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Chlamydiae are obligate intracellular bacterial pathogens with an

unusual biphasic lifecycle, which is underpinned by two bacterial

forms of distinct structure and function. Bacterial entry and

replication require a type III secretion system (T3SS), a widely

conserved nanomachine responsible for the translocation of

virulence effectors into host cells. Recent cell biology

experiments supported by electron and cryo-electron

tomography have provided fresh insights into Chlamydia–host

interactions. In this review, we highlight some of the recent

advances, particularly the in situ analysis of T3SSs in contact

with host membranes during chlamydial entry and intracellular

replication, and the role of the host rough endoplasmic reticulum

(rER) at the recently described intracellular ‘pathogen synapse’.
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Introduction
Although initially believed to be a virus [1], Gram-nega-

tive Chlamydiae were the first obligate intracellular bac-

teria with a biphasic lifecycle to be described [2].

Chlamydiae cause disease in humans and other animals,

and in particular Chlamydia trachomatis remains the lead-

ing bacterial agent of sexually transmitted disease world-

wide, while ocular infections cause blinding trachoma,

which is designated as a neglected tropical disease by the

World Health Organisation [3]. Studying Chlamydiae
remains a challenge, since the bacteria cannot be cultured

outside eukaryotic cells, and although transformation

has recently been reported [4�,5�,6�], there remains no
www.sciencedirect.com 
routine methodology for directed mutagenesis. Many of

the tools that have driven the substantial advances in

understanding the cellular microbiology of other bacterial

pathogens still therefore remain inaccessible for

Chlamydiae. Nevertheless, the developmental cycle can

be reconstituted in the laboratory using cultured mam-

malian cells [7].

During the early stages of infection, extracellular infec-

tious but metabolically inactive elementary bodies (EBs)

adhere to the plasma membrane of the host cell and

induce their own actin-dependent uptake into endocytic

vacuoles. These early vacuoles coalesce and traffic to the

microtubule-organising centre, forming a specialised

membrane-bound compartment termed an inclusion.

Within the inclusion, EBs differentiate into non-infec-

tious but metabolically active reticulate bodies (RBs).

RBs undergo a series of cell divisions before converting

back into EBs, which are subsequently released from the

cell by inclusion extrusion, or upon cell lysis [8].

EBs and RBs are not only distinct in function, but also in

morphology. While both forms of the bacterium are coc-

coid, they differ significantly in size; EBs are 0.3–0.4 mm in

diameter in comparison to RBs at 1 mm. Substantial

changes in bacterial architecture therefore occur during

EB–RB and RB–EB inter-conversion, which remain

incompletely understood [8]. The most obvious dis-

tinguishing structural characteristic is the outer membrane,

which is almost twice the thickness in EBs [9]. This is

attributed to a disulphide-cross-linked network of major

outer membrane proteins that confer the osmotic stability

and rigidity of EBs [10]. By contrast, the disulphide bonds

are reduced in RBs, allowing for greater membrane flexi-

bility to facilitate cell division [11]. Both EBs and RBs

harbour type III secretion systems (T3SSs), nanomachines

conserved among diverse Gram-negative bacterial patho-

gens. T3SSs translocate virulence effector proteins directly

into host cells, where they subvert cellular processes to

promote pathogen entry, survival or replication [12]. In

this review, we will explore the relationship between the

EB and RB T3SSs, their supramolecular organisation in

contact with host membranes, and their contribution to

sustaining the chlamydial lifecycle.

The chlamydial T3SS: the exception or the
rule?
T3SSs are macromolecular complexes that span the bac-

terial envelope [13], first observed in Salmonella [14].
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2 Host–microbe interactions: bacteria
Subsequent single particle analysis of core complexes

