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Abstract 

Traditionally, the right cerebral hemisphere has been considered to be specialized for spatial 

attention and orienting. A large body of research has demonstrated dissociable representations of 

the near space immediately surrounding the body and the more distance far space. In this study, 

we investigated whether right hemisphere activations commonly reported for tasks involving 

spatial attention (such as the line bisection and landmark tasks) are specific to stimuli presented 

in near space. In separate blocks of trials, participants judged either whether a vertical transector 

was to the left or right of the centre of a line (landmark task) or whether the line was red or blue 

(colour task). Stimuli were seen from four distances (30, 60, 90, 120 cm). We used EEG to 

measure an ERP component (the ‘line-bisection effect) specific to the direction of spatial 

attention (i.e., landmark minus colour). Consistent with previous results, spatial attention 

produced a right-lateralized negativity over occipito-parietal channels. The magnitude of this 

negativity was inversely related to viewing distance, being largest in near space and reduced in 

far space. These results suggest that the right occipito-temporal cortex may be specialized not 

just for the orientation of spatial attention generally, but specifically for orienting attention in the 

near space immediately surrounding the body.



Attention in Near Space 

 3 

 Perceiving the space around us is critical both for controlling skilled action and for 

defending the body against potentially threatening stimuli in the environment. Accordingly, 

researchers in several disciplines have differentiated the space close to the body from that farther 

away (e.g., Brain, 1941; Hall, 1966; Sommer, 1969). Within cognitive neuroscience, a large 

literature has demonstrated that the near (or peripersonal) space immediately surrounding the 

body is represented differently from the far (or extrapersonal) space, farther away. For example, 

neurophysiological studies in monkeys have identified neurons in frontal and parietal cortices 

maximally responsive to the visual perception of objects near to or approaching the body surface 

(e.g., Graziano, Yap, & Gross, 1994; Rizzolatti, Scandolara, Matelli, & Gentilucci, 1981). 

Analogously, double dissociations have been reported in neurological patients between 

attentional deficits in near and far space (e.g., Berti & Frassinetti, 2000; Cowey, Small, & Ellis, 

1994; Halligan & Marshall, 1991). These results suggest that the brain maintains specialized 

mechanisms for the perception of near space. 

 Studies of healthy human adults have also provided evidence for distinct representations 

of near and far space. For example, lateral attentional biases have been found to differ as a 

function of viewing distance. Studies using both the line bisection task (i.e., marking the 

perceived centre of a horizontal line) and the landmark task (i.e., judging whether a vertical 

transector is to the left or right of the centre of a horizontal line) have found that people tend to 

show small leftward biases, known as pseudoneglect (Bowers & Heilman, 1980; for review, see 

Jewell & McCourt, 2000). With the bisection task, however, this effect appears to be limited to 

lines presented very close to the body, with bias shifting to the right of centre as viewing distance 

increases (Ferrè, Longo, Fiori, & Haggard, 2013; Gamberini, Seraglia, & Priftis, 2008; Longo & 

Lourenco, 2006, 2007, 2010; Lourenco & Longo, 2009; Lourenco, Longo, & Pathman, 2011; 
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Varnava, McCarthy, & Beaumont, 2002). This shift in bias is generally continuous, and the rate 

at which it occurs has been taken as an index of the extent, or “size,” of near space. Indeed, this 

method has been used to show expansion of near space following tool use (Gamberini et al., 

2008; Longo & Lourenco, 2006), contraction of near space when participants wear heavy wrist 

weights (Lourenco & Longo, 2009), and systematic inter-individual relations between the extent 

of near space and arm length (Longo & Lourenco, 2007) as well as claustrophobic fear 

(Lourenco et al., 2011). Studies using the landmark task have reported a similar rightward shift 

in bias with increased viewing distance, though not an absolute right bias at the farthest viewing 

distances (Bjoertomt, Cowey, & Walsh, 2002; McCourt & Garlinghouse, 2000). 

