endowment stream is denoted ei.
Denote by �i : f�ngNn=1 ! [0; 1] consumer i�s prior probability distribution

over the set of probability distributions f�ngNn=1, with �in = �(�n) denoting the
prior probability of distribution �n. Given any �n 2 f�ngNn=1 and any �t 2 �t,
agent i�s posterior distribution is de�ned as:

�i�t(�n) = �
i(�n j �t) =

�n(�t)�
i(�n)PN

j=1 �j(�t)�
i
j

Let �i denote agent i0s preference ordering over consumption plans. Prefer-
ences �i are represented by the following recursive functional:

V i�t(c
i)

= ui(c
i(�t)) + �i�

�1
i

24 NX
n=1

�i

0@ X
st+12St+1

V i(�t;st+1)(c
i)�n(st+1;�t)

1A�i�t(�n)
35

This representation of preferences was suggested by KMM (2009). Here
�i 2 (0; 1) is agent i�s intertemporal discount factor; ui : R+ ! R and �i :
R ! R are continuous and strictly increasing functions. The interpretation of
V i is as follows: at time t, on path �t, consumer i receives an instantaneous
utility from consumption ui(ci(�t)). From the next period on, he expects a
state-contingent consumption stream which, depending on the state realization
in period t + 1, st+1 will generate a discounted utility equal to V i�t;st+1 . The
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consumer faces two types of uncertainty: �rst, he does not know which state will
occur in period t + 1, second he is uncertain on which probability distribution
determines the realization of the state at t + 1. The �rst type of uncertainty
� risk � is captured by taking the expectation of the discounted payo¤s with
respect to a probability measure �n(st+1;�t). The second type of uncertainty
� ambiguity � is captured by a probability distribution over �n, �i�t(�n)
and a concave function �i. While the distribution �

i
�t captures the perceived

ambiguity, �i expresses consumer i�s attitude towards this ambiguity. Finally,
applying the inverse of �i to the expression in square brackets and multiplying
by �i corresponds to �nding the certainty equivalent of the expected future
consumption stream in terms of present utility. Note that when �i is a linear
function (e.g., the identity), the representation above reduces to intertemporal
expected utility maximization.
Our choice of the preference representation is motivated by the following

considerations: �rst, di¤erently from most other forms of representation of
ambiguity-averse preferences, the KMM (2009) smooth model of ambiguity al-
lows for a clear separation between ambiguity and ambiguity attitude. In par-
ticular, the function � controls the degree of ambiguity aversion and allows us to
compare decision makers which di¤er according to this characteristic. Second,
the smooth model of ambiguity allows for a recursive formulation. This means
that the beliefs of the decision maker are updated according to the Bayesian
rule and the modelled behavior is dynamically consistent3 .
We impose the following assumptions on the primitives of the model:

Assumption 1 The functions ui : R+ ! R are twice continuously di¤eren-
tiable, strictly concave, ui (0) = 0, limc!0 u

0
i(c) =1 and limc!1 u

0
i (c) =

0:

Assumption 2 Each of the functions �i : R ! R is either linear or strictly
concave, twice continuously di¤erentiable and limy!0 �

0
i(y) > 0.

Assumption 3 Endowments are uniformly bounded away from zero and ag-
gregate endowments are uniformly bounded. Formally, there is an m > 0
such that ei(�t) > m for all i; �t; moreover there is an m0 > m > 0 such
that

X
i
ei(�t) < m

0 for all �t.

Assumption 4 There is a � > 0 such that for all paths �, dates t and states
of the world st 2 St, �n (st;�t�1) > 0 for some n 2 f1:::Ng implies
�n (st;�t�1) > �.for all n 2 f1:::Ng.

Assumptions 1 and 3 appear in Blume and Easley (2006). Assumption 2 is
necessary, since we extend their model to the case of ambiguity aversion. As-
sumption 1 implies that all consumers are strictly risk-averse. Assumption 2
allows for both ambiguity-aversion and ambiguity-neutrality, hence the case of

3KMM (2009) provide a second formulation of the representation, which is time-separable,
but violates dynamic consistency. The analysis of survival for such preferences is a question
of independent interest.
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expected utility maximization is covered by our model. Taken together, As-
sumptions 1 and 2 exclude the case in which a consumer chooses 0 consumption
in an (observable) state of the world in which the consumer has a positive endow-
ment and which has a positive probability according to this consumer�s beliefs.
Assumption 3 requires that each consumer�s endowment in all states of the world
is uniformly bounded above and uniformly bounded away from 0. Assumption
4 states that all distributions in the set (�n)

N
n=1 are mutually absolutely contin-

uous and that the minimal probability they can assign to a given state in the
next period conditional on the history �t�1 is uniformly bounded away from
0. Note that if all distributions �n are mutually absolutely continuous, then in
the two scenarios of persistent and vanishing ambiguity, the existence of a � as
speci�ed in Assumption 4 is automatically guaranteed.
Taken together, Assumptions 1� 4 guarantee that the solution to the con-

sumer�s maximization problem will be interior. Hence, they preclude the possi-
bility that a consumer would vanish in �nite time.

4 The Equilibrium of the Economy

We assume that markets are complete with respect to the observable states of
the world, i.e. there is a complete system of Arrow securities contingent on the
realization of �t for all �t 2 �t;8t. However, agents are not able to trade on
the realization of the probability distribution �n, i.e. the probability distribu-
tion over states is non-contractible. Since both endowments and consumption
streams are assumed to be Ft-measurable, at any time t, the only information
available about �n is the realization of �t. Hence, the restriction that trades
can only be conditioned on �t appears fairly natural.

De�nition 1 An equilibrium of the economy is an integrable price system (p (�t))�t2�
and a consumption stream ci for every consumer i such that at all nodes �t 2
�t;8t, all consumers i 2 f1:::Ig are maximizing their utility given the price
system and markets clear:

ci = argmax
ci
V i�t(c

i) = ui(ci(�t))+

+�i�
�1
i

24 NX
n=1

�i

0@ X
st+12St+1

V i(�t;st+1)(c
i)�n(st+1;�t)

1A�i�t(�n)
35

s.t.
X
�t2�t

p (�t) c
i (�t) �

X
�t2�t

p (�t) e
i (�t) ;8t

IX
i=1

ci (�t) =
IX
i=1

ei (�t) .