isolated from the membranes of diverse Gram-negative

bacterial pathogens has revealed a conserved structure

comprising oligomeric rings embedded in the inner and

outer membranes connected by a cylindrical trans-peri-

plasmic tube, enabling effector secretion without peri-

plasmic intermediates. A helical ‘needle’ consisting of a

single polymerised subunit connects proximally to the

outer membrane ring and at the distal end to a translocon

complex proposed to interact with a third membrane from

the host [13]. The structure of this translocon and the

nature of its interaction with the host membrane remain

unknown, as it is never co-isolated with the detergent-

solubilised core T3SS complex. Chlamydiae encode hom-

ologues of core complex components [15,16,17], yet in

comparison to other pathogens in which the genes encod-

ing T3SSs are grouped together on pathogenicity islands,

T3SS-related genes are distributed across the genome in

four distinct clusters composed of at least ten separate

operons [18]. Unusually, Chlamydiae also possess two

copies of putative translocon components (CT578/

CT579 and CT860/CT861) identified by primary

sequence similarity to the Yersinia YopB and YopD

translocon proteins [19], although the significance of this

remains unresolved. Nevertheless, it is clear that the

chlamydial T3SS is pivotal to virulence as T3SS inhibi-

tors arrest the bacterial lifecycle [20,21].

Polar organisation of T3SS arrays in
Chlamydia EBs
Seminal early electron microscopy studies by Matsumoto

identified surface projections and protein complexes

termed ‘rosettes’ on the surface of Chlamydia EBs in

the absence of host cells (e.g., [22]). These structures,

observed well in advance of the identification of any

T3SSs in bacteria, were only later proposed as T3SSs

[23]. Indeed, the rosettes have also since been suggested

to represent outer membrane protein complexes [24]. An

elegant study by Peterson [25], also describes structures

apparently connecting RBs to the inclusion membrane in

chemically fixed sections by electron microscopy. These

structures were similarly proposed to be T3SSs but had

never been experimentally identified or examined in

detail [23]. Recently, we applied cryo-electron tomogra-

phy to examine EB structure in greater detail (Figure 1a)

[26��]. This revealed that EBs are polarised, whereby one

hemisphere is characterised by pronounced expansion of

the periplasmic space (�29 nm compared to �14 nm on

the opposite pole), which accommodates an array of 14–20

T3SSs, definitively identified by immunogold labelling.

While the EB outer membrane remains rigid, each T3SS

complex originates at a specific concave deformation

of the inner membrane [26��]. The opposite pole with

the narrower periplasmic space contains additional

complexes of distinct morphology and as yet unknown

composition, in addition to an invagination of the inner

membrane [26��], reminiscent of the complex and
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atypical membrane structures present in other members

of the Planctomycetes–Verrucomicrobia–Chlamydiae [27].

In the presence of host cells, EBs universally orient with

their T3SS array facing the target cell plasma membrane

with which they engage (Figure 1b) [26��]. This co-

ordinated alignment might be determined by prior

engagement of host receptors or polysaccharides by poly-

morphic membrane proteins or outer membrane proteins

such as OmcB [28,29], which may also be similarly

polarised on the EB surface. The membrane-engaged

battery of T3SSs would enable the rapid coordinated

delivery of a high local effector dose to trigger bacterial

entry. Snapshots of the chlamydial entry process, cap-

tured by cryo-electron tomography, revealed an unex-

pected diversity of early host structures engaging EBs

ranging from phagocytic cups, to filopodial capture events

and complex ruffle-like plasma membrane invaginations

(Figure 2) [26��]. These cellular structures are compatible

with a role for Rac1-dependent and Arf6-dependent

GTPase signalling events [30,31], stimulated in part

by the translocated effectors CT166 and Tarp [32,33],

although whether these captured intermediates represent

sequential assemblies in a single pathway or denote

multiple independent entry mechanisms requires

further investigation by live imaging approaches. While

the resulting membrane invaginations that remain acces-

sible to the extracellular milieu frequently contain

multiple EBs, it is striking that the majority of closed

early vacuoles only encapsulate individual EBs [26��]. In

the first few hours after internalisation this apparent

sorting is also accompanied by reorganisation of both

the bacterial and host vacuolar membranes. The vacuole

membrane that initially loosely encloses the EB and co-

envelopes host material transitions to form a tight struc-

ture proximal to the EB surface. During this time, the

EBs lose their polarity, with an associated reduction of

the pronounced periplasmic widening and a decrease in

assembled T3SSs (Figure 2) [26��].