 The exact causes of pseudoneglect and its reversal with increased viewing distance 

remain poorly understood. One possibility is suggested by the activation-orientation theory of 

spatial attention (Reuter-Lorenz, Kinsbourne, & Moscovitch, 1990), which proposes that 

attention will be biased in the direction contralateral to whichever cerebral hemisphere is more 

strongly activated. This is based on the well-established finding that each hemisphere directs 

attention contralaterally (Corbetta, Shulman, Miezen, & Petersen, 1995; Kinsbourne, 1987). 

Manipulations that produce increased activation in the left hemisphere should lead to a rightward 

attentional bias, and vice versa. Longo and Lourenco (2006) proposed that the transition in 

bisection bias from a left bias (i.e., pseudoneglect) in near space to a right bias in far space could 

result from the combination of an overall rightward attentional bias combined with a right 

hemisphere specialization for near space. Kinsbourne (1987) reviews a number of pieces of 

evidence for a baseline rightward bias (see also Làdavas, Del Pesce, & Provinciali, 1989). When 

lines are presented in far space, the baseline rightward attentional bias predominates, producing a 

right bisection bias. As lines are presented closer to the participant, representations of near space 
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in the right hemisphere become progressively more strongly activated, producing an increasing 

leftward bias counter to the baseline rightward bias. Finally, for lines presented very close to the 

participant, the leftward bias resulting from right hemisphere activation may exceed the baseline 

rightward bias, producing an overall leftward bias (i.e., pseudoneglect). 

Thus, on Longo and Lourenco’s (2006) interpretation, pseudoneglect reflects the sum of 

two distinct spatial attentional biases: (1) a baseline rightward bias (Kinsbourne, 1987; Làdavas 

et al., 1989), and (2) a leftward bias caused by activation of near space representations in the 

right hemisphere. There is less evidence, however, for a right hemisphere specialization of near 

space. A large number of studies have found right-lateralized activations for line bisection and 

landmark judgments (e.g., Billingsley, Simos, Sarkari, Fletcher, & Papanicolaou, 2004; Çiçek, 

Deouell, & Knight, 2009; Fink et al., 2000; Fink, Marshall, Weiss, & Zilles, 2001; Fink, 

Marshall, Weiss, Toni, & Zilles, 2002; Flöel et al., 2002; Marshall et al., 1997). All of these 

studies, however, used only a single viewing-distance, making the specificity of these right-

lateralized activations to near space unclear.  

Indeed, the use of functional neuroimaging methods such as MRI and PET to investigate 

the neural bases of the representation of near and far space is complicated by the difficulty of 

manipulating viewing distance while participants are laying down in a narrow tube. First, vision 

is typically indirect, through a mirror, making viewing distance somewhat ambiguous in the first 

place, since the direction of gaze does not match the direction of sight. For example, in the study 

of Fink and colleagues (2001), participants saw lines reflected in a mirror which was 14 cm from 

the screen and an additional 12 cm from the their eyes. Second, participants are instructed to 

remain completely still with their heads immobilized with padding. This is potentially 

problematic given that the ability to act is known to alter spatial perception (e.g., Proffitt, 
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Stefanucci, Banton, & Epstein, 2003; Witt, Proffitt, & Epstein, 2004; Lourenco & Longo, 2009). 

Finally, the supine posture required of MRI/PET is highly unusual, with unknown effects on 

spatial perception. Nevertheless, despite these difficulties, two studies by Weiss and colleagues 

(2000, 2003) used PET (which is somewhat less spatially restrictive than MRI) to investigate 

bisection in near and far space, reporting largely left-lateralised activations for near, compared to 

far, space, opposite to the pattern predicted by Longo & Lourenco (2006).  

