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Abstract 

In this paper, it is argued that single function dual process theory is a more credible 

psychological account of non-monotonicity in human conditional reasoning than recent 

attempts to apply logic programming (LP) approaches in artificial intelligence to these data. 

LP is introduced and among other critiques, it is argued that it is psychologically unrealistic 

in a similar way to hash coding in the classicism vs connectionism debate. Second, it is 

argued that causal Bayes nets provide a framework for modelling probabilistic conditional 

inference in System 2 that can deal with patterns of inference LP cannot. Third, we offer 

some speculations on how the cognitive system may avoid problems for System 1 identified 

by Fodor in 1983. We conclude that while many problems remain, the probabilistic single 

function dual processing theory is to be preferred over LP as an account of the non-

monotonicity of human reasoning. 
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Dual process theories (Evans 2003, 2007; Evans & Stanovich, 2013; Kahneman, 2011; 

Sloman, 1996; Stanovich, 2011; Stanovich & West, 2000; Wason & Evans, 1975) invoke two 

separate cognitive systems to explain performance on a variety of cognitive tasks. These are 

labelled System 1 and System 2. System 1 is rapid, parallel, automatic, do not require the 

resources of working memory (WM), and only their final product is posted in consciousness. 

In contrast, System 2 is slow sequential, and analytic and makes use of the central working 

memory system. In particular, System 2 ‘‘permits abstract hypothetical thinking that cannot 

be achieved by System 1’’ (Evans 2003, p. 454). Recently, Oaksford and Chater (2012) 

argued that accounting for non-monotonic or defeasible reasoning in dual process theory 

required that both System 2 WM representations and System 1 long term memory (LTM) 

representations need to be interpreted probabilistically. This position is consistent with Evans 

and Over (2004; see also Over, Evans, & Elqayam, 2010) adoption of probability logic 

(Adams, 1998) as underpinning analytic processes in System 2. But it contrasts with accounts 

which treat analytic processes in System 2 as underpinned by standard binary truth functional 

logic (Heit & Rotello, 2010; Klauer et al., 2010; Rips, 2001, 2002; Stanovich & West, 2000; 

Stanovich, 2011). Oaksford and Chater (2012) labelled the former approach, the single 

function dual process (SFDP) approach and the latter the dual function dual process (DFDP) 

approach. Our goal in this paper is to confront some further problems and challenges for the 

probabilistic SFDP approach but first we rehearse Oaksford and Chater’s (2012) argument in 

detail. 

 

Probabilistic Single Function Dual Process Theory 

Both the dual process theory (Evans 2002) and the probabilistic approach (Oaksford 

and Chater 1991, 1998, 2001, 2007) developed out of a critique of the classical logicist 

approach to cognitive architecture (Fodor 1975; Pylyshyn 1984), which is a logical single 
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function dual process theory. The store of world knowledge in LTM consists of a consistent 

set of logical formulae in the language of thought that can be combined with given 

information in WM using logical inference rules to yield new information in a proof theoretic 

derivation. Evans (2002) and Oaksford and Chater (1991, 2007) argued that the defeasiblity 

of human reasoning argued strongly against this logicist single function view. Defeasible 

reasoning creates two problems for such systems. In standard logic, defeasible reasoning 

leads to contradictions. Suppose that if x is a bird then x flies is part of your world knowledge 

in LTM, then when someone asserts that Tweety is a bird, you may validly infer that Tweety 

can fly and so add this to your world knowledge in LTM. But if you are then told that Tweety 

is an Ostrich your belief that ostriches can’t fly will lead you to add Tweety cannot fly to your 

world knowledge in LTM resulting in a contradiction, i.e., Tweety can fly ∧ Tweety cannot fly 

(“∧” = and). One attempt to avoid this unacceptable conclusion is to propose a non-

monotonic logic (Reiter 1985). However, as Oaksford and Chater (1991) argued based on 

critiques in artificial intelligence (McDermott 1987), that this leads to triviality—all that can 

be concluded is that Tweety can fly ∨ Tweety cannot fly (a tautology and something you knew 

before drawing any inferences, “∨” = or)—and to computational intractability, i.e., the Frame 

Problem (see, Oaksford and Chater 1991, 2007). Can a dual function view address these 

problems? Oaksford and Chater (2009, 2011) argued that it may not because the two systems 

must interact. But if the systems obey fundamentally different principles, it is not clear how 

this is possible. 

Consider again the familiar example of inferring that Tweety flies from the general 

claim that birds fly and the fact that Tweety is a bird. On the DFDP view, this inference could 

be drawn logically in System 2 from the premises, on the assumption that birds fly is a true 

universal generalization; System 1, by contrast, might tentatively draw this conclusion by 

defeasible, associative processes, drawing on general knowledge. But a lack of synchrony 
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between the two systems, presumed to operate by different rational standards, threatens to 

cause inferential chaos. Consider, for example, what happens if we consider the possibility 

that Tweety is an ostrich. If System 2 works according to logical principles, the clash of two 

rules threatens contradiction: we know that birds fly, but that ostriches do not. To escape 

contradiction, one of the premises must be rejected: most naturally, birds fly will be rejected 

as false. But we now have two unpalatable possibilities. On the one hand, suppose that this 

retraction is not transferred to general knowledge and hence is not assimilated by System 1. 

Then the two systems will have contradictory beliefs. Moreover, if System 2 reasoning 

cannot modify general knowledge in System 1, its purpose seems unclear. On the other hand, 

if birds fly is retracted from world knowledge, along with other defeasible generalizations, 

then almost all of general knowledge will be stripped away—as  generalizations outside 

mathematics are typically defeasible (Oaksford & Chater, 2007, 2009)—leading  System 1 

into inferential paralysis. 

Oaksford and Chater (2012) argued that the best way to avoid these unpalatable 

conclusions and account for the defeasibility of human reasoning is to adopt the SFDP view 

in which representing birds fly in WM amounts to the assumption that the probability that 

something flies given it is a bird is very close to 1 (Pr(flies(x)|bird(x)) ≈ 1). Consequently, 

rather than having to reject birds fly as false in System 2, the observation that Tweety is an 

Ostrich simply provides a negative instance that leads to a reduction of Pr(flies(x)|bird(x)) in 

System 1 (or the inclusion of a defeater, see below). That is, the two systems can properly 

communicate. Oaksford and Chater (2012) argued that this position successfully accounted 

for a range of findings that had motivated dual process theories.  For example, people do 

make non-modal responses apparently not explained by probability theory and these non-

modal responses correlate with IQ (Stanovich & West, 2000; Stanovich, 2011). However, 

recently logic programming approaches to non-monotonic reasoning in Artificial Intelligence 
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have been applied to human reasoning (Stenning and van Lambalgen, 2005). This application 

questions part of the motivation for the probabilistic approach and in this paper we address 

whether the logic programming approach provides an adequate account of actual human 

reasoning. 

 

Logic Programming and the Probabilistic SFDP Approach 

 The arguments for a probabilistic SFDP approach were formulated with Reiter’s 

(1985) default logic in mind, where rule application involves intractable consistency checking 

between the conclusion of an inference in System 2 and world knowledge in System 1. 