Pathogen synapses: ordered connections
between the T3SS, the inclusion membrane
and the host endoplasmic reticulum
Following internalisation, the inclusion must be diverted

from the cellular endocytic system to prevent degra-

dation, yet nutrients must be selectively scavenged from

the host cell and efficiently transported across the

inclusion membrane to enable bacterial differentiation

into RBs and subsequent replication [8]. Chlamydiae
reassemble their T3SSs to control inclusion biogenesis,

by delivering effectors that are integrated into the

inclusion membrane or delivered beyond into the host

cell cytosol and nucleus [8]. In particular, hydrophobic

inclusion proteins (Incs) are a family of T3SS substrates

that localise to the inclusion membrane during infection

[34]. Although most of their underlying effector mech-

anisms remain undefined, they are likely involved in the
www.sciencedirect.com
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Figure 1

(a)

(b)
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Polarised structure of the Chlamydia trachomatis EB. (a) Left panel: xy tomographic slice (0.71 nm thick) from a denoised cryo-electron tomogram

of a representative C. trachomatis EB. Scale bar, 100 nm. Right panel: Three-dimensional surface representation of the EB generated from

segmentation of a cryo-electron tomogram. Outer membrane (green), inner membrane (cyan and blue for the inner membrane invagination), T3SS

(red), nucleoid (yellow), additional periplasmic complexes (brown) and ribosomes (purple) are shown. (b) Left panel: xy tomographic slice (0.71 nm

thick) from a denoised cryo-electron tomogram showing a representative C. trachomatis EB in contact with a host cell. Scale bar, 110 nm. Right

panel: Three-dimensional surface representation of the EB generated from segmentation of the cryo-electron tomogram. Cellular plasma

membrane (yellow), bacterial outer membrane (green), inner membrane (cyan), inner membrane invagination (blue) and T3SS (red) are shown.
active hijack of host components and organelles including

lipid droplets [35], Golgi-derived vesicles [36], multi-

vesicular bodies [37], cytoskeletal components [38],

and the rough endoplasmic reticulum (rER) at the

inclusion membrane [39��,40��,41��]. Indeed, IncD

indirectly recruits rER to the inclusion membrane

[39��], while additional Incs engage key mediators of

intracellular trafficking and apoptosis [42,43,44].

This phase of nutrient acquisition and effector transloca-

tion commences in the mid-stage of the lifecycle, and

coincides with rER recruitment to the inclusion mem-

brane [41��]. Multiple host proteins located in the rER

lumen or membrane are enriched in patches at the

inclusion periphery and a subset are present within the

inclusion lumen. Disruption of the rER using aerolysin

toxin at timepoints before its recruitment stalls inclusion

biogenesis, whereas later treatment, at timepoints
www.sciencedirect.com 
when association is normally observed, bursts the

inclusion [41��]. Mature chlamydial inclusions therefore

gain sufficient ER-like character to render them suscept-

ible to the toxin. Electron tomography revealed intimate

and extensive apposition of the ribosome-studded rER

and the cytoplasmic face of the inclusion membrane.

These regions of contact, tethered by ‘pin-like’ com-

plexes of as yet unknown composition, appear so tight

that host ribosomes are always partitioned onto the

inclusion distal side of the rER tubules. Tomograms of

RBs at the inclusion periphery also revealed a polar array

of 20–100 T3SSs in contact with the luminal face of the

inclusion membrane, specifically formed at sites coinci-

dent with rER recruitment on the cytoplasmic face of the

inclusion (Figure 3). These structures bridging the rER in

the host cytosol to the RB envelope through the inclusion

membrane are termed ‘pathogen synapses’ [41��]. Intri-

guingly, as with EBs at the plasma membrane, RBs also
Current Opinion in Microbiology 2015, 23:1–7
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Figure 2
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Early interactions between Chlamydia trachomatis EBs and host cells identified by cryo-electron tomography. Schematic representation of the

early stages of Chlamydia trachomatis entry into mammalian cells. Actin accumulation is shown in orange. Corresponding tomogram slices are

shown beneath.
engage host membranes with an ordered supramolecular

array of T3SSs. Indeed, it is possible that the RB

pathogen synapse establishes a template for the polar

array of T3SSs present in EBs following redifferentiation.