A potentially more suitable method for investigating near and far space is EEG, since 

participants can be tested while standing in a normal laboratory room. Foxe, McCourt, and Javitt 

(2003) used EEG to investigate the neural bases of line bisection, finding evidence for a distinct 

ERP component (the ‘line-bisection effect’) generated by the right occipito-parietal cortex when 

participants performed the landmark task compared to a control task in which participants judged 

whether or not a transector was present at all. This component was comprised of three sequential 

phases of activations specific to the landmark task, from 170-400 ms after stimulus presentation, 

shifting progressively from a right occipito-parietal to a right central parietal distribution. Similar 

results were subsequently reported by Waberski and colleagues (2008). Foxe and colleagues 

found that the onset of the line-bisection effect systematically tracked the latency of the N1 

visual-evoked potential, known to reflect object processing in the ventral visual pathway (e.g., 

Allison, Puce, Spencer, & McCarthy, 1999; Murray et al., 2002). Critically, however, the onset 

of the line-bisection effect followed N1 peak latency. Foxe and colleagues suggested that the 

line-bisection effect reflects the relay between ventral stream object processing and dorsal stream 

space processing. It is also worth noting that the line-bisection effect emerges well after the P1 

component of the visual-evoked potential, which is known to be modulated by direction of 

attention to specific locations in the visual field (e.g., Martinez et al., 1999; Van Voorhis & 
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Hillyard, 1977). Thus, the line-bisection effect appears to be a distinct ERP component in its own 

right, rather than reflecting modulation of the amplitude or latency of standard components of the 

visual evoked-potential. In both the studies of Foxe and colleagues and of Waberski and 

colleagues, as with the MRI studies described above, only a single viewing distance was used 

(108 cm in Foxe et al.; 50 cm in Waberski et al.), making it unclear to what extent these right 

lateralized activations reflect direction of spatial attention in near or far space.  

 In the current study, we adapted the paradigm of Foxe and colleagues (2003) to 

investigate the neural bases of control over spatial attention in near and far space. Participants 

performed either the landmark task, or a control, colour task in which they judged whether the 

presented line was red or blue. Across blocks of trials, they stood at four distances from the 

screen (30, 60, 90, 120 cm). We could therefore investigate how the effects of spatial attention 

reported by Foxe and colleagues change as a function of viewing distance. If representations of 

near space are right-lateralized (Longo & Lourenco, 2006), then the differences between the 

landmark and control task should decrease as viewing distance increases.  

 

Methods 

Participants 

 Eighteen individuals (seven female), between the ages of 19 and 36 years (M: 24.2, SD: 

5.2), participated for payment or course credit. Participants were on average right-handed as 

assessed by the Edinburgh Inventory (Oldfield, 1971; M: 54.33; range: -100 to 100). Procedures 

were approved by the local ethics committee. 

 

Procedures 
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 Stimuli were lines of 23 cm in length and .25 cm in height (480x5 pixels) presented on a 

22 inch flat-screen computer monitor. Lines were transected by a vertical line at one of 11 

equally-spaced locations, ranging from 2.3% of line length to the left of centre to 2.3% to the 

right. Stimuli were presented using a custom MATLAB (Mathworks, Natick, MA) script and the 

Cogent Graphics Toolbox (developed by John Romaya, Wellcome Department of Imaging 

Neuroscience, University College London). 

 The experiment was divided into 48 blocks of 22 trials each. In each block, participants 

were instructed to complete one of two tasks, modeled after those of Foxe and colleagues (2003). 

As a control task, Foxe and colleagues asked participants to judge whether or not the presented 

lines were transected. This control task has the effect that the actual stimuli delivered in the two 

conditions differ, since the landmark task can only be performed when lines are transected. We 

therefore used a different control task in which participants judged whether the presented line 

was red or blue. Thus, in the landmark task, participants judged whether the transector was to the 

left or to the right of the centre of the horizontal line. In the colour task, participants judged 

whether the line was displayed in red or in blue. Thus, in the landmark task, participants make 

visuo-spatial judgments, whereas in the colour task, they do not, though the stimuli are exactly 

the same in both conditions. In both tasks, participants responded by pressing one of the two 

buttons on a mouse held in their right hand. The 22 trials in each block consisted of one of each 

combination of the 11 transector locations and two colours, in random order. Lines were 

displayed for 150 ms. Following responses, there was a random inter-trial-interval of between 

500 and 800 ms. 

 In each block, participants stood at one of four locations marked on the floor with tape, 

either 30, 60, 90, or 120 cm from the monitor. The monitor rested on a podium, which was 
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adjusted so that the centre of the monitor was approximately at eye level for each participant. 