However, recently Stenning and van Lambalgen (2005) have proposed that a different Logic 

Programming (LP) approach to non-monotonic reasoning which can address the problems of 

maintaining consistency within and between Systems 1 and 2. In this paper, we argue that 

single function dual process theory is a more credible psychological account of non-

monotonicity in human reasoning than this attempt to apply logic programming approaches in 

artificial reasoning to the human data. In addressing some of the psychological evidence, LP 

appears to hold out the promise of a local computational theory of non-monotonic reasoning, 

i.e., one that appeals only to the premises in System 2, and which does not engage world 

knowledge in System 1. However, we argue that this is illusory and that to generalise beyond 

the single experimental paradigm to which LP has been applied will involve more global 

processes involving System 1. Moreover, we argue that the mechanism by which LP renders 

such global processing computationally tractable in System 1 is unlikely to be 

psychologically real.  

 An important element of the argument against LP is that there are various inferences 

that are naturally accounted for in the probabilistic SFDP approach that cannot be explained 

in the LP approach. In establishing this point we will present some arguments that causal 
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Bayes nets (CBNs) can provide a good framework within which to develop a theory of 

conditional reasoning and we show that CBNs can naturally account for these patterns of 

inference (Ali, Chater, & Oaksford, 2011; Fernbach & Erb, 2013; Oaksford & Chater, 2007, 

2013). 

 The argument for a probabilistic SFDP theory relied on the need to maintain 

consistency between System 1 and System 2, i.e., between the representations being 

manipulated in WM and the relevant representations in LTM. As we just observed, LP seems 

to provide a way of “maintaining consistency within and between Systems 1 and 2.” That is, 

it goes beyond our arguments for probabilistic SFDP. While we believe the cognitive system 

capable of maintaining local consistency in System 2 and between System 2 and relevant 

parts of System1, we doubt that the cognitive system can maintain the global consistency of 

System 1. LP uses a form of indexing to ensure the consistency of System 1 which also 

provides for tractable search over world knowledge for possible exceptions, e.g., like Tweety 

is an Ostrich. In criticising LP, we question the psychologically reality of this indexing 

scheme. While lacking psychological reality, this scheme nonetheless does help solve the 

technical frame problem for classical Artificial Intelligence (Shanahan, 1997). However, 

there remains the epistemological frame problem that one cannot circumscribe the 

information in System 1 that is relevant to any particular inferential goal being pursued by 

System 2 (Fodor, 1983, 2001). Any information is potentially relevant, a point that Fodor 

(1983) labelled “isotropy.” Computing relevance, which is global, open-ended and context 

sensitive, again seems intractable. In the final section, we offer some, highly preliminary 

speculations on how in everyday situations people may avoid these problems in part by 

appeal to an alternative philosophy of science to that implicit in Fodor’s arguments. 

 In summary, in this paper our goal is to argue that single function dual process theory 

is a more credible psychological account of non-monotonicity in human reasoning than 
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attempts to apply LP approaches in artificial intelligence to these data. To achieve this goal, 

we first provide a substantive critique of LP, which might otherwise be thought to provide an 

alternative to a probabilistic SFDP theory. Second, we show that CBNs provide a good 

framework for modelling conditional inference in System 2 because they can deal with 

patterns of inference LP cannot. Third, we offer some speculations on how the cognitive 

system may avoid problems for System 1 created by the putative need to compute properties 

like relevance and plausibility. We first outline the LP approach. 

 

Logic Programming 

 Recently the negative implications of defeasible reasoning have been questioned 

(Stenning & van Lambalgen, 2005; Kowalski, 2010). In Stenning and van Lambalgen’s 

(2005) approach, rather than employing the M-operator, they propose a different account 

based on logic programming which seems to hold out the promise of avoiding intractable 

computations in System 1.  

 

Stenning and van Lambalgen (2005) 

There are four important features of Stenning and van Lambalgen’s (2005) theory. 

First, it draws a distinction between credulous interpretative reasoning and sceptical critical 

reasoning. The former uses a weak logic in order to infer an interpretation of premises in 

which they are true. This is a computational embodiment of Davidson’s (1974) principle of 

charity in language interpretation. Sceptical inference involves critically examining the truth 

or falsity of the premises/utterances employing standard binary truth functional logic. 

Second, in the propositional case, conditionals are interpreted as always having a complex 

conjunctive (∧) antecedent with the explicitly stated condition as one conjunct and the 

negation of an abnormality proposition (ab) as an implicit conjunct, e.g., where p = x is a 
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bird and q = x flies, “birds fly” would represented as, if p ∧ ¬ab1 then q.
1
 Third, closed world 

reasoning then serves to head off intractable global computations involving the whole of the 

contents of long term memory.  In closed world reasoning, unless there is some statement that 

implies ab1 in the data base (𝜗 → 𝑎𝑏1) it is treated as false (⊥ → 𝑎𝑏1). This approach was first 

proposed in McCarthy’s (e.g., 1986) account of circumscription. In logic programming, the 

analogous process is called completion or minimization, in which the closed world 

assumption removes negated items and the resulting minimal model only represents what is 

true. Fourth, the final wrinkle is that the connectives are interpreted in Kleene’s strong three 

valued logic (Haack, 1974), in which a third truth “value,” u, stands for undecided. In this 

system, it seems as if rule application does not involve global, intractable computations but 

merely a local presumption of normality. That is, until you learn more about Tweety it is safe 

to assume she is not abnormal.
2
  

Using rules formulated in this way permits the logic to deal with the standard case as 

well as when a defeater is available using only local computation. We illustrate this using the 

suppression effect (Byrne, 1989). Take the following conditionals and categorical premises 

used in Byrne (1989) but labelled similarly to Wernhard (2011, p. 13): 

Cp: If she has an essay to write (p) she will study late in the library (q). 

Cs: If she has a textbook to read (s) she will study late in the library (q). 

Cr: If the library stays open (r) she will study late in the library (q). 

p: She has an essay to write. 

q: She will study late in the library. 

r:  The library stays open. 

s:    She has textbooks to read. 

                                                           
1
 The reason for the subscript is that abnormality propositions must be indexed to particular conditionals, which 

define in what respect a proposition or object is abnormal. This means that there are a great number of distinct 

abnormality propositions/predicates that potentially need to be stored and possibility accessed. Although 

including these explicit labels does produce search results within computationally tractable bounds, empirically 

not just theoretically (for some empirical tractability results see, e.g., Grégoire, Mazure, & Saïs, 1998). 
2
 This approach has been illustrated here and exampled with respect to empirical data (Stenning & van 

Lambalgen, 2005) only using propositional LP. However, to deal with the Tweety case, where the conditional is 

a generalisation, abnormality predicates would need to be used as in McCarthy (1986).   
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We first look at the straightforward modus ponens inference, involving just the premises Cp 

and p. They are interpreted in terms of the logic program in A.  

A  {𝑝; 𝑝 ∧ ¬𝑎𝑏 → 𝑞; ⊥ → 𝑎𝑏}  (logic program) 

  {𝑝; 𝑝 ∧ ¬𝑎𝑏 ↔ 𝑞; ⊥↔ 𝑎𝑏}  (completion) 

   {𝑝; 𝑝 ↔ 𝑞}    ∴ 𝑞  (minimal model) 

The “⊥ → 𝑎𝑏” clause embodies the closed world assumption that the abnormality 

propositional is assumed to be false (⊥). If a further conditional premise, Cr, is added, then 

the situation becomes as in B, where the negation of the antecedent of Cr, the library does not 

stay open (¬𝑟), now functions as grounds to infer that ab is true (¬𝑟 → 𝑎𝑏).  