Since markets in our economy are incomplete, we cannot directly use the
Pareto-optimality conditions as in Blume and Easley (2006). Instead, we �rst
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show that an equilibrium of the economy exists and then use the properties of
this equilibrium to analyze the question of survival.

Proposition 2 An equilibrium of the economy exists.

Our next Proposition ensures that the equilibrium can be described by a
system of �rst-order conditions. The result of this Proposition is a direct con-
sequence of the Inada conditions imposed on the function u, the concavity of �
and the mutual absolute continuity of the probability distributions (�n)

N
n=1.

Proposition 3 Under Assumptions 1�4, the equilibrium of the economy satis-
�es for all i 2 f1:::Ig, all t 2 N and all �t 2 �t and st+1 2 St+1 such that �t
has a positive probability and such that

PN
n=1 �

i
�t(�n)�n (�t; st+1) > 0:

u0i
�
ci (�t)

�
�iu

0
i (c

i (�t; st+1))

PN
n=1 �

0
i

h
E�n

�
V i
�t+1

(ci)
�i
�i�t (�n)�n(st+1;�t)

�0i

�
��1i

�PN
n=1 �i

h
E�n

�
V i
�t+1

�i
�i�t (�n)

��
=

p (�t)

p (�t; st+1)
(1)

This result allows us to use techniques similar to Blume and Easley (2006)
to analyze the conditions under which ambiguity-averse consumers can survive.

5 Survival with Ambiguity Aversion

As it is common in the literature, we will say that a consumer i vanishes on a
set of paths ~� if limt!1 inf c

i (�t) = 0 a.s. (w.r.t. the truth) on ~�. Consumer
i survives on ~� if limt!1 sup c

i (�t) > 0 a.s. on ~�.
The survival of a consumer can in general depend on his preferences, on his

discount factor and on his beliefs. In this paper, we concentrate on the impact
of ambiguity aversion on survival, while keeping the discount factors and the
beliefs of the decision makers identical for most of the discussion. For a given
function �, the coe¢ cient of absolute ambiguity aversion is given by: ��00

�0 .
We distinguish between constant, decreasing and increasing absolute ambiguity
aversion, depending on the monotonicity properties of ��00

�0 . We will concentrate
on the following classes of functions belonging to each of the three categories:

(i) � (y) = �e��y for some � > 0: this is the class of functions � which exhibit
constant absolute ambiguity aversion (CAAA), i.e., ��00(y)

�0(y) is constant.

(ii) � (y) = ln y or � (y) = y
 for some 
 2 (0; 1): this is the class of func-
tions � which exhibit constant relative ambiguity aversion, i.e., �y �

00(y)
�0(y)

is constant. All these functions also exhibit decreasing absolute ambiguity
aversion (DAAA), i.e., ��00(y)

�0(y) is decreasing.

(iii) � (y) = by � ayr for some a, b > 0 and r � 2 with
�
b
ra

� 1
r�1 > m0

(1��) :
these functions exhibit increasing absolute ambiguity aversion (IAAA),
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i.e., ��00(y)
�0(y) is increasing, and, in addition, have decreasing second deriv-

ative �00 (y).

We start by analyzing whether ambiguity aversion has an impact on survival
for the case of vanishing ambiguity described in Section 3.

Proposition 4 Consider an economy with vanishing ambiguity, and suppose
that all consumers have identical discount factors, �i = � for all i 2 f1:::Ig.
Suppose that for a given consumer i,

(i) i�s prior �in is absolutely continuous with respect to the truth �n, i.e. �n > 0
implies that �in > 0;

(ii) the function de�ned by

Gi
�
��t (�1) :::��t (�N )

�
=

PN
n=1 �

0
i (yn)��t (�n)�n (st+1)

�0i

�
��1i

�PN
n=1 �i (yn)��t (�n)

�� ,
where yn are parameters bounded between

h
0; 1

1��u (m
0)
i
, is continuously

di¤erentiable and its total derivative is uniformly bounded for all values of
the parameters.

Then i survives almost surely. In particular, a consumer i whose prior is
absolutely continuous w.r.t. to the truth survives whenever �i is linear or belongs
to any of the three categories speci�ed above.

Proposition 4 is in line with the main result in Blume and Easley (2006).
With identical discount factors only beliefs matter for survival, while preferences
are immaterial. In particular, the absolute degree of ambiguity aversion plays
no role in determining which of the consumers will survive, as long as the priors
are absolutely continuous with respect to the truth. The additional condition
(ii) we have to impose simply requires that a slight change in the posteriors,
��t (�n) leads to a uniformly bounded change in the factorPN

n=1 �
0
i

h
E�n

�
V i�t+1

�
ci
��i

�i�t(�n)�n (st+1;�t)

�0i

�
��1i

�PN
n=1 �i

h
E�n

�
V i�t+1

�i
�i�t(�n)

��
which takes the place of beliefs in the �rst-order condition of the smooth ambi-
guity averse consumers. This implies that when ��t is close to the truth, this
factor is close to the Dirac measure assigning a probability of 1 to the true state
n. It guarantees that the factor converges to the true probability distribution at
the same rate as the beliefs of an expected utility maximizer updated according
to the Bayesian rule. The latter is necessary for survival, as shown in Blume and
Easley (2006). As our result demonstrates, all most commonly used functional
forms satisfy this condition.
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Our next result establishes the survival of ambiguity averse consumers for
the case of persistent ambiguity and no aggregate uncertainty. In this case, the
ambiguity-averse consumer is completely insured against ambiguity and behaves
as an expected utility maximizer with correct beliefs.