The 48 blocks were divided into 6 sequential groups, with each group consisting in one repetition 

of each block type in random order. 

 

EEG Recording 

 A SynAmp amplifier system and Scan 4.3 software (Neuroscan, El Paso, TX) were used 

to record EEG data. Recordings were obtained from 26 scalp electrodes, the 21 electrodes of the 

standard 10-20 system (Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, 

P8, O1, Oz, O2) plus an additional 5 electrodes over the occipital-parietal scalp (PO7, PO3, POz, 

PO4, PO8), placed according to the 10-10 system. Horizontal electroculogram was recorded 

bipolarly from electrodes placed on the outer canthi of each eye, and vertical electrocologram 

was recorded from an electrode below the right eye. The reference electrode was placed on the 

nose, and the ground electrode on the chin. Electrode impedances were kept below 5 KΩ. EEG 

signals were amplified and digitized at 1,000 Hz. 

  

Analyses 

For behavioural data, the percentage of trials in the landmark blocks on which the 

transector was judged as being right of centre was calculated for each transector location and 

distance. These psychometric functions were modelled using Cumulative Gaussian functions 

which were fit to data from each participant at each distance separately using R 2.11.1 software 

using least-squares regression. Transector locations to the left of centre were coded as negative 

and those to the right of centre as positive. Three participants were excluded from analyses 
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(behavioural and EEG) as the R
2
 value was below .5 for at least one of the distances. Data from 

the remaining participants showed good fit (mean R
2
 = .844, SD = .051). 

EEG data were analysed using the EEGLAB toolbox (Delorme & Makeig, 2004). Data 

were downsampled to 250 Hz, digitally low-pass filtered at 30 Hz, and divided into epochs time-

locked to the appearance of each line (-100 to 500 ms). Epochs were baseline corrected using the 

100 ms before the appearance of each line. Data were cleaned using blind source separation 

using independent components analysis (Jung et al., 2000) to remove ocular artifacts before 

automated rejection. Epochs with remaining ocular artifacts (voltage at FPz exceeding +/- 70 

μV) or other artifacts (voltage at any scalp channel exceeding +/- 100 μV) were eliminated 

(0.16% of trials). 

 We conducted two types of analyses on the event-related potential (ERP) data. First, we 

conducted a traditional ERP analysis, calculating mean voltage at each combination of time-

point, channel, distance, and task. Second, we used linear regression to quantify change with 

viewing distance, regressing mean voltage on viewing distance at each combination of time-

point, channel, and task, and treating the regression coefficient as the dependent measure (rather 

than voltage). Foxe and colleagues (2003) identified three phases of activations specific to spatial 

attention over the posterior scalp. As our procedure was closely modeled on that study, we 

adopted these time windows: Early Phase (170-190 ms), Middle Phase (190-240 ms), and Late 

Phase (240-400 ms). Thus, for both the ERP and regression analyses, mean values within each 

phase were calculated at right and left posterior channels (PO7/8, PO3/4, P7/8, P3/4), which 

were averaged within each hemisphere.  These electrodes were selected based on the distribution 

of the line-bisection effect as reported by Foxe and colleagues. 
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Results 

Behavioural Data 

For each curve, bias was measured as the point-of-subjective-equality (PSE), calculated 

as the point at which the curve crossed a y-value of .5 (i.e., the point at which participants were 

equally likely to judge the transector as being to the right or to the left of centre). Figure 1 shows 

these values as a function of viewing distance. Change in bias with viewing distance for each 

participant was quantified by regressing these PSEs on distance using least-squares regression. 