B   {𝑝; 𝑝 ∧ ¬𝑎𝑏 → 𝑞; 𝑟 ∧ ¬𝑎𝑏′ → 𝑞; ⊥  → 𝑎𝑏; ⊥  → 𝑎𝑏′; ¬𝑟 → 𝑎𝑏; 𝑏′; ¬𝑝 → 𝑎𝑏′}      

{𝑝; (𝑝 ∧ ¬𝑎𝑏) ∧ (𝑟 ∧ ¬𝑎𝑏′) ↔ 𝑞; (⊥  ∨ ¬𝑟) ↔ 𝑎𝑏; (⊥  ∨ ¬𝑝) ↔ 𝑎𝑏′} 

{𝑝; (𝑝 ∧ 𝑟) ↔ 𝑞}  𝑞? (need info about 𝑟) 

So in A, the interpretation arrived at allows the inference to q, whereas in B it does not and 

nothing can be inferred without further information about the status of r. For MP, this 

behaviour is close to that observed by Byrne (1989), although Stenning and van Lambalgen 

(2005) did not attempt to fit this logical model to Byrne’s data.  

 

Problems for LP 

We now present some potential problems for the LP approach. We argue that it requires a 

dual process approach, i.e., some System 1 global computation is required (Dual processes), 

it is implausible as a psychological theory (Psychological reality), and it cannot capture 

certain patterns of inference that the probabilistic approach can handle (The probabilistic 

approach).  
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Dual processes 

In this section, we consider four problems which seem to require that LP says something 

more about System 1 processing. First, we consider how different reasoning systems handle 

inconsistency. Second, we suggest the LP, like other theories, needs to address the 

computation of relevance in System 1. Third, conditions like r and s differ in important 

respects. i.e., one is an enabler the other an alternative cause. Determining this distinction 

needs to invoke general knowledge in System 1. Finally, we observe that the empirical fact 

that similar effects are observed in the implicit suppression paradigm (e.g., Cummins, 1995) 

requires System 1 to be invoked. 

Inconsistency. Consider the standard single rule case and what happens under 

inconsistency, e.g., you believe that birds fly, that Tweety is a bird, but that Tweety cannot 

fly. Standard logical approaches, like mental logic or mental models, address the resulting 

inconsistency by claiming that the conclusion or one the premises are false. The LP approach 

provides a second way that does not involve revising our beliefs like this, i.e., these beliefs 

remain consistent as long as we now believe that the implicit conjunct in the antecedent, 

¬𝑎𝑏1, is false and so Tweety is abnormal with respect to flying. This is consistent with some 

major examples in the philosophy of science, our prototypical rational activity. So for 

example, when in 1781 Herschel observed pertubations in the orbit of Uranus, not predicted 

by Newtonian celestial mechanics, astronomers did not reject the theory. Rather they rejected 

the normality clause (what Putnam [1974] called auxiliary assumptions) that there were not 

more than seven planets. Couch Adams and Le Verrier, inferred there was an unknown eighth 

planet exerting a gravitational force on Uranus that could explain the pertubations and 

Neptune was finally observed 65 years later by Galle in 1846. The perihelion of Mercury, of 

course, proved less amenable to being explained away as abnormal in some respect. This 
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anomaly for Newton’s celestial mechanics eventually required its rejection using sceptical 

reasoning. It is worth noting, however, that this conclusion did not gain acceptance until an 

alternative theory, relativity theory, became available.  

However, in LP just concluding that ab1 is true, i.e., Tweety is abnormal with respect 

to flying, is a rather unsatisfying conclusion. We would want to know whether we had any 

good reason to believe this and this will involve searching LTM, i.e., System 1, to find some 

proposition 𝜗 such that 𝜗 → 𝑎𝑏1 and then checking the world to see whether 𝜗 is true of 

Tweety. This is the inferential process underlying explaining away the orbit of Uranus 

counterexample we just discussed. This need to search LTM of course implies LP is a dual 

process theory invoking both local System 2 and global System 1 computations. This is not in 

itself problematic as LP was explicitly designed to improve the tractability of such searches 

over LTM for world knowledge, i.e., System 1. By providing explicit indices for abnormality 

conditions, rather than inferring they do not exist from prior knowledge, such searches can be 

kept within tractable bounds over reasonably large data bases (see, footnote 1).  

 Relevance. However, it seems implausible to assume that every 𝑟𝑖 such that 𝑟𝑖 → 𝑎𝑏1 

is accessed in searching for good reasons to infer that Tweety is abnormal with respect to 

flying.  Or indeed that just the first 𝑟𝑖 accessed is brought to mind. Rather our strong intuition 

is that the most plausible or relevant 𝑟𝑖 is what will come to mind. Of course, this is to appeal 

to global properties of the belief system that it is not clear that indexing defaults resolves. 

Why in the system is one abnormality condition 𝑟𝑖 more plausible than another? Context 

could clearly disambiguate this inference. For example, if you are at a zoo, then 𝑜𝑠𝑡𝑟𝑖𝑐ℎ →

𝑎𝑏1 would seem more plausible than 𝑏𝑟𝑜𝑘𝑒𝑛 𝑤𝑖𝑛𝑔 → 𝑎𝑏1 but in the vets surgery (in the UK 

at least), these plausibility judgements would reverse.  Appealing to context is just to label a 

major lacuna in theories of human reasoning and language interpretation (Miller, 1996) rather 

than offering a solution (although we will suggest in the final section that the deictic context 
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may provide cues that may help avoid complex computations). Consequently, the LP 

approach does not vitiate the need for more global computations or offer a straightforward 

solution. 

Disabler or alternative cause? In modelling the suppression effect (Byrne, 1989), 

LP also seems to require general knowledge to be accessed to determine the status of the 

antecedents of a conditional. Looking again at the conditionals used in Byrne (1989) in the 

section Stenning and van Lambalgen (2005), Wernhard (2011, p. 15) states one important 

step in applying LP as follows: 

“If there are two conditionals with the same conclusion, determine whether the 

premise of the second conditional is an alternative to the first one, like s in Cs which is 

an alternative to p in Cp for concluding q, or is additional to the first one, like r in Cr. 

This step requires to take [sic] contextual information and background knowledge 

into account.” 

So simply disambiguating the status of the second conditional premise, Cr or Cs, with respect 

to Cp will require further access to “contextual information and background knowledge,” i.e., 

seemingly to non-local System 1 processes.  

 The implicit suppression paradigm. Cummins’ implicit suppression paradigm also 

raises an empirical problem for LP’s ability to maintain relatively straightforward local 

System 2 computations in modelling the suppression effect, (Cummins, 1995; Cummins, 

Lubarts, Alksnis, & Rist, 1991; Sellen, Oaksford, & Gray, 2005). In these experiments, 

participants only ever see a single conditional premise, i.e., Cp, no explicit information is 

given regarding Cr or Cs. However, each of the Cp used were pretested for the number of 

alternative or additional antecedents they allowed. In the inference task, with different 

participants, almost identical effects were observed as in the Byrne explicit suppression 

paradigm, indicating that information similar to that in Cr or Cs was being accessed from 
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LTM for world knowledge, i.e., from System 1. That is, people seem to be spontaneously 

accessing plausible abnormality conditions which affect their inferences in just the same way 

as if they were explicitly present. This is the paradigm that has come to dominate research on 

conditional inference over the last 20 odd years and it does not seem amenable to a 

straightforward local System 2 approach.  