Proposition 5 Suppose that all consumers have identical discount factors �i =
� for all i 2 f1:::Ig and correct beliefs, �in = �n for all n 2 f1:::Ng, i 2
f1:::Ig. In an economy with persistent ambiguity and no aggregate risk, i.e.PN

t=1 e
i (�t�1; st) =

PN
t=1 e

i (�t�1; s
0
t) for all st and s

0
t 2 St and all t 2 N, all

consumers survive.

In the two cases discussed in Propositions (4) and (5), ambiguity-averse con-
sumers e¤ectively mimic expected utility maximizers, either because ambiguity
vanishes with time, or because complete insurance against ambiguity coincides
with complete insurance against risk, which is available to everyone in the econ-
omy.
We now turn to the case of persistent ambiguity. We simplify the notation

by writing �n as a short-hand for ��t (�n), which in this case is independent
of �t. To understand the conditions which determine whether ambiguity-averse
consumers can survive in an economy in which ambiguity matters in a non-trivial
way, we start with the following Lemma:

Lemma 6 Consider an economy with persistent ambiguity and suppose that
Assumptions 1�4 are satis�ed. If i is a smooth ambiguity-averse consumer,
while j is an expected utility maximizer with �j (y) = y and both have correct
beliefs, on any given path � 2 �, the equilibrium consumption streams of i and
j satisfy:

lim
T!1

1

T
ln
u0i
�
ci (�T ; sT+1)

�
u0j (c

j (�T ; sT+1))
=
�
ln�j � ln�i

�
+ (2)

� lim
T!1

1

T

TX
t=1

ln

PN
n=1 �

0
i [E�n (Vi (�t+1))]�n

�0i

�
��1i

�PN
n=1 �i

�
E�n (Vi (�t+1))

�
�n

��+
� lim
T!1

1

T

TX
t=1

"
ln

1PN
n=1 �n�n (st+1)

PN
n=1 �

0
i [E�n (Vi (�t+1))]�n�n (st+1)PN
n=1 �

0
i [E�n (Vi (�t+1))]�n

#

This Lemma is key to our following results. The sign of the l.h.s of (2) iden-
ti�es the cases in which i survives or vanishes. Since consumption is bounded

above, u0j
�
cj (�T ; sT+1)

�
6! 0. It follows that limT!1

1
T ln

u0i(c
i(�T ;sT+1))

u0j(c
j(�T ;sT+1))

will

be positive on a given path if and only if u0i
�
ci (�T ; sT+1)

�
!1, i.e. if the con-

sumption of i on this path converges to 0 and i disappears. If limT!1
1
T ln

u0i(c
i(�T ;sT+1))

u0j(c
j(�T ;sT+1))

is negative or zero, consumer i will not disappear relative to j. The r.h.s. of
(2) highlights the factors which determine whether i survives. As in Blume and
Easley (2006), the �rst factor is the di¤erence in the discount factors of j and i
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� the higher i�s discount factor �i, the more i is going to save, hence, the more
wealth he will accumulate relative to j and the higher i�s chances for survival.
To understand the second and the third term on the r.h.s. of (2), it is useful

to look at the MRS of an expected utility maximizer and a smooth ambiguity-
averse decision maker. In an equilibrium, we have:

u0i
�
ci (�t)

�
�iu

0
i (c

i (�t; st+1))

PN
n=1 �

0
i

h
E�n

�
V i
�t+1

(ci)
�i
�i�t (�n)�n(st+1;�t)

�0i

�
��1i

�PN
n=1 �i

h
E�n

�
V i
�t+1

�i
�i�t (�n)

��

=
u0j
�
cj (�t)

�
�ju

0
j (c

j (�t; st+1))
PN

n=1 �
j
�t(�n)�n (st+1;�t)

Note that the factorPN
n=1 �

0
i

h
E�n

�
V i�t+1

�
ci
��i

�i�t(�n)�n (st+1;�t)

�0i

�
��1i

�PN
n=1 �i

h
E�n

�
V i�t+1

�i
�i�t(�n)

�� (3)

in the MRS of an ambiguity-averse decision maker takes the place of the beliefs

NX
n=1

�j�t(�n)�n (st+1;�t)

for an expected utility maximizer. While the expression in (3) is not necessarily
a probability distribution, we can normalize it to obtain the e¤ective beliefs of
the ambiguity-averse agent:PN

n=1 �
0
i

h
E�n

�
V i�t+1

�
ci
��i

�i�t(�n)�n (st+1;�t)PN
n=1 �

0
i

h
E�n

�
V i�t+1 (c

i)
�i
�i�t(�n)

. (4)

The remaining factor is given byPN
n=1 �

0
i

h
E�n

�
V i�t+1

�
ci
��i

�i�t(�n)

�0i

�
��1i

�PN
n=1 �i

h
E�n

�
V i�t+1

�i
�i�t(�n)

�� (5)

and does not depend on the next-period-state, st+1. It can be interpreted as an
additional discount factor, which is added to the actual discount factor of i, �i.
We will refer to the expression

�i

PN
n=1 �

0
i

h
E�n

�
V i�t+1

�
ci
��i

�i�t(�n)

�0i

�
��1i

�PN
n=1 �i

h
E�n

�
V i�t+1

�i
�i�t(�n)

�� (6)

as the e¤ective discount factor of the ambiguity-averse decision maker i.
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First consider expression (4). Note that i�s e¤ective beliefs will in general
di¤er from i�s actual beliefs. In particular, i�s e¤ective beliefs will coincide with
his actual beliefs if and only if i is fully insured against ambiguity so that:

E�n

�
V i�t+1

�
ci
��
= E�

n0

�
V i�t+1

�
ci
��

for all n, n0 2 f1:::Ng. Hence, even if i0s actual beliefs are correct, i.e. �i�t = ��t ,
his e¤ective beliefs will di¤er from the truth, unless he is fully insured. As in
Blume and Easley (2006), i�s beliefs play a crucial role for his survival relative to
j. This is re�ected in the last term on the r.h.s. of (2), which contains the log of
the di¤erence of the e¤ective beliefs of i and the beliefs of j. In expectations, this
term will equal the relative entropy of i and j�s beliefs with respect to the true
probability distribution. Note that if both i and j have correct actual beliefs,
then i�s e¤ective beliefs (4) will be always wrong (unless he is insured against
ambiguity). This will naturally inhibit his chances for survival relative to an
expected utility maximizer with correct beliefs. In the absence of the second
term on the r.h.s. of (2), we would have thus concluded that with equal discount
factors

�
�i = �j

�
, ambiguity-averse decision makers would disappear from the

market, unless they are fully insured against ambiguity. If they survive, the fact
that they are insured against ambiguity would mean that they have no impact
on prices.
Infact whenever ambiguity-averse decision makers are fully insured against

ambiguity, they will not perceive the consumption stream to be ambiguous. We
now de�ne a class of economies in which agents perceive persistent ambiguity.