These regression coefficients were significantly greater than 0 (mean ß = .459 % Line Length / 

Meter), t(14) = 2.73, p < .02, d = 0.713. This indicates that bias shifted rightwards with increased 

viewing distance, consistent with previous results using the landmark task (Bjoertomt et al., 

2002; McCourt & Garlinghouse, 2000) and line bisection task (Gamberini et al., 2008; Longo & 

Lourenco, 2006, 2007, 2010; Lourenco & Longo, 2009; Lourenco et al., 2011; Varnava et al., 

2002). 
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Figure 1: Behavioural data from landmark judgments. At each distance, the point of subjective equality 

(PSE) was calculated as the transector location at which participants were equally likely to judge it as being 

to the left or right of centre. Consistent with previous findings, the small leftward bias seen in near space 

shifted rightwards with increased viewing distance. Error bars are one standard error. 

 

Event-Related Potentials (ERPs) 

 Figure 2 shows ERPs in the left and right hemisphere channels for the landmark and 

colour tasks (left and centre panels) and the difference between the landmark and colour tasks 

(right panel), all averaged across the four viewing distances. Figure 3 shows the distribution of 

voltage across the scalp in the landmark and colour conditions, averaged across time points 

within each phase and across the four viewing distances. Foxe and colleagues (2003) reported a 

right-lateralized negativity associated with the landmark task from approximately 170-400 ms 

after stimulus presentation, starting out over the occipito-parietal scalp and changing to a central 

parietal distribution. This effect is clearly apparent in the present data as well. To investigate this 

effect in more detail, and to determine whether it is affected by distance, we conducted a 4x2x2 

repeated-measures analysis of variance (ANOVA) for each phase, with factors distance (30, 60, 

90, 120 cm), task (landmark, colour), and hemisphere (left, right). 
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Figure 2: ERPs in the landmark and colour tasks for each viewing distance in the left hemisphere (left 

panel, channels PO3, PO7, P3, P7), right hemisphere (centre panel, channels PO4, PO8, P4, P8), and 

difference waveforms (landmark – colour) in both hemispheres (right panel).  
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Figure 3: Scalp maps showing mean voltage across the scalp in the two tasks (and their difference) in each 

of the three phases. 

 

 Early Phase (170-190ms). There was a marginally-significant main effect of task, F(1, 

14) = 4.27, p = 0.058, ηp
2 

= 0.234, with amplitude being reduced in the landmark compared to 

the colour task. There was also a significant main effect of distance, F(1,68, 23.52) = 3.74, p < 

0.05, ηp
2 

= 0.211. 

 Middle Phase (190-240 ms). There was a significant interaction between hemisphere and 

task, F(1, 14) = 5.60, p < 0.05, ηp
2 

= 0.286. There was a significant reduction in voltage in the 

landmark task in the right hemisphere, t(14) = -2.47, p < 0.05, d = 0.637, but not in the left 

hemisphere, t(14) = 0.20, n.s. There was a marginally-significant main effect of distance, F(1.38, 

19.36) = 3.69, p = 0.058, ηp
2 

= 0.209, but no interactions between distance and the other factors. 
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Late Phase (240-400 ms). There was a significant main effect of task, F(1, 14) = 26.62, p 

< 0.001, ηp
2 

= 0.655, with greater negativity in the landmark than the colour task. Further, there 

was also a significant interaction between task and hemisphere, F(1, 14) = 5.41, p < 0.05, ηp
2 

= 

0.279. Clear negativities associated with the landmark task were found both in the left, t(14) = -

2.22, p < 0.05, d = 0.57, and right, t(14) = -4.60, p < 0.001, d = 1.19, hemisphere, with the effect 

of task being larger in the right. These results are consistent with the results of Foxe and 

colleagues (2003). 

There was also a significant main effect of distance, F(1.90, 26.59) = 4.84, p < 0.05, ηp
2 

= 

0.257, which was modulated by a significant interaction of task and distance, F(3, 42) = 5.08, p < 

0.005, ηp
2 

= 0.266, and a three-way interaction, F(3, 42) = 3.13, p < 0.05, ηp
2 
= 0.183. 