 In summary, it would appear that the LP approach is only able to maintain a local 

approach to explicit suppression tasks. When we move to belief revision in the face of 

apparent inconsistency and to the implicit suppression task, there seems to be a need for more 

global System 1 processes. Some of these problems are shared with other approaches like 

Causal Bayes Nets. Consequently, it is important not leave this section with the impression 

that other approaches can fully resolve all of these problems. However, the next set of 

problems, are more discriminatory between the probabilistic SFDP and LP approaches. 

 

Psychological Reality.   

When taking up ideas developed in artificial intelligence (AI) for use as psychological 

theories it is a good idea to have a reality check on whether they are plausible, that is, to pose 

the question, are they likely to be psychologically real? Of course, in AI it is perfectly 

acceptable to come up with neat ways of making a process like non-monotonic reasoning 

computationally tractable. And here using abnormality propositions as in LP, has proved to 

be a very valuable tool and much better than a kluge, i.e., a cheap, non-generalizable fix. 

However, how plausible is it to propose that people are explicitly indexing exceptions as 

abnormal? In this section, we raise three problems for this approach. First, indexing defaults 

is similar to hash coding as a way of implementing content addressable memory and seems 

equally implausible as a psychological theory. Second, the approach to learning and inference 

implicit in the LP approach seems to be inconsistent with the large body of evidence for the 
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current division between System 1 and System 2 processes. Finally, the focus on abnormality 

as a way of encoding disablers suggests that natural language should be replete with 

imprecise expressions capturing these conditions but this does not seem to be the case. 

Learning, abnormality and hash coding. In a practical data base, every conditional 

statement that is defeasible would require its own abnormality proposition/predicate, 𝑎𝑏𝑖. 

Furthermore, further clauses would need to added showing which actual defeaters lead to 

abnormality, 𝑟𝑗 → 𝑎𝑏𝑖. So people have to learn what is normal and what is abnormal and 

explicitly index the abnormal cases. This proposal is redolent of the old debate in 

connectionism (Chater & Oaksford, 1990; Rumelhart & McClelland, 1986) about hash 

coding as an approach to content addressable memory. Hash codes assigned a unique index to 

each memory location for the descriptors of an item. So if one descriptor is presented, others 

with the same hash code can be rapidly accessed. But to do this requires all the combinations 

of descriptors of an item to be known in advance. In the connectionism debate, the question 

posed was, well yes, the cognitive system could do it this way but is it likely? The answer 

was negative because the cognitive system has to learn what goes with what in setting up a 

content addressable memory and this requires learning the co-occurrence statistics of 

descriptors from our interactions with the world.  

Similarly, in LP what is normal has to be learnt and again it has to be learnt from the 

statistical structure of the world. We only come to know that birds normally fly because most 

of the birds we have observed can fly. The existence of exceptions ensures that this is a 

statistical norm, i.e., the probability of x flying (q) given x is a bird (p) is high. Those 

exemplars that provide the proportion in the p, ¬q cell are the exceptions. In J. L. Austin’s 

(1960) terms, the concept of normality is the “trouser concept” and it is a statistical one that 

we must learn from the world. We are not handed the normal and abnormal cases and just 

have make sure that they are properly labelled.  
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System 1 vs system 2. So the LP approach trades the complexity of learning, i.e., 

filling the data base in System 1 with knowledge including knowledge of abnormality 

conditions, against the complexity of inference in System 2. Learning is a lengthy, complex, 

and slow process, whereas inference is perhaps fast and local.  

There are two problems. First, no account is provided of how labelling conditions as 

abnormal is incorporated in to the learning process. Second, such an account may not locate 

the complexity profile in the right place to match up with dual process theory in which rule 

application and inference is slow and effortful albeit also local (Evans, 2007; Stanovich, 

2011). This is because System 2 analytic processes involve effortful reflective thought, 

considering alternative possibilities and perhaps adopting a sceptical approach (Evans, 2007; 

Stanovich, 2011). However, Stenning and van Lambalgen (2005) argue for an efficient 

implementation of minimal models in neural networks over which inference is as rapid as 

propagating activation from one level of the network to another. This formulation implies that 

inference over the model in working memory, i.e., System 2 processing, is rapid and non-

effortful which is not consistent with current dual process theories. In addressing this 

mismatch, all Stenning and van Lambalgen (2005, p. 954) say is that they draw the boundary 

between System 1 and 2 in a different place without addressing the large body of evidence 

cited by Evans (2007) and Stanovich (2011) for its current location.  

A possible resolution is to regard LP as about interpretative processes, i.e., reasoning 

to an interpretation. These processes are likely to be a quite rapid System 1 processes, like 

language comprehension and inference over neural networks generally. But even then the 

identification of System 2 with a minimal model represented as a neural network is 

incompatible with current dual process theory.   

Abnormality and natural language. If we always had to index conditional 

knowledge with abnormality propositions or predicates one might expect natural language to 
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be replete with imprecise expressions capturing these conditions. However, other than 

“broken” and “not working”, English does not seem to contain a large body of terms to 

describe abnormality or a perhaps an affix signifying abnormality.  For example, if you 

believe that if you turn the key, the car starts and you therefore turn the key but the car does 

not start you would most likely describe this situation as the car did not start. It seems 

unlikely, that one would articulate the denial of the condition that makes the situation non-

contradictory given the default rule interpretation of this conditional. Of course, this may 

happen and people who know very little about cars may say the car did not start, it must be 

broken. But, we suspect they are more likely to say, the car did not start, did you refuel last 

night or did you leave the lights on…etc. where failures of these conditions (¬𝑟) are 

defeaters. Although it is possible that getting to these conclusions are mediated by “silent” 

abnormality propositions, i.e., (𝑝 ∧ ¬𝑎𝑏1) → 𝑞, 𝑝, ¬𝑞 ∴  𝑎𝑏1, ¬𝑟 →  𝑎𝑏1, ∴ ¬𝑟 (the latter 

inference is a data base query, 𝑎𝑏1?, i.e., given  𝑎𝑏1 is true what else needs to be true). 

Abnormality propositions/predicates while being a useful way of providing more tractable 

non-monotonic data-bases in AI, do not seem to leave much of a trace in our everyday way of 

speaking about these situations.
3
  

In summary, LP and abnormality propositions/predicates have proved to be a very 

important tool in addressing non-monotonic inference and the technical frame problem in 

logic programming in AI. However, like hash coding and content addressable memory, we 

think it unlikely that this is how the human mind solves this problem. 