De�nition 7 Consumer i perceives a consumption stream
�
ei (�t)

�
�t2�

to be
persistently ambiguous for a given set of probability distributions � = f�1:::�ng
if there exists an � > 0 such that:

max
n;n02f1:::Ng

���E�n �V i�t+1 �ei��� E�n0 �V i�t+1 �ei����� � �
for all t 2 N .

According to the de�nition, consumer i perceives a consumption stream as
persistently ambiguous whenever it does not insure him against ambiguity in
period t, i.e., does not provide him with the same discounted utility for all
probability distributions �n 2 �, even as t approaches in�nity. Note that the
de�nition incorporates both the objective characteristics of the economy such
as the ambiguity characterized by the set �, as well as subjective characteristics
of the consumer, which de�ne the function V i.
By lemma 6, in economies where all agents have correct beliefs and perceive

persistent ambiguity the e¤ective beliefs of ambiguity-averse decision makers
are distant from the truth. Hence their only chance of survival is linked to the
presence of the second term in (2). Depending on whether the value of the term
(5) exceeds, is equal to or is lower than 1, the e¤ective discount factor of the
ambiguity-averse decision maker will be higher, equal or lower than his actual
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discount factor. In particular, if �i = �j and if (5) exceeds one, the additional
discount factor will enhance the ambiguity-averse agent�s ability to survive.
The decomposition, thus allows us to identify two e¤ects which will in�uence

the chances of survival for an ambiguity-averse agent: his e¤ective beliefs, which
in economies where agents perceive persistent ambiguity, di¤er from the truth
and have a negative impact on survival, and, his additional discount factor,
which, when larger than 1 has a positive impact on survival. The trade-o¤
between these two e¤ects will determine whether ambiguity-averse agents will
survive and have impact on prices and allocations.
Our next results show that the additional discount factor (5) exactly equals

1 for consumers with correct beliefs and costant absolute ambiguity aversion;
it is less than one in the case of increasing absolute ambiguity aversion; it is
greater than one for the case of decreasing absolute ambiguity aversion.

Lemma 8 For a smooth ambiguity-averse consumer with �i (y) = �e��y, the
additional discount factor in (5) satis�esPN

n=1 �
0
i

h
E�n

�
V i�t+1

�
ci
��i

�i�t(�n)

�0i

�
��1i

�PN
n=1 �i

h
E�n

�
V i�t+1

�i
�i�t(�n)

�� = 1.
Hence, the e¤ective discount factor for such a consumer is �i.

Lemma 9 For a smooth ambiguity-averse consumer with �i (y) = by � a (y)
r,

the additional discount factor in (5) satis�esPN
n=1 �

0
i

h
E�n

�
V i�t+1

�
ci
��i

�i�t(�n)

�0i

�
��1i

�PN
n=1 �i

h
E�n

�
V i�t+1

�i
�i�t(�n)

�� � 1. (7)

Hence, the e¤ective discount factor for such a consumer is smaller than �i. More
generally, condition (7) is satis�ed for any function �i which exhibits IAAA and
for which �0i is concave.

Lemma 10 For a smooth ambiguity-averse consumer with �i (y) = ln (y) or
with �i = (y)


 for some 
 2 (0; 1), the additional discount factor in (5) satis�esPN
n=1 �

0
i

h
E�n

�
V i�t+1

�
ci
��i

�i�t(�n)

�0i

�
��1i

�PN
n=1 �i

h
E�n

�
V i�t+1

�i
�i�t(�n)

�� � 1
and the equality is obtained only if

E�n

�
V i�t+1

�
ci
��
= E�

n0

�
V i�t+1

�
ci
��

for all n 2 f1:::Ng. Hence, the e¤ective discount factor for such a consumer is
greater than �i.
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By lemmas 8 and 9 when agents are either CAAA or IAAA, the e¤ective
discount factor of the ambiguity-averse agent is either equal (in the CAAA case)
or smaller (in the IAAA case) than the discount factor of the expected utility
maximiser. Hence in economies where consumers perceive the consumption
stream to be persistently ambiguous, a CAAA or IAAA consumer will vanish in
expectations and with positive probability, even though he might be otherwise
identical to the surviving expected utility maximizer. This is stated in our next
proposition.

Proposition 11 Consider an economy with persistent ambiguity and 2 con-
sumers, an expected utility maximizer j, with �j (y) = y and a smooth ambiguity-
averse consumer i, whose �i (y) is either CAAA or IAAA with a decreasing
second derivative. Suppose that both consumers have identical von-Neumann-
Morgenstern utility functions ui = uj, identical discount factors �i = �j, correct
beliefs �in = �

j
n = �n and identical endowments e

i (�t) = e
j (�t) for all �t 2 �.

Finally, suppose that i perceives his initial endowment as persistently ambigu-
ous. Then i will vanish with positive probability and in expectations.

Our next result shows that the opposite result obtains for the case of DAAA
(or CRAA). Lemma 10 identi�es a case for which a higher e¤ective discount
factor may compensate for the wrong e¤ective beliefs of an ambiguity averse
consumer. Our next result shows that consumers with CRAA survive with
positive probability and in expectations.

Proposition 12 Consider an economy with persistent ambiguity. Let I =
fi; jg. Let i be a smooth-ambiguity-averse consumer with �i (y) = ln (y), or
�i (y) = (y)


 for some 
 2 (0; 1), correct beliefs and a discount factor �. Let
j be an expected utility maximizer with correct beliefs and the same discount
factor �. Then i survives with strictly positive probability and in expectations.