In order to explore this significant three-way interaction, separate two-way ANOVAs 

were conducted on the right and left hemispheres. Figure 4 shows mean voltage as a function of 

task and viewing distance for the left and right hemisphere channels.  In the right hemisphere, 

there was a clear main effect of task, F(1, 14) = 21.16, p < 0.0001, ηp
2 

= 0.602, with increased 

negativity for the landmark task. The main effect of distance did not quite reach significance, 

F(4.42, 20.72) = 2.99, p = 0.071, but there was a clear interaction of task and distance, F(3, 42) = 

6.56, p < 0.002, ηp
2 

= 0.319. As can be seen in Figure 4, the difference between the landmark and 

colour tasks is larger at the closer distance (near space), and smaller at farther distances. 

In the left hemisphere, there was a main effect of task, F(1, 14) = 4.94, p < 0.05, ηp
2 

= 

0.261, with increased negativity for the landmark task. There was also a significant main effect 

of distance, F(7.55, 19.61) = 5.39, p < 0.02, ηp
2 

= 0.278, with negativity decreasing with 

increased viewing distance. Critically, however, this change with distance showed up for both 

the colour and landmark tasks, resulting in no significant interaction of task and distance, F(3, 
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42) = 0.572, p = 0.637. Thus, while there is an effect of viewing distance in the left hemisphere, 

this effect – in contrast to the right hemisphere – was not modulated by task, suggesting it that 

not specific to spatial attention. 

 

 

Figure 4: Mean voltage in the Late Phase (240-400 ms) as a function of hemisphere, viewing distance, and 

task. Error bars are one standard error of the difference between the landmark and colour tasks at each 

combination of distance and hemisphere. 

 

Regression Analyses 

 The ERP analyses have provided a clear replication of the main results of Foxe and 

colleagues (2003) and shown further that these effects are modulated by distance. In order to 

investigate in more detail how the ERPs are modulated by distance, we used regression to 

quantify changes in voltage with viewing distance. At each combination of participant, time 

point, channel, and task, we calculated the linear regression coefficient, regressing mean voltage 

on viewing distance. The logic of this analysis is analogous to the use of regression to investigate 

changes in lateral attentional biases with viewing distance as in the current study with the 
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landmark task and previous studies using overt line bisection (e.g., Longo & Lourenco, 2006, 

2007; Lourenco & Longo, 2009; Lourenco et al., 2011; Varnava et al., 2002). By thus regressing 

voltage on viewing distance, the time-course and scalp-distribution of neural responses 

modulated by viewing-distance can be assessed and compared between the landmark and colour 

tasks. Figure 5 shows time-series of the regression coefficient regressing voltage on viewing 

distance, whereas Figure 6 shows corresponding scalp maps averaged within each of the three 

periods. Although the resulting waves are not ERPs (reflecting change in voltage with distance, 

rather than voltage per se), they can be treated statistically in exactly the same way as the ERPs. 

Thus, within each phase, a 2x2 ANOVA was conducted with factors hemisphere (left, right) and 

task (landmark, colour). 

 

Figure 5: Time-series of the regression coefficient regressing voltage on viewing distance. At each channel 

and time-point, least-squares regression was used to quantify the change in voltage with viewing distance. 
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Figure 6: Scalp maps showing mean regression coefficients for the two conditions and their difference in 

each of the three phases. 

 

 Early Phase (170-190ms).  There were no significant effects of hemisphere, task, or their 

interaction (all p’s >.20). 

Middle Phase (190-240 ms). There was a significant main effect of task, F(1, 14) = 4.79, 

p < 0.05, ηp
2 

= 0.255, with coefficients being larger in the landmark than the colour task. There 

was also a marginally-significant interaction of task and hemisphere, F(1, 14) = 3.65, p = 0.077, 

ηp
2 

= 0.207. As is clear in Figures 5 and 6, regression coefficients were greater for the landmark 

than for the colour task in the right hemisphere, t(14) = 3.31, p < 0.01, d = 0.85, but the tasks did 

not differ in the left hemisphere, t(14) = -0.256, n.s., d = 0.07. 
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Late Phase (240-400 ms). There was a significant effect of task, F(1, 14) = 22.30, p < 

0.0005, ηp
2 

= 0.614, with coefficients being larger in the landmark task than the colour task. 