Host rER: a membrane source for inclusion
growth and receiver for hydrophobic T3SS
substrates?
Although only recently recognised for Chlamydiae
[39��,40��,41��], incorporation of rER membranes into

pathogen-containing vacuoles is not without precedent.

It is likely that chlamydial acquisition of rER-derived

membrane contributes to the progressive expansion of

the inclusion as the RBs within divide, and that the

conferred lipid composition of the inclusion membrane

may also regulate the association of hydrophilic chlamy-

dial or host proteins [45], as with Legionella and Brucella
generated compartments [46,47]. In addition to this more

structural role, Chlamydiae scavenge lipids including

sphingomyelin and cholesterol from the secretory pathway

for metabolism [36], in part by harnessing ER-localised

CERT-VAT lipid transporters engaged by IncD from the

inclusion membrane [39��,40��]. Chlamydiae may also

modulate key rER functions including the ER stress

response and ER-associated protein degradation (ERAD),
Current Opinion in Microbiology 2015, 23:1–7 
possibly to prevent host alarm signals and suppress antigen

presentation (Figure 4).

The rER at pathogen synapses could also perform a more

direct role. The plethora of hydrophobic Incs encoded by

Chlamydiae prompts the question how these atypical

T3SS substrates fold and insert into the inclusion mem-

brane following their translocation. The rER contains

both the Sec translocon and the Get complex [48],

responsible for the insertion of eukaryotic transmem-

brane proteins, together with luminal chaperones

required for protein folding [49]. It is tempting to specu-

late that the rER might act as a ‘receiver membrane’ for

the incoming hydrophobic substrates from the T3SS

array, and that eukaryotic machinery might be co-opted

to catalyse their folding and insertion (Figure 4). Further-

more, subsequent local trafficking of rER membrane from

synapses into the inclusion may drive the incorporation of

Incs into the inclusion membrane, although this seems

not to involve COPII-dependent transport from rER exit

sites [40��,41��], which are subverted by Legionella [50].

Many Incs remain resident within ER membranes when

exogenously expressed in cultured cells [51]. This is

unusual, as most membrane proteins would transit into

the secretory pathway by default. Differential residency

within ER-like membrane could therefore potentially
www.sciencedirect.com



Type III secretion systems in Chlamydia Dumoux et al. 5

Figure 3
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The pathogen synapse — a structure bridging the host rER to the RB envelope through the inclusion membrane. Left panel: a single z-section

from structured illumination high-resolution confocal microscopy (SIM) showing Chlamydia trachomatis RBs (green) at the inclusion periphery

(indicated with a dotted yellow line). The sample is co-stained with an antibody against the needle component of the T3SS (red). Upper inset

shows indicated RB at higher magnification. Lower inset shows a three-dimensional SIM reconstruction illustrating the T3SS polarised to the

hemisphere of the RB facing the inclusion periphery. Scale bar, 1 mm. Centre panel: shows a tomogram (average of 10 z-sections after

reconstruction, alignment and de-noising) of a pathogen synapse. T3SS are evident traversing the chlamydial inner (IM) and outer (OM) membrane

at a site where the rER contacts the cytoplasmic face of the inclusion membrane (IncM). Scale bar, 50 nm. Right panel: shows a mesh

representation of the densities in the entire tomogram. T3SS core complexes from Salmonella typhimurium are fitted (red) and also shown in

periplasmic cross section.

Figure 4
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Possible roles for the host rER in Chlamydia inclusion biogenesis. Schematic representation of a pathogen synapse (left) and additional rER

contacts with the inclusion membrane (right) illustrating possible roles for the rER (dark green). T3SS (red) substrates in the RB are delivered

across the bacterial inner (IM) and outer (OM) membrane via the T3SS translocon (grey) of unknown structure. Hydrophobic substrates, the

inclusion proteins (Incs, purple), could be inserted into the rER directly, or via the eukaryotic Sec translocon (blue)/signal recognition particle

receptor (pink) or Get complex (light green). Incs and rER-derived membrane are transported to the inclusion membrane independently of ER exit

sites. Additional bacterial factors may influence the host ER stress (controlled via IRE-1 and ATF6) and ERAD responses. Lipid transfer, mediated

by IncD binding to CERT-VAT occurs at additional sites on the inclusion membrane, where intimate contact is mediated by unidentified ‘pin-like’

complexes (grey), excluding the ribosomes that partition on the distal face of the apposed rER tubules.
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influence the lateral positioning of Incs within the

inclusion membrane, in turn regulating Inc–Inc or Inc–
host target interactions. Indeed, some Incs do apparently

partition into microdomains [52], whereas others are dis-

tributed around the entire circumference of the inclusion

membrane.