Proposition 12 provides an instance of an ambiguity-averse consumer sur-
viving in a market, despite having e¤ectively wrong beliefs. The fact that his
e¤ective discount factor is higher than those of the expected utility maximizer
means that the ambiguity-averse consumer saves more in equilibrium, which
allows him to survive.
As Lemma 10 demonstrates, ambiguity-averse consumers will be saving more

than their expected utility counterparts, even though they might have identi-
cal beliefs and identical discount factors. This implies that on those paths on
which ambiguity-averse consumers survive, we will observe an excessive equity
premium, which would appear to be inconsistent with the actual discount fac-
tors, but which can be attributed to the presence of ambiguity-averse investors
in the economy. Hence, the equity-premium puzzle can be a persistent phenom-
enon if ambiguity does not vanish over time and if some of the investors exhibit
constant relative ambiguity aversion.
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6 Conclusion

In this paper, we analyzed the question of whether smooth ambiguity-averse con-
sumers can survive in the presence of expected utility maximizers. We showed
that the answer to this question will depend both on the nature and persis-
tence of ambiguity and risk in the economy and on the degree of ambiguity
aversion. We identi�ed situations, in which ambiguity-averse consumers can
survive by completely insuring against ambiguity and mimicking the behav-
ior of expected utility maximizers with correct beliefs. However, in this case,
ambiguity-aversion will have no impact on prices. When ambiguity in the mar-
ket is persistent and ambiguity-averse consumers cannot be completely insured
against it, their survival depends on the form of the function characterizing their
ambiguity-aversion. In particular, consumers with constant relative ambiguity
aversion will survive in expectations and with positive probability, regardless
of whether they are completely insured against ambiguity. Hence, prices in a
market in which ambiguity-averse investors are present can deviate from those
in a market populated by expected utility maximizers with correct beliefs.
The analysis so far leaves many questions open. For most of the paper we

assumed that all investors in the market have correct beliefs. It would be in-
teresting to examine whether ambiguity-averse investors can survive when their
beliefs are wrong. It is obvious that this cannot happen when they are com-
pletely insured against ambiguity or when ambiguity vanishes. However, in the
case in which complete insurance against ambiguity is not available, the mar-
ket incompleteness might allow them to survive, even though their predictions
deviate from the truth.
Furthermore, it would be interesting to study the case in which both ambiguity-

averse consumers and expected utility maximizers have wrong beliefs and ex-
amine whether the higher propensity to save of the former will ensure that they
have an advantage in terms of survival.
Finally, a more explicit analysis of the price dynamics would be of inter-

est. It would allow us to relate the empirical phenomena documented in �-
nancial markets to the results of our model and test whether the presence of
ambiguity-averse consumers in the long-run can provide a better explanation to
the observed patterns than the standard models based on expected utility.
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Appendix

Proof of Proposition 2:
An equilibrium of the economy exists under the following conditions, see

Bewley (1972):

1. the consumption sets are convex, Mackey closed and contained in the set
of essentially bounded measurable functions;

2. the preferences of the consumers are complete and transitive;

3. the better sets are convex and Mackey closed;

4. the worse sets are closed in the norm topology;

5. there exists a set of paths with strictly positive measure such that the
preferences of all consumers satisfy strict monotonicity on this set, i.e.
adding a constant to the payo¤ in each state and each period makes the
consumer strictly better o¤;

6. for all consumers, the initial endowments are in the interior of the con-
sumptions sets.

W.l.o.g., we can assume that the consumption set of a consumer i 2 f1:::Ig
is given by the sets of all essentially bounded measurable functions and, hence,
satis�es condition 1. Assumption 2 is trivially satis�ed, since consumers�pref-
erences are represented by the utility function V i. In particular, KMM (2008)
show that V i exists and is unique for every consumption stream ci. To prove
convexity, as required by Assumption 3, �rst compare two streams of consump-
tion c and c0 such that c (�t) = c0 (�t) for all �t 6= �1. Consider the stream
�c+ (1� �) c0 for some � 2 (0; 1). Since

V i�1 (�c+ (1� �) c
0) = ui(�c(�1) + (1� �) c0(�1))

+�i�
�1
i

24 NX
n=1

�i

0@ X
st+12St+1

V i(�t;st+1)(c)�n(st+1;�t)

1A�i�t(�n)
35

> �ui (c(�1)) + (1� �)ui (c0(�1)))

+�i�
�1
i

24 NX
n=1

�i

0@ X
st+12St+1

V i(�t;st+1)(c)�n(st+1;�t)

1A�i�t(�n)
35

= �V i�1 (c) + (1� �)V
i
�1 (c

0)

it follows that the strict convexity of the better sets for such mixtures is implied
by the strict concavity of u (�). Now let c (�t) = c0 (�t) for all �t 62 f�1g [ �2.
Note that for each �2 2 �2,

V i�2 (�c+ (1� �) c
0) > �V i�2 (c) + (1� �)V

i
�2 (c

0) .
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Hence, by the strict monotonicity of �i, and therefore, of �
�1
i , we have:

V i�1 (�c+ (1� �) c
0) > �V i�1 (c) + (1� �)V

i
�1 (c

0) .

Now suppose that c (�t) = c0 (�t) for all �t 62 f�1g [Tt=1 �t. Then we know
that:

V i�T (�c+ (1� �) c
0) > �V i�T (c) + (1� �)V

i
�T (c

0) ,

hence,
V i�T�1 (�c+ (1� �) c

0) > �V i�T�1 (c) + (1� �)V
i
�T�1 (c

0) .

But then, since

ui(�c(�T�2) + (1� �) c0(�T�2)) > �ui (c(�T�2)) + (1� �)ui (c0(�T�2)))

it follows that

V i�T�2 (�c+ (1� �) c
0) > �V i�T�2 (c) + (1� �)V

i
�T�2 (c

0) .