There was also a significant interaction of task and hemisphere, F(1, 14) = 5.31, p < 0.05, ηp
2 

= 

0.275. There was a clear effect of task in the right hemisphere, t(14) = 4.91, p < 0.0005, d = 1.27, 

but not in the left hemisphere, t(14) = 1.19, n.s., d = 0.31. 

 

Discussion 

 A large literature has linked performance on line bisection and landmark tasks to 

activations of the right occipital and parietal cortices (e.g., Çiçek et al., 2009; Fink et al., 2000, 

2001, 2002; Foxe et al., 2003; Waberski et al., 2008). The present results are consistent with this 

literature, providing a clear replication of the finding of Foxe and colleagues (2003) that spatial 

attention in the landmark task produces clear negativities over the right occipito-parietal scalp. 

Further, we show that these responses are strongest for stimuli presented in near space, and 

become weaker for stimuli presented farther away. These results suggest that the right occipito-

parietal cortex may be specialised not for the orientation of spatial attention generally, but more 

specifically for the orientation of spatial attention in the near space immediately surrounding the 

body. 

 

Spatial Attention and the Right Hemisphere 

 That the right hemisphere is specialized for visuospatial attention has long been argued 

on the basis of neuropsychological dissociations in split-brain (e.g., Sperry, 1974) and neglect 

(e.g., Kinsbourne, 1987; Mesulam, 1981) patients, as well as the neuroimaging results discussed 

above. Consistent findings have also come from studies using transcranial magnetic stimulation 
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(TMS; Bjoertomt, Cowey, & Walsh, 2002; Oliveri & Vallar, 2009) and voxel-based lesion-

symptom mapping (Verdon et al., 2010). A recent study by Thiebaut de Schotten and colleagues 

(2011) used diffusion imaging to identify a potential structural basis for such lateralization. 

These authors found three longitudinal white-matter tracts connecting the parietal and frontal 

cortices in humans, analogous to those previously reported in monkeys (Schmahmann & Pandya, 

2006). They found that one of these, the ventral superior longitudinal fasciculus (SLF III) was 

strongly right-lateralised with larger volume in the right than in the left hemisphere, while 

another, the middle superior longitudinal fasciculus (SLF II) showed more modest lateralisation. 

Further, they found that the degree of lateralization of the SLF II was correlated across 

participants with the magnitude of pseudoneglect measured with a line bisection test as well as 

lateralization of reaction times to stimuli on the left side of space using a Posner paradigm. 

 These results provide an intriguing anatomical correlate to behavioural lateralizations 

reported previously and to the results of the present study. One possibility in light of the present 

results is that these SLF II and SLF III pathways may be specialised specifically for visuospatial 

attention in near space. This would provide a potential anatomical correlate of the right-

hemisphere specialisation for near space suggested by the present results. This interpretation is 

consistent with results of an fMRI study by Quinlan and Culham (2007), who found activations 

in the parieto-occipital cortex that were stronger for stimuli presented near the participant than 

farther away, though there was no obvious lateralization in responses.  

 It is unclear given the present results why previous neuroimaging studies have either no 

lateralisation (Quinlan & Culham, 2007) or even left-lateralised frontal responses (Weiss et al., 

2000, 2003). One possibility is that space perception may be altered by the supine posture used 

in those previous studies. It is possible that near space reflects not just distance from the body per 
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se, but some interaction between the body and the gravitational field. The possibility of such a 

connection is supported by the recent finding that lateralised galvanic vestibular stimulation 

alters spatial attention in the line bisection task (Ferrè et al., 2013). It will be important for future 

research to examine the factors which determine or modulate the lateralisation of neural 

mechanisms underlying spatial attention in near and far space. 

 One potential concern about the present results is that while stimuli were matched for 

actual physical size across viewing distances, they differed in terms of visual angle. It is 

important to note, however, that our main results cannot be interpreted as resulting from 

differences in visual angle, rather than viewing distance, since at any given distance stimuli were 

exactly matched in the landmark and colour conditions. Our finding that the line-bisection effect, 

indexed as the difference between the landmark and colour tasks itself scaled with viewing 

distance therefore cannot be interpreted as a simple effect of angular size. In our first study using 

the line bisection task (Longo & Lourenco, 2006), we held actual size constant, but used a range 

of stimulus sizes, which allowed us to analyse a subset of trials that held visual angle constant. 