 

The Probabilistic Approach 

In this section, we argue that there are important inferences that can be captured by 

the probabilistic SFDP approach but not by LP. The new paradigm in reasoning (Manktelow, 

                                                           
3
 Although one could argue that the prefix “ver” in German may fulfil something like this role (we thank Fred 

Dick for this suggestion). 
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2012; Over, 2009; and recent special issue of Thinking and Reasoning) is explicitly 

probabilistic. However, different theorists who fall under the “new paradigm,” while in broad 

agreement, diverge on how probabilities figure in the psychology of human reasoning, For 

example, Pfeiffer and Kleiter (2009, 2010; see also, Pfeifer, 2013) adopt a mental probability 

logic approach based on deduction and an interval based probabilistic semantics. We, on the 

other hand, regard causal Bayes nets (CBNs; Pearl, 1988, 2000, 2001) as an account of the 

mental representations constructed in WM, i.e., in System 2, as interpretations of conditional 

sentences (see also, Sloman, 2005; Sloman & Lagnado, 2005).  In this section, this is the 

approach we will contrast with LP with respect to two inferences which we argue can be 

handled by the probabilistic approach but not by LP. These inferences are (i) learning about 

the strength of the relation expressed in a conditional sentence when confronted with 

inconsistency and (ii) explaining away alternative causes. 

Despite Stenning and van Lambalgen (2005) themselves proposing that suppression 

effects might be dealt with by causal Bayes nets, actual attempts to model these inferences 

using CBNs have only just begun (Fernbach & Erb, 2013). Sloman and Lagnado (2005) and 

Ali, Chater, and Oaksford (2011) both looked at conditional inference and CBNs but not 

explicitly at the classical suppression effects (but see, Oaksford & Chater, 2013). The idea is 

that conditionals describe dependencies which are represented as directed edges in a Bayes 

net.
4
 This view commits one to more than just probability theory, e.g., CBNs assume the 

acyclicity of dependencies, directedness, faithfulness, and the parental Markov property. All 

these assumptions are about making inference more tractable but some of these assumptions 

have been questioned (for a review, see Rottman & Hastie, 2013).  However, the potential of 

CBNs to model conditional reasoning has not been fully explored and so it would be 

premature to dismiss them solely on these grounds (Oaksford & Chater, 2013; Rottman & 

                                                           
4
 There are exceptions described in Oaksford and Chater (2013) but these are usually dismissed in the 

philosophical literature as not requiring the same analysis as real conditionals. 
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Hastie, 2013). The idea is that conditionals build the appropriate dependency structures in 

System 2, i.e., in WM. Parameterising these structural dependencies is achieved via 

conversational pragmatics, i.e., the speech act of asserting a conditional indicates the 

conditional probability is high, and prior knowledge in System 1, i.e., in LTM. Figure 1 

shows a Bayes net with dependencies representing the conditionals Cp, Cs, and Cr. We begin 

by looking at how these representations can account for explaining away inconsistency and 

the suppression effect for MP. In doing so, we also address a few conceptual issues about the 

interpretation of disablers in CBNs. 

FIGURE 1 ABOUT HERE 

  Inconsistency and Suppression. So when we are told that Cp: If she has an essay to 

write (p) she will study late in the library (q) and discover that p but ¬q, what do we do? An 

obvious answer, following the logic of the example of Uranus in celestial mechanics, is to 

hypothesize that there is an auxiliary assumption operative, i.e., Cr: If the library is open (r) 

she will study late in the library (q), which is considered to be necessary but not sufficient for 

q, i.e., Pr(¬q|¬r) is high but Pr(q|r) is not, and the library is closed (¬r). Given such a 

parameterization of Figure 1, while Pr(q|p) is high Pr(q|p,¬r) is low. That is, assuming the 

library is closed explains away the apparent counterexample. The same set up also explains 

the suppression effect for MP when participants are given Cp, Cr and p as premises compared 

to when they are given just Cp and p. Being told about Cr leads them to consider whether she 

will study late in the library (q) when the library is closed (¬r) and she has an essay to write 

(p), i.e., to evaluate Pr(q|p,¬r). Thus suppression effects for MP will arise when disablers are 

explicitly represented. 

In Byrne’s (1989) data, the probability of endorsing the MP inference for Cp in the 

presence of a defeater, Cr, was around 30%, i.e. significantly above zero and significantly 

below 50%. LP can only predict that in the absence of knowledge about whether the library is 
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closed or open (r), you can infer nothing about whether she studies late (q), which suggests 

that at best an endorsement rate of 50% is predicted. It might be possible to improve LPs fit 

to these data by counting the number of distinct defeaters, 𝑟𝑖 → 𝑎𝑏1, for a particular rule. 

Presumably the more 𝑟𝑖 that are available for a particular abnormality proposition, 𝑎𝑏1, the 

greater the level of suppression. However, Geiger and Oberauer (2007) have shown that the 

frequency of defeaters or alternative causes matters more in suppressing inferences than the 

range of different types of defeater or alternative cause (see also, Fernbach & Erb, 2013). 

This finding is consistent with the probabilistic approach but not LP. 

  We just concluded that to explain suppression effects requires the explicit 

representation of defeaters. However, this is contentious. The addition of the explicit edge for 

Cr in Figure 1 to explain away the inconsistency may not be necessary because in the CBN 

approach Cp is a statistical dependency, i.e., it is not inconsistent with the occurrence of a p 

and ¬q counterexample. Indeed, the reason that Pr(q|p) < 1 is because of the assumed 

existence of disablers like Cr. At least, this is the rationale behind the noisy OR 

representation of alternative causes (Fernbach, Darlow, & Sloman, 2010, 2011; Pearl, 1988). 

While alternative causes are explicitly represented as directed edges in a CBN, disablers are 

only represented implicitly as probabilities less than one.  

This approach represents a substantive psychological claim about the nature of the 

representations underpinning human inference and action, one which we have argued is 

unlikely to be true (Oaksford & Chater, 2010, 2013). Moreover, recently Fernbach and Erb 

(2013) have proposed a CBN model of modus ponens in causal conditional reasoning where 

disablers are represented explicitly as in Figure 1. Moreover, a similar CBN representation 

has been proposed by Rottman and Hastie (2013) as a general approach to conditional 

inference. So there is nothing inherent to the CBN approach that precludes the explicit 

representation of disablers. Moreover, once disablers are explicitly represented, their 
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probability, e.g., the library is shut (Pr(¬r)), will rise on learning that she has an essay (p) but 

she doesn’t study late in the library (¬q), thus explaining away the apparent counterexample.   

While in broad agreement with these approaches, we have questioned Fernbach and 

Erb’s (2013) approach in which all disablers are represented, at least all that a reasoner knows 

about (Oaksford & Chater, 2013). We now briefly consider why. All disablers, or at least 

those known to a reasoner, are represented in the CBN in Fernbach and Erb (2013) and in 

Rottman and Hastie (2013) because Pr(q|p, ¬s), i.e., causal power,
5
 is treated as equal to 1 

minus the aggregate disabling probability. Consequently, if there are no disablers this 

probability is 1 and the cause will necessarily bring about its effect. This factor provides the 

impetus to consider disablers. In the representation of Cp , Pr(q|p) = 1 and consequently a p 

and ¬q observation is inconsistent with Cp. Cummins (1995) implicit suppression paradigm 

provides good evidence that people do recruit and explicitly represent alternative causes and 

defeaters in causal conditional inference even when presented with only a single conditional 

premise, like Cp. However, we doubt that all known disablers are ever explicitly represented 

as it would seem to place far too great a burden on working memory. Rather we have 

suggested that they are made explicit as needed in the dynamically unfolding situations that 

require agents to draw inferences to achieve their goals (Oaksford & Chater, 2013, pp. 369-

370).  