Applying the same argument by induction, we can show that convexity holds
w.r.t. any two consumption streams which are constant after some time period
t.
Note that each pair of consumption streams c and c0 can be represented as a

limit of two sequences of consumption streams
�
cT
�
T2N and

�
c0T
�
T2N such that

for each T 2 N, cT coincides with c on all paths of length T and is constant for
all possible continuations and similarly for c0T :

cT =
�
(c (�t))t�T ; k:::k:::

�
c0T =

�
(c0 (�t))t�T ; k:::k:::

�
.

We then have that the pointwise limits of the sequences satisfy:

lim
T!1

cT = c

lim
T!1

c0T = c0

lim
T!1

�
�cT + (1� �) c0T

�
= �c+ (1� �) c0

For all T 2 N, we have:

V i�1
�
�cT + (1� �) c0T

�
> �V i�1�

�
cT
�
+ (1� �)V i�1

�
c0T
�
.

The function V i is a contraction, see Marinacci and Montrucchio (2007, pp.
7-9), and hence, continuous, implying that:

V i�1 (�c+ (1� �) c
0) > �V i�1� (c) + (1� �)V

i
�1 (c

0) .

We also have that V i is uniformly continuous, hence, V i is continuous w.r.t.
the Mackey topology. This means that both the better and the worse sets
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are closed with respect to the Mackey topology, and, hence, also in the norm
topology and assumptions 3. and 4. are satis�ed.
For condition 5, take the set of paths to be �. Note that V i is monotonic,

see KMM (2008). Take any consumption stream c. Clearly, adding a constant
k > 0 to c (�1), strictly improves the act. But, similarly, adding a constant to
each of the c (�2) for �2 2 �2 leads to a strict increase in V (�2), and by the
monotonicity of �, to a strict increase in the evaluation of the act, etc. Hence,
the preferences of all consumers are strictly monotonic on �.
Finally, Assumption 3 ensures that the endowment stream of each consumer

is uniformly bounded away from 0 and from in�nity, and is, therefore, in the
interior of this consumer�s consumption set. We conclude that an equilibrium
of the economy exists. �
Proof of Proposition 3:
If p (�) is an equilibrium price system, then condition (1) is the �rst-order

condition of consumer i�s maximization problem at state �t. Hence, it will be
satis�ed in any equilibrium, in which consumer i chooses an interior allocation
on all �nite paths with positive probabilities. We now show that Assumptions
1�4 imply that the optimal consumption streams of all consumers will be strictly
positive on all �nite paths which have positive probability. To show this, we
demonstrate that the MRS between consumption at �t and at (�t; st+1) will
always be strictly positive and �nite, as long as the true probability of �t and
the conditional probability of st+1 given �t are both positive.
First note that since the initial endowment is uniformly bounded, then so is

any of the consumption streams in equilibrium and, hence, by Assumption 1, u0i
is always strictly positive. Furthermore, setting c (�0) = 0 is not optimal, since
endowment is uniformly bounded away from 0 and u0 (0) =1.
Let �t have a positive probability and be such that u (c (�t)) > 0. By the

argument above, at least one such �t exists. KMM (2008) demonstrate that if

the consumption stream is bounded, so is V i (c), hence, E�n

�
V i�t+1

�
ci
��
are

bounded as well. It follows, by Assumption 2, that �0i
h
E�n

�
V i�t+1

�
ci
��i

and

�0i

�
��1i

�PN
n=1 �i

h
E�n

�
V i�t+1

�i
�i�t(�n)

��
are also strictly positive. We �rst

show that it is not optimal to choose a consumption path on which E�n

�
V i�t+1

�
ci
��
=

0 for some, and, hence, by the mutual absolute continuity of the distributions
�n postulated in Assumption 4, for all n 2 f1:::Ng.
Indeed, assume that in the optimum, E�n

�
V i�t+1

�
ci
��

= 0 for all n 2
f1:::Ng. It follows that the continuation of the consumption stream c entails
c (�t; s) = 0 for all s 2 St+1 and c (�t; s; st+2:::st+k) = 0 for any continuation of
the path (�t; s). Hence, at node �t, consumer i envisions a constant consump-
tion of 0 at all following nodes. Consider a deviation at node �t and at all nodes
(�t; s) wit s 2 St such that consumption at �t is given by ci (�t)��� and instead,
ci (�t; s) = � > 0, with ��p (�t) = �

P
s2St+1 p (�t; s). Assume that consumption

from st+2 on remains at 0 for all continuation paths. Hence, consumer i trades
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some of his (positive) consumption is �t for some strictly positive consumption
in all one-step-ahead states of the world. The utility of such a consumption
stream at node �t is given by:

ui
�
ci (�t)

�
+ �i�

�1
i

24 NX
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�i

0@ X
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35
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ci (�t)� ��

�
+ �iui(�).

It is obvious that the derivative w.r.t. � at � = 0 is 1, hence any small � repre-
sents an improvement over the original plan, in contradiction to the assumption
made above.
It follows that in the optimum, E�n

�
V i�t+1

�
ci
��
> 0 for all n 2 f1:::Ng,

and, hence, we can exclude the case in which
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equals 1. Indeed, by Assumption 2, (8) can be 1 only if E�n

�
V i�t+1

�
ci
��
= 0

for some (and, thus all) n 2 f1:::Ng and, similarly, (9) can be 1 only if

��1i

 
NX
n=1

�i

h
E�n

�
V i�t+1
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= 0,

or E�n

�
V i�t+1

�
ci
��

= 0 for all n 2 f1:::Ng. It follows that both (8) and

(9) are less than 1. Furthermore, both expressions are strictly positive for
all st+1 such that �n (st+1) > 0, which, by Assumption 4 is true, wheneverPN

n=1 �
i
�t(�n)�n (st+1;�t) > 0. Since u

0 (0) =1, this implies that ci (�t; st+1) 6=
0, whenever

PN
n=1 �

i
�t(�n)�n (st+1;�t) > 0. According to assumption 4, how-

ever, this is only true if
PN

n=1 ��t(�n)�n (st+1;�t) = 0, or state st+1 indeed has
a probability of 0 conditional on �t. It follows that, conditional on being in a
node �t to which i assigns positive consumption, consumer i assigns positive
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consumption to all nodes (�t; st+1) which have positive one-step-ahead condi-
tional probabilities given �t. Since i will enjoy positive consumption in period
0, forwards induction implies that i will have strictly positive consumption on
all �nite paths which have positive probability with respect to the truth. This,
in turn implies that the �rst order condition will hold on all such paths. �
Proof of Proposition 4:
Let �� 2 f�1:::�ng be the true distribution of returns. Note that for a

constant consumption stream ci,PN
n=1 �

0
i

h
E�n

�
V i�t+1

�
ci
��i

��t (�n)�n (st+1)