Critically, both the left-to-right shift in bisection bias with increasing viewing distance and the 

reduction of this effect when a tool was used for responding showed up clearly whether stimuli 

were matched for actual or angular size. This result suggests that differences in visual angle do 

not play a critical role in determining the modulation of spatial attentional biases with viewing 

distance. 

 

Implications for the Nature of Pseudoneglect 

 The activation-orientation theory of spatial attention (Bultitude & Aimola Davies, 2006; 

Reuter-Lorenz et al., 1990) proposes that attention will be biased in the direction contralateral to 
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the most strongly activated cerebral hemisphere. Given that leftward biases on bisection and 

landmark tasks (i.e., pseudoneglect) are reduced or eliminated when stimuli are presented far 

from participants (e.g., Longo & Lourenco, 2006; McCourt & Garlinghouse, 2000; Varnava et 

al., 2002), Longo and Lourenco (2006) proposed that pseudoneglect may reflect representations 

of near space in the right parietal cortex. On this interpretation, the closer stimuli are presented to 

participants, the more strongly activated these representations would be, and the stronger 

pseudoneglect. As stimuli are presented at farther distances, in contrast, these right hemisphere 

representations would become progressively less strongly activated, resulting in a reduction or 

reversal of the leftward bias found in near space. 

 The present results are consistent with this interpretation. The occipito-parietal negativity 

specific to spatial attention (the ‘line-bisection effect’) originally reported by Foxe and 

colleagues (2003) was increased for stimuli presented close to the participant, in near space. On 

this interpretation, the pseudoneglect observed on paper-and-pencil tasks reflects the sum of two 

spatial biases, a baseline rightward attentional bias (cf. Kinsbourne, 1987) and a countervailing 

leftward bias induced by activation of representations in near space in the right hemisphere. On 

average, the latter bias may be slightly stronger, resulting in the pseudoneglect seen at the group 

level. However, the magnitude of these two biases may vary independently across individuals, 

which the baseline rightward bias being stronger in some individuals, perhaps related to known 

factors such as arm length (Longo & Lourenco, 2007) or characteristic activation asymmetries 

between the hemispheres (Levy, Heller, Banich, & Burton, 1983). This may contribute to the 

notorious person-to-person (and study-to-study) variability seen in bisection and landmark tasks 

(Jewell & McCourt, 2000). 
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Differences Between Landmark and Bisection Tasks 

 Studies investigating line bisection in near and far space have typically found a small 

leftward bias in near space and a (somewhat larger) rightward bias in far space (e.g., Ferrè et al., 

2013; Gamberini et al., 2008; Longo & Lourenco, 2006, 2007, 2010; Lourenco & Longo, 2009; 

Lourenco et al., 2011; Varnava et al., 2002). In contrast, studies using the landmark task have 

found a leftward bias in near space and a smaller leftward bias (or no bias at all) in far space 

(e.g., Bjoertomt et al., 2002, 2009; McCourt & Garlinghouse, 2000; this study). In both tasks, 

there is a rightward shift in bias as stimuli are presented farther away, consistent with the 

proposal that the right occipito-parietal cortex is specialized for representation of near space. 

However, this rightward shift only appears to develop into an absolute rightward bias for overt 

bisection. 

 This pattern suggests important functional differences between bisection and landmark 

tasks, consistent with dissociations between these tasks reported both in neuropsychological 

patients (e.g., Harvey et al., 2002; Ishiai et al. 1998) and healthy adults (e.g., Varnava, Dervinis, 

& Chambers, 2013). The meta-analysis of Jewell and McCourt (2000) found much larger effect 

sizes for pseudoneglect measured using landmark than manual (overt) bisection. One possible 

interpretation of this pattern is that the motoric component required on manual bisection tasks 

produces activations in the left hemisphere (particularly in right handed individuals) which has 

the effect of shifting attention rightward compared to the more perceptual landmark task. 
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