Perhaps someone’s goal is to find the girl referred to in Cp. They know Cp and are told 

by the girl’s Mother that she has an essay to finish. They naturally infer that she’s in the 

library probably without explicitly considering disablers. Considering explicit disablers 

probably only happens if they subsequently learn ¬q. So on their way to the library they may 

learn from a friend that, for example, the girl was seen on the other side of town to the 

library. In order to guide further action to achieve the goal of finding the girl, our reasoner 

                                                           
5
 That is, the probability of the effect given the cause in the absence of alternative causes (Cheng, 1997). 
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then recruits Cr to explain away the apparent contradiction which leads them to consider 

alternative locations where the girl may study when the library is closed. We would argue 

that all of this reasoning is probabilistic, i.e., Cp is still regarded as a statistical dependency. A 

reasoner’s impetus too explicitly represent the disabler comes not from the need to explain 

away the inconsistency per se but from trying to achieve their goal. So attempting to explain 

away the p and ¬q observation is more likely to achieve the goal of finding the girl, than 

simply conceding that Cp is statistical and so there is no inconsistency. We are currently 

exploring this more dynamic view of inference as belief revision (Oaksford & Chater 2013), 

as are others (Hartmann & Rafie-Rad, 2012; Douven & Romeijn, 2011).  

Learning and inconsistency.  The fact that Cp is statistical and has presumably been 

learnt from occasions when the girl has or does not have an essay to write and does or does 

not study late in the library, provides an approach to inconsistency that LP cannot provide. 

That is, one can learn from the occurrence of a p and ¬q observation that Pr(q|p) is lower than 

one first thought. Of course, if uncertainty about Cp only derives from knowledge of 

disablers, as in Fernback and Erb (2013) then this makes no sense. However, it seems far 

more likely that we learn about statistical relations like Cp initially without explicit 

knowledge of disablers, as in standard causal learning scenarios using contingency tables (for 

a summary of such research, see, Hattori & Oaksford, 2007). This knowledge is then further 

refined by uncovering disabling conditions. The latter process may not be obvious from 

disablers like Cr which derive from the way libraries work and so can be inferred from 

general knowledge. However, a disabler like if Coronation Street is on, she does not study 

late in the library is specific to the girl and would also have to be learnt. It seems that this 

more nuanced knowledge of her behavioural dispositions would have to be acquired later as it 

qualifies Cp. 
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If someone is ignorant of any disablers and cannot discover any in the current context, 

then the p and ¬q counterexample can be treated as an observation and hence an opportunity 

to learn about Pr(q|p). Many of the conditionals in which people are interested, like Cp, 

express the habits, dispositions, intentions, and promises that underpin our folk psychological 

understanding of each other and which enable us to predict and coordinate our behaviours in 

the social world. Take one of the current author’s (MO) disposition to buy his morning coffee 

at Pret a Manger on Euston Road whenever he goes to work, i.e., if Mike goes to work, he 

buys his coffee at Pret on Euston Road. Now if he fails to buy his coffee at this coffee shop 

one morning on his way to work, it is plausible that a myriad of possible disablers could be 

listed to save him or an interested observer from contradiction.  But ultimately unlike an 

engineered causal mechanism like a car most of these defeaters are opaque not just to an 

observer but to MO.
6
 In such a case, an observer must simply learn that MO’s disposition to 

buy his morning coffee at Pret on Euston Road is less reliable than she first thought. Of 

course, the converse is also true, successfully predicting that MO stopped for coffee at this 

location today should be an occasion to learn that the disposition is more reliable.  

Oaksford and Chater (2013) discuss the problems of dynamic inference where new 

information may alter the original probability distribution. Specifically, they consider a 

learning approach to explain the empirical data on the modus tollens inference (MT), i.e., 

with Cp as the conditional premise, a reasoner is given the new information that she did not 

study late in the library and infers she did not have any essay to finish. However, in the above 

example of looking for the girl the context is one in which it is known she had an essay to 

finish and what the person looking for her now learns is the classic inconsistency that p, ¬q, 

and  𝑝 → 𝑞 (see, Oaksford & Chater, 2013). Of course, this can be resolved by recourse to a 

                                                           
6
 We remain neutral on whether subjective uncertainty arises here as a consequence of ignorance of the full 

range of defeaters (e.g., chemical imbalances in MO that drove him to avoid caffeine that morning), or 

irremediable objective uncertainty in the world. Whatever the reason, people’s cognitive system represents and 

draws inferences about degrees of belief that, largely, obey the probability calculus.  
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disabler.  But one may just alter one’s degree of belief in the conditional premise.
7
 This 

strategy implies that the original conditional probability, Pr0(q|p), is changed to a new 

conditional probability, Pr1(q|p), which violates the invariance assumption for Bayesian 

conditionalization (Jeffrey, 2004). Oaksford and Chater (2013) discuss the ramifications of 

this violation at length but for now we just note how the new Pr1(q|p) may be learnt. 

Oaksford and Chater (2013) showed how one can learn from the experience of the 

inconsistency by using Bayesian learning to alter the degree of belief in Cp. This involves two 

models represented as Bayes nets, one representing a dependence model and one representing 

an independence model, familiar from Oaksford and Chater's (1994) optimal data selection 

model. The counterexample is more probable in the independence model. Consequently, by 

one iteration of Bayesian learning the probability associated with this conditional, Pr0(q|p), 

which is also taken to be the probability of the dependence model, can be revised in a 

coherent way to a new lower value. Importantly, Oaksford and Chater (2013) show that 

revising the conditional probability in this way can provide much better model fits to the 

canonical data on abstract conditional inference tasks (Schroyens & Schaeken, 2003). In such 

tasks, using abstract material, it is implausible to hypothesize the people have access to 

disablers.  

These learning effects are mediated by System 1, which is responsible for acquiring 

the dependencies and their associated strengths and so provide the building blocks of the 

CBN representations people construct in WM, i.e., in System 2. This approach to 

inconsistency is not available to LP which does not deal with how degrees of belief may be 

updated.  

Explaining away alternative causes.   Ali, Chater, and Oaksford (2011) 

demonstrated discounting effects for cases where a pair of conditionals describes convergent 

                                                           
7
 Oaksford & Chater (2013) point out that this strategy implies that participants respond to the MT inference 

counterfactually, i.e., with how likely they would have been to infer she did not to have an essay to write on 

learning she was not studying in the library given what they now know. 
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causes for the same effect for which LP provides no explanation. In their experiments, they 

presented participants with pairs of conditionals like Cp and Cs above, yielding two 

conditionals, 𝑝 → 𝑞 and 𝑠 → 𝑞, where p and s are alternative causes for the effect q. 

According to a probabilistic analysis (Morris & Larrick, 1995), discounting should be 

observed. So, after learning that the effect has occurred, she is studying late in the library (q), 

learning that one cause has occurred, e.g., she had an essay to write (p), should lead to 

reductions in one's degree of belief that the other cause (s), she has a text book to read, has 

occurred. In Ali et al’s (2011) experiments this is exactly what they observed. Participants’ 

degree of belief in s on being told that q and p had occurred was much lower than when they 

were only told that q had occurred. The discounting inference, or explaining away, is a very 

important novel contribution of the Bayesian approach (Chater, Goodman, Griffiths, Kemp, 

Oaksford, & Tenenbaum, 2011).  