�0i

�
��1i

�PN
n=1 �i

h
E�n

�
V i�t+1

�i
��t (�n)

�� =
NX
n=1

��t (�n)�n (st+1) .

We denote by �t the sequence describing the rate of convergence of Bayesian
updating on �:

�t (�) =
����t � ��� �� .

Hence, if we can show thatPN
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converges uniformly to �� at a rate of at most �t (�) on the set of all consumption
streams, we would have shown that an ambiguity averse investor learns the truth
at least as fast as a Bayesian and, hence, according to Theorem 4 in Blume and
Easley (2006) survives almost surely.
Suppose �rst that for every n 2 f1:::Ng, the total derivative of the function

(10) with respect to ��t (�n) is continuous and uniformly bounded on the set
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Since K�t (�) has a rate of convergence of �t (�), it follows that the beliefs of
the smooth ambiguity-averse agents converge to the truth at the same rate as
those of the Bayesian expected utility maximizers.
It remains to show that for the special cases considered in this paper, � (y) =

�e��y, � (y) = ln y, � (y) = y
 and � (y) = 2�
1�2�y , the condition on (10) is

indeed satis�ed. We start with � (y) = �e��y: in this case,PN
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The derivative with respect to ��t (��n) is:
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Note that E�n (V ) is bounded between 0 and an upper bound, M , given by
the discounted value of the consumption stream assigning the maximal total
endowment of the economy, m0 to consumer i. Hence, �e��[E��n (Vi)] is bounded
between �e��M and �, and so the expression in the denominator is bounded

between
h�
Ne��M

�2
; (N�)

2
i
. Since the numerator is a �nite sum of uniformly

bounded terms, it is also uniformly bounded. Hence, the derivative with respect
to ��t (��n) is indeed �nite and uniformly bounded on the set of all possible values

of �0i
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�
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, and, hence, on every path �. It follows that the total

derivative of (10) is also uniformly bounded.
Now consider the case of � (y) = ln y. For this case,PN
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The �rst derivative w.r.t. ��t (��n) is:266666666666664
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For the case of � (y) = y
 ,PN
n=1 �

0
i

h
E�n

�
V i�t+1

�
ci
��i

��t (�n)�n (st+1)

�0i

�
��1i

�PN
n=1 �i

h
E�n

�
V i�t+1

�i
��t (�n)

��
=

PN
n=1

h
E�n

�
V i�t+1

�
ci
��i
�1

��t (�n)�n (st+1)�PN
n=1

h
E�n

�
V i�t+1 (c

i)
�i


��t (�n)
� 
�1




.

The �rst derivative w.r.t. ��t (��n) is:26666666664

�h
E��n

�
V i�t+1

�
ci
��i
�1

��n (st+1)�
h
E�N

�
V i�t+1

�
ci
��i
�1

�N (st+1)

�
�

�
�PN

n=1

h
E�n

�
V i�t+1

�
ci
��i


��t (�n)
� 
�1




+

�
�PN

n=1

h
E�n

�
V i�t+1

�
ci
��i
�1

��t (�n)�n (st+1)

�
�

�
�1

�h
E��n

�
V i�t+1

�
ci
��i


�
h
E�N

�
V i�t+1

�
ci
��i
� 
�1



�PN

n=1

h
E�n

�
V i�t+1

�
ci
��i


��t (�n)
�� 1




37777777775
�

�
 

NX
n=1

h
E�n

�
V i�t+1

�
ci
��i


��t (�n)

!�2 
�1


26666666664

�h
E��n

�
V i�t+1

�
ci
��i
�1

��n (st+1)�
h
E�N

�
V i�t+1

�
ci
��i
�1

�N (st+1)

�
�

�
�PN

n=1

h
E�n

�
V i�t+1

�
ci
��i


��t (�n)
�
+

�
�1



�PN
n=1

h
E�n

�
V i�t+1

�
ci
��i
�1

��t (�n)�n (st+1)

�
�

�
�h
E��n

�
V i�t+1

�
ci
��i


�
h
E�N

�
V i�t+1

�
ci
��i
� 
�1




37777777775
�

�
 

NX
n=1

h
E�n

�
V i�t+1

�
ci
��i


��t (�n)

!�(2� 1

 )

26



=

26666666664

 �
E��n

�
V i
�t+1

(ci)
�

E�N

�
V i
�t+1

(ci)
��
�1 ��n (st+1)� �E�N �V i

�t+1
(ci)

�
E�N

�
V i
�t+1

(ci)
� �
�1 �N (st+1)! �

�
 PN

n=1

�
E�n

�
V i
�t+1

(ci)
�

E�N

�
V i
�t+1

(ci)
��
 ��t (�n)

!
+

�
�1



 PN
n=1

�
E�n

�
V i
�t+1

(ci)
�

E�N

�
V i
�t+1

(ci)
��
�1 ��t (�n)�n (st+1)

! �
E��n

�
V i
�t+1

(ci)
�

E�N

�
V i
�t+1

(ci)
��
 � 1! 
�1




37777777775
�

�

0@ NX
n=1

24E�n
�
V i�t+1

�
ci
��

E�N

�
V i�t+1 (c

i)
�
35
 ��t (�n)

1A�(2� 1

 )