Conclusions
Recent studies of Chlamydiae have provided intriguing

new insights into the supramolecular architecture of

T3SSs and the nature of their interaction with host

membranes, which act as critical interfaces between

pathogen and host. These studies complement and

extend the earlier pioneering work of Matsumoto and

Peterson, and confirm the presence of T3SSs [22,23,25].

Imaging of EBs and RBs by electron tomography has

allowed large numbers of assembled T3SSs to be cap-

tured in association with host membranes for the first time

in any infection system [26��,41��]. This provides an

opportunity to visualise the T3SS translocon within the

host membrane and other details of assembled T3SS

structure in situ. Subtomogram averaging of T3SSs in

Yersinia in the absence of host cells has already revealed

subtle alterations in T3SS interaction with the bacterial

envelope when compared to the in vitro isolated core

complexes [53��]. Further work is now required to under-

stand how EB polarity and orientation is determined and

the location of other proteins, particularly adhesins, in

relation to the T3SS array and inner membrane invagina-

tion. The identification of the pathogen synapse [41��]
raises intriguing questions about the role of the host rER

in chlamydial infection and potentially in the insertion

and folding of the hydrophobic Inc substrates of the

T3SS. Although historically difficult to study, there is

clearly much more to learn from the enigmatic Chlamy-
diae.
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secretion á la Chlamydia. Trends Microbiol 2007, 15:241-251.

13. Galán JE, Lara-Tejero M, Marlovits TC, Wagner S: Bacterial type
III secretion systems: specialised nanomachines for protein
delivery into target cells. Annu Rev Microbiol 2014, 68:415-438.

14. Kubori T, Matsushima Y, Nakamura D, Uralil J, Lara-Tejero M,
Sukhan A, Galán JE, Aizawa SI: Supramolecular structure of the
Salmonella typhimurium type III protein secretion system.
Science 1998, 280:602-605.

15. Johnson DL, Stone CB, Mahony JB: Interaction between CdsD
CdsQ and CdsL three putative Chlamydophila pneumoniae
type III secretion proteins. J Bacteriol 2008, 190:2972-2980.

16. Betts HJ, Twiggs LE, Sal MS, Wyrick PB, Fields KA: Bioinformatic
and biochemical evidence for the identification of the type III
secretion system needle protein of Chlamydia trachomatis.
J Bacteriol 2008, 190:1680-1690.

17. Mueller KE, Plano GV, Fields KA: New frontiers in type III
secretion biology. Infect Immun 2014, 82:2-9.

18. Hefty PS, Stephens RS: Chlamydial type III secretion system is
encoded on ten operons preceded by sigma 70-like promoter
elements. J Bacteriol 2007, 189:198-206.

19. Subtil A, Blocker A, Dautry-Varsat A: Type III secretion system in
Chlamydia species: identified members and candidates.
Microbes Infect 2000, 2:367-369.

20. Wolf K, Betts HJ, Chellas-Géry B, Hower S, Linton CN, Fields KA:
Treatment of Chlamydia trachomatis with a small molecule
inhibitor of Yersinia type III secretion system disrupts
progression of the chlamydial developmental cycle. Mol
Microbiol 2006, 61:1543-1555.

21. Muschiol S, Bailey L, Gylfe A, Sundin C, Hultenby K, Bergstrom S,
Elofsson M, Wolf-Watz H, Normark S, Henriques-Normark B: A
small molecular inhibitor of type III secretion inhibits different
stages of the infectious cycle of Chlamydia trachomatis. Proc
Natl Acad Sci U S A 2006, 103:14566-14571.