This inference pattern cannot be captured by LP. Given two alternative conditionals 

like Cp and Cs the minimal model that results from composition is simply the two 

conditionals, 𝑝 → 𝑞 and 𝑠 → 𝑞. Learning q, as in an affirming the consequent inference (AC), 

just licences the disjunctive conclusion, 𝑝 ∨ 𝑠, in which case nothing can be concluded 

individually about p and s, which is why this case leads to fewer endorsements of the AC 

inference (Byrne, 1989). Similarly, learning that s is true does not discount the possibility that 

p is true. 𝑝 ∨ 𝑠 and 𝑝 ∧ 𝑠 are logically consistent. So still nothing can be concluded about p. 

Learning s could only lead you to believe ¬p if 𝑝 ∨ 𝑠 were treated as exclusive-or but this pair 

of conditionals, i.e., the premises, does not logically rule out the possibility that she has an 

exam tomorrow and she has a textbook to read. Another possibility is that degrees of belief in 

these cases are being calculated as logical probabilities where the possibilities a connective 

does not rule out as false are treated as equiprobable. This is the approach adopted by the 

theory of extensional probabilities in mental models (Johnson-Laird, Legrenzi, Girotto, 
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Legrenzi, & Caverni, 1999), which Ali et al (2011) explicitly ruled out as a general account 

of discounting and augmentation inferences using pairs of conditionals like these (see also, 

Fernbach & Erb, 2013). In summary, LP would appear unable to account for discounting 

alternative causes in causal conditional inference when two causes converge on an effect. 

Summary. A probabilistic approach, in which conditionals are represented as 

dependencies in causal Bayes nets can account for suppression effects (see also, Fernbach 

and Erb, 2013), for learning that the conditional probability has changed (Oaksford & Chater, 

2007, 2013) ), and for explaining away alternative causes (Ali et al, 2011). LP can explain 

neither of the latter two observations in belief updating, nor can it explain the graded effects 

observed in the explicit (Byrne, 1989) and in the implicit (Cummins, 1995) suppression 

paradigm.  

However, conceptually the LP and probabilistic accounts of non-monotonic reasoning 

are not as distinct as these arguments portray (Pearl, 1988; Oaksford & Chater, 2007, pp. 

115-118). Psychologically they both rely on accessing limited amounts of relevant 

information about defeaters and alternative causes from long term memory, i.e., System 1, 

and building a small scale model as the interpretation of the premises in System 2. Stenning 

and van Lambalgen (2005) describe the process of constructing both a minimal model 

interpretation in LP and a CBN interpretation as reasoning to an interpretation. It is 

important to both accounts that once that interpretation is reached, no further information is 

taken into account, i.e., the world of the model is closed (anything not explicitly represented 

is assumed not to be the case in the situation being modelled). The inferences that these 

interpretations licence only follow on this assumption.  In particular, this assumption 

underpins explaining away in Bayesian accounts (Morris & Larrick, 1995). The idea that we 

reason only over a small scale model that provides an interpretation of the premises is of 

course completely familiar from mental models theory (Johnson-Laird, 1983, 2006). In the 
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next and final section, we offer some further speculations on how this idea may be part of the 

solution to the problem of global computation. 

 

Local and Global Computation 

The goal of this paper has been to establish the credibility of single function dual process 

theory as a psychological account of non-monotonicity in human reasoning and to argue that 

it is a superior to attempts to apply logic programming approaches in artificial reasoning to 

these data. Both LP and the probabilistic approaches, involve constructing small scale models 

of conditional premises in System 2 and both require some global computation in System 1, 

to decide on the most plausible disablers or alternative causes to include in a model. The LP 

approach is to use abnormality propositions in order to maintain the consistency of System 2 

and to render tractable the search for possible disablers in System 1. However, it does so at 

the cost of psychological reality, i.e., how is what is normal and abnormal learned? With 

respect to System 1, the probabilistic approach may not fare any better. Keeping System 1 

probabilistically coherent would seem to involve maintaining a globally consistent joint 

probability table for all the propositions in LTM. But this would involve computations every 

bit as intractable as Reiter's M-operator. Consequently we appear to be on the horns of a 

dilemma. We have argued that we require a probabilistic approach to explain all the forms of 

belief revision that people engage in and to explain the empirical results but this leaves us no 

better off in explaining how we do this against the background of the Quinean and isotropic 

nature of human cognition. 

 While we do not suggest there are any easy solutions to these problems, we do think 

that consideration of some recent philosophy of science (Cartwright, 1983, 1999; Hacking 

1983) may cast a different light on the nature of the problem. We first reconsider the 
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properties that Fodor (1983, 2001) introduced in arguing that there was no theory of central 

cognitive processes and hence of System 1.  

 

Quine and Isotropy  

 In the section we look at the both these Fodorian properties in turn, starting with the 

Quinean property. Why are central processes of belief fixation Quinean? Fodor argues that 

there are various properties of these processes that can only be interpreted as implicating the 

whole of our belief system. For example, the simplest revision is presumably the minimal one 

that would cause the least changes in our overall system of beliefs.  Moreover, the most 

plausible defeater is again presumably the most likely one given everything we know. These 

holistic properties are directly related to probabilistic versions of the Ramsey test in which 

subjective conditional probabilities are determined by adding the antecedent to our stock of 

beliefs and reading off the resulting probability of the consequent. This cognitive process 

involves accommodating the antecedent by making minimal change to our existing beliefs.  

Isotropy arises from the idea that in explaining a phenomenon or in working out how 

to solve a problem everything we know is potentially relevant. Thus in explaining why the 

car did not start when the key was turned we should not, for example, isolate our knowledge 

of cars from celestial mechanics. After all it remains possible that the car didn't start after the 

key was turned because a meteor smashed through the engine block. Our knowledge, 

according to Fodor, cannot be organised in such a way that such long-distance dependencies 

are impossible.  

We now argue that these properties emanate from a philosophy of mind that closely 

tracks a particular view in the philosophy of science which has been rejected by philosophers 
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like Cartwright (1983, 1999) and Hacking (1983). After Cartwright, we refer to the view of 

central processes that may emerge, as the dappled mind hypothesis (Cartwright, 1999).
8
 

  

The dappled mind hypothesis.  

Fodor (1983) is using an analogy between scientific inference and everyday inference in 

describing the central cognitive system, i.e., the nature of System 1 processing. Prima facie it 

seems that the notions of simplicity and plausibility people need can only be computed over 

the whole of world knowledge and this will require a globally consistent System 1 that can 

deliver to System 2 the most plausible information it needs to address its current inferential 

goals. On this account, our world knowledge is construed like a globally consistent true 

scientific theory. Cartwright (1999) refers to such an account as the fundamentalist position, 

i.e., there is one coherent set of laws that, if known, would describe the whole world 

accurately. Cartwright (1983, 1999) argues that this position is untenable. In particular she 

argues that it is our specific models, which guide actions in the world, like building a laser, 

that are the real candidates for truth and not theories.  Most of the fundamental laws of 

physics only apply all other things being right. That is, just like starting a car, turning the key 

only works assuming the conditions are right and that no disablers are present. She also 

argues that overarching theories, for example quantum theory, are not strictly true of the 

world. Theory only really contacts the world via specific models that set various parameters 

to certain values and ensures that various conditions are right. In this sense, models are the 

prime candidate for truth not theories. Moreover, our models are frequently inconsistent with 

each other. There are apparently, for example, several inconsistent models of the laser all of 

which find application in predicting the behaviour of particular devices. 