By the same argument as above, on any given path �, all the terms
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It is easy to see that since the denominators are uniformly bounded away from 0,
and since all other terms are uniformly bounded, the derivative itself is uniformly

bounded for all values of �0i
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, thus giving the desired result.
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Proof of Proposition 5:
We showed in the proof of Proposition 2 that the preferences of all consumers

are strictly convex. Hence, in the absence of aggregate risk, all consumers will
be completely insured and the price ratios will satisfy:
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t 2 N,
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It follows that all consumers in the economy e¤ectively behave as expected
utility maximizers with correct beliefs and, therefore, survive almost surely with
respect to the truth. �
Proof of Lemma 6:
By Proposition 3, we have
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Proof of Lemma 8:
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Proof of Lemma 10:
For the case of � (y) = ln y, we have �0 (y) = 1
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where the inequality immediately follows from the relation between the arith-
metic and the geometric mean.
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obtains. In both cases, the equality holds if and only if yn = yn0 for all n,
n0 2 f1:::Ng. �
Proof for Proposition 11:
We will show that i vanishes relative to j, i.e., the ratio of i�s consumption

relative to j�s converges to 0, which would imply that i vanishes. Since �i = �j ,
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while for a IAAA consumer:
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is a probability distribution, we have that its relative entropy with respect to
the true probability distribution,

PN
n=1 �n�n (st+1) is positive:

X
st+12St+1

NX
n=1

�n�n (st+1)

24ln
hPN

n=1 �n�n (st+1)
iPN

n=1 �
0
i [E�n (Vi (�t+1))]�nPN

n=1 �
0
i [E�n (Vi (�t+1))]�n�n (st+1)

35 � 0.
This value will be strictly positive on all paths, on which consumer i is not fully
insured. So suppose that i is not fully insured. Then, since each [E�n (Vi (�t+1))]
is bounded between 0 and a maximal value, obtained when consumer i receives
the maximal value of the entire endowment of the economy m0 in each state
and in each period, it follows that each of the terms �0i ([E�n (Vi (�t+1))]) is
bounded. It follows that all summation terms on the r.h.s. of (13) are uniformly

bounded, and so is their average. We conclude that 1
T ln

u0i(�T ;sT+1)
u0j(�T ;sT+1)

behaves

as a submartingale and, hence, a.s. converges to a random variable with a
positive expected value. Hence, i disappears in expectations and with positive
probability. �
Proof of Proposition 12:
First, we rewrite condition (2) as:
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Suppose that i disappears on �. Since endowment is uniformly bounded

below, it follows that the consumption of j is uniformly bounded below. Fur-
thermore, endowment is also bounded above, and hence, u0j
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It follows that if i disappears, the r.h.s. of the equation must be positive in the
limit. Conversely, if the r.h.s. of the equation is positive, limT!1 u
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1.
We proceed in two steps. First, we show that all of the terms on the r.h.s.

are non-positive in expectations. Second, we show that the term on the r.h.s. is
bounded. This implies that we can apply the Martingale convergence theorem:
the r.h.s. converges pointwise to a random variable which is negative in expec-
tation. Since i survives on all paths, on which the r.h.s. of (14) is non-positive,
this implies that i survives with positive probability and in expectations.
Step 1: We want to show that:
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Denote by yn =: E�n (Vi (�t+1)).
Case 1: For � (y) = ln (y), we have �0 (y) = 1
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Case 2: For � (y) = y
 , (15) reduces to:
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we will show that:
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Hence, the desired inequality obtains.
Step 2: We want to show that the term
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is uniformly bounded.
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where the second weak inequality follows from the relation between the arith-
metic and the geometric mean and the last equality results from Assumption
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We thus conclude that
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It follows that for all T ,

� 1
T

TX
t=1

ln

PN
n=1

1
yn
�n�n (st+1)

exp
�
�
�PN

n=1 �n ln yn

�� � � ln �
and

� 1
T

TX
t=1

ln

PN
n=1 y


�1
n �n�n (st+1)PN

n=1 �n�n (st+1)
�PN

n=1 y


n�n

� 
�1



� � ln �,

thus establishing a uniform upper bound on the r.h.s. of (14).
Next, we show that the r.h.s. of (14) is also uniformly bounded below. Note

that the l.h.s. of (14) will be negative for a given T only if
u0i(c

i(�T ;sT+1))
u0j(c

j(�T ;sT+1))
<

1, hence only if
u0i(c

i(�T ;sT+1))
u0j(2m�ci(�T ;sT+1))

< 1, where m is the lower bound on the

initial endowment of each of the consumers. Since u0i and u
0
j are decreasing,

and by Assumption 1, u0i (0) = u0j (0) = 1, the function u0i(c
i)

u0j(2m�ci)
is strictly

decreasing in ci, converges towards 1 for ci = 0 and towards 0 for ci = 2m.

It follows that there exists a unique �ci 2 (0; 2m) which satis�es u0i(�c
i)

u0j(2m��ci)
= 1

such that
u0i(c

i(�T ;sT+1))
u0j(c

j(�T ;sT+1))
< 1 if and only if ci (�T ; sT+1) � �ci > 0. This, in turn,

implies a strictly positive lower bound on every yn = E�n
�
V i (�T+1)

�
, which

is obtained when i�s consumption stream assigns �ci to the node (�T ; sT+1) and
0-consumption on all consecutive nodes. Simultaneously, there is also an upper
bound on yn de�ned by the maximal consumption i can enjoy in a given period,
m0. Denote by ymin and ymax the minimal and maximal values of yn. Then, we
obtain:
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for every T for which
u0i(c
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< 1.

Similarly, for the case � (y) = y
 , we obtain:
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If the latter is true, choose the largest T 0 smaller than T such that:
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By analogy, we also obtain:
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Combining Steps 1 and 2, we conclude that� 1
T ln

u0i(c
i(�T ;sT+1))

u0j(c
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is a bounded

supermartingale. Hence, it converges almost surely to a random variable, the
expectation of which is negative. Therefore, limT!1 u

0
i

�
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�
6= 1

holds with strictly positive probability and in expectations. �
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