                                                           
8
 There is a certain irony in appealing to Cartwright's philosophy of science in the context of the arguments put 

forward in this paper, as she is one of the principal detractors of the Bayes net approach to causation. 
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 Cartwright's dappled world hypothesis is that while some parts of the world behave in 

a law like manner others may not. Ian Hacking (1983, p. 219) put it as follows:  

“God did not write a Book of Nature of the sort that the old Europeans imagined. He 

wrote a Borgesian library, each book of which is as brief as possible, yet each book of 

which is inconsistent with every other. No book is redundant. For every book there is 

some humanly accessible bit of Nature such that that book, and no other, makes 

possible the comprehension, prediction and influencing of what is going on.” 

A slightly weaker more epistemological version of this hypothesis is that we can only ever 

construct local models of bits of the world in order to predict and explain what is going on in 

our immediate concrete context but can never hope to have an overarching consistent theory. 

Our proposal is to take this epistemological view as an account of the central cognitive 

system. That is, whether the world is dappled or not, we have a dappled mind.  

 The dappled mind hypothesis suggests that the limited models we construct in System 

2 to guide our actions in the world take precedence, i.e., we are concerned in each context in 

which we must act that they are as accurate as they can be to allow successful prediction and 

action. So, inconsistencies must be repaired in our models by adding disablers or learning as 

we have outlined. But our need to draw inferences about the world is generally context 

bound. Models that work in one context may not work in another. The contents of System 1, 

from which people build their local models, do not form an overarching theory each part of 

which is consistent with every other part. That is, there is no imperative for the whole of a 

cognitive agent’s world knowledge to hang together as a consistent whole. Given our 

inability to do this for scientific theories it seems a big ask to expect this of the cognitive 

system of individual agents. What is important is using whatever knowledge there is to hand 

to build a model in System 2 that can be repaired to more accurately predict what is going on 

in our immediate context if things go wrong. 
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 However, constructing such models may not require computing intractable Quinean 

and isotropic properties in System 1. The problems of bringing to mind relevant information 

seems to underestimate the importance of the immediate concrete or deictic context in which 

people must act and the fact that inferential behaviour is usually goal directed, as we argued 

above. Most often, simply where we are provides a rich set of cues that bring to mind the 

relevant information we need. Moreover, our goals in a context similarly cue the information 

we need for their attainment. Indeed our goals are crucial for directing attention to the 

relevant information within our deictic context which provides the cognitive context of most 

of our inferential behaviour. That is, in most human reasoning the contents of our models in 

System 2 are a function of what we need to attend to in our immediate context in order to 

achieve our goals. Moreover, contra isotropy, most often people’s models are extremely 

shallow and it is only our social embedding that allows us to transcend them not the isotropic 

nature of the cognitive system. 

For example, assume MO is in his study at home with the goal of getting to work, 

which will involve using the car. His sub goal is to start the car, for which attending to its 

colour or many other of its properties, is initially at least irrelevant. The physical presence of 

the car, the key in his hand etc. are all concrete cues accessing information in System 1. 

When he gets into his car he will turn the key without any consideration of possible defeaters 

or alternative causes. Only if this action fails to produce the desired effect, the car does not 

start, will he consider possible defeaters. These will already be prepotent in System 1 

triggered by the deictic context he is in. If he considers, for example, that the battery is flat, 

this will lead him to consider alternative causes, like bump starting. Note that the defeater 

must come first as this determines his choice of alternative cause, hot wiring will not work 

with a flat battery. If bump starting does not work then he will probably be stumped, i.e., this 

one level in the default hierarchy is the limit of his knowledge. Rather than stand around 
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attempting an impossible isotropic inference, he simply rings the AA (Automobile 

Association, a UK based Roadside assistance scheme) to come and fix it. The fact that distant 

pieces of knowledge may be relevant does not mean it makes sense for him to attempt to 

establish their relevance. It may be that the reason his car is not starting is because of some 

cosmic ray induced quantum effect in the complex computer system controlling the engine of 

modern cars. Even if he had the relevant knowledge to establish this connection it would not 

help to achieve his goal of getting to work. This goal is much more easily achieved by 

contacting the AA and not taxing his limited cognitive resources any further. The knowledge 

on which we rely to achieve our goals is not all inside our own heads, it is socially 

distributed, and we use this fact to avoid unnecessary cognitive effort. 

In summary, this section has been very brief and highly speculative and we have 

introduced a range of issues that require a much more detailed treatment. However, we felt it 

necessary to offer at least a glimpse of how we view the nature of System 1 and how it 

interacts with System 2 that addresses, however superficially, the problems identified for 

central processes by Fodor (1983). This is because Fodor (1983) was the point of departure 

for our original critique of logicist cognitive science (Oaksford & Chater, 1991). As has been 

argued in the philosophy of science, our models of the world parameterized to concrete 

situations may be the primary candidates for truth and hence provide the principle guides to 

successful action. These are constructed in System 2 and flexibly adjusted to match the 

unfolding events about which we need to draw inferences by recruiting information from 

System 1. While the current model in System 2 is consistent with the active parts of System 1 

it seems unlikely that System 1 is a globally consistent system. Moreover, it seems unlikely 

that the epistemological problems created by the putative Quinean and isotropic nature of 

human reasoning are problematic for System 1. Properties like plausibility and relevance are 

most likely only quite local computations based on the quite shallow knowledge of complex 
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systems most people possess. This is not generally problematic for achieving our goals given 

the social distribution of knowledge. Consequently, it may be that fixes to the technical frame 

problem in AI like those offered by LP, need not be part of an eventual theory of human 

reasoning.  

 

Conclusion 

In conclusion, probabilistic single function dual process theory provides a better 

psychological account of non-monotonicity in human reasoning than recent attempts to apply 

logic programming approaches in artificial intelligence to these data. LP only provides an 

approach that avoids global processing in the one pscyhological task to which it has been 

applied when all information about defeaters and alternative causes is explicit. To account for 

implicit suppression tasks and to distinguish disablers from alternative causes requires access 

to word knowledge. LP also is unlikely to be psychologically real, offering a solution to the 

technical frame problem only if it assumed that all we have to do is index conditions as 

abnormal. Like hash coding, LP provides no account of how these indices are learned. 

Moreover, there are a range of inferences concerning conditionals to which LP cannot be 

applied but for which a probabilistic approach using CBNs accounts naturally.  However, 

there are a range of problems about the nature of System 1 and its relation to System 2, 

introduced by Fodor (1983), which remain problematic for both approaches. In a final 

speculative section, we suggested that these may be less problematic for the actual, context 

bound, and goal directed inferential behavior that guides our actions moment by moment in 

the everyday world. While many problems remain, the probabilistic single function dual 

processing approach remains the most promising account of the nonmonotonicity of human 

reasoning. 
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Figure 1. Bayes Net representations of the conditional premise (black) and associated 

alternatives (s) and additional (r) antecedents (grey). The priors Pr(p), Pr(r), and Pr(s) are 

also required in the parameterization.  

 