22. Matsumoto A: Surface projections of Chlamydia psittaci
elementary bodies as revealed by freeze-deep-etching.
J Bacteriol 1982, 151:1040-1042.
www.sciencedirect.com

http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0005
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0005
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0010
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0010
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0015
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0015
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0015
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0020
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0020
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0020
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0020
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0020
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0025
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0025
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0025
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0030
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0030
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0030
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0030
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0035
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0035
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0035
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0040
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0040
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0040
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0045
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0045
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0045
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0045
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0050
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0050
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0050
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0055
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0055
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0055
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0060
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0060
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0065
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0065
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0065
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0070
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0070
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0070
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0070
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0075
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0075
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0075
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0080
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0080
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0080
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0080
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0085
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0085
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0090
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0090
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0090
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0095
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0095
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0095
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0100
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0100
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0100
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0100
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0100
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0105
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0105
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0105
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0105
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0105
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0110
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0110
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0110


Type III secretion systems in Chlamydia Dumoux et al. 7
23. Peters J, Wilson DP, Myers G, Timms P, Bavoil PM: Type III
secretion a la Chlamydia. Trends Microbiol 2007, 15:241-251.

24. Swanson KA, Taylor LD, Frank SD, Sturdevant GL, Fischer ER,
Carlson JH, Whitmire WM, Caldwell HD: Chlamydia trachomatis
polymorphic membrane protein D is an oligomeric
autotransporter with a higher-order structure. Infect Immun
2009, 77:508-516.

25. Peterson EM, de la Maza LM: Chlamydia parasitism:
ultrastructural characterization of the interaction between the
chlamydial cell envelope and the host cell. J Bacteriol 1988,
170:1389-1392.

26.
��

Nans A, Saibil HR, Hayward RD: Pathogen–host reorganisation
during Chlamydia invasion revealed by cryo-electron
tomography. Cell Microbiol 2014 http://dx.doi.org/10.1111/cmi.
12310.

Applied cryo-electron tomography to study EB structure, the changes in
host and bacterial membranes that accompany entry, visualised T3SS in
contact with the plasma membrane.

27. Devos DP1: PVC bacteria: variation of, but not exception to, the
Gram-negative cell plan. Trends Microbiol 2014, 22:14-20.

28. Fechtner T, Stallman S, Moelleken K, Meyer KL, Hegemann JH:
Characterisation of the interaction between the chlamydial
adhesion OmcB and the human host cell. J Bacteriol 2013,
195:5323-5333.

29. Molleken K, Schmidt E, Hegemann JH: Members of the Pmp
protein family of Chlamydia pneumoniae mediate adhesion to
human cells via short repetitive peptide motifs. Mol Microbiol
2010, 78:1004-1007.

30. Carabeo RA, Grieshaber SS, Hasenkrug A, Dooley C, Hackstadt T:
Requirement for the Rac GTPase in Chlamydia trachomatis
invasion of non-phagocytic cells. Traffic 2004, 5:418-425.

31. Balana ME, Niedergang F, Subtil A, Alcover A, Chavrier P, Dautry-
Varsat A: Arf6 GTPase controls bacterial invasion by actin
remodelling. J Cell Sci 2005, 118:2201-2210.

32. Clifton DR, Fields KA, Grieshaber SS, Dooley CA, Fischer ER,
Mead DJ, Carabeo RA, Hackstadt T: A chlamydial type III
translocated protein is tyrosine-phosphorylated at the site of
entry and is associated with recruitment of actin. Proc Natl
Acad Sci U S A 2004, 101:10166-10171.

33. Thalmann J, Janik K, May M, Sommer K, Ebeling J, Hofmann F,
Genth H, Klos A: Actin reorganisation induced by Chlamydia
trachomatis serovar D — evidence for a critical role of the
effector protein CT166 targeting Rac. PLoS One 2010, 5:e9887.

34. Bannantine JP, Griffiths RS, Viratyosin W, Brown WJ, Rockey DD:
A secondary structure motif predictive of protein localisation
to the chlamydial inclusion membrane. Cell Microbiol 2000,
2:35-47.

35. Cocchiaro JL, Kumar Y, Fischer ER, Hackstadt T, Valdivia RH:
Cytoplasmic lipid droplets are translocated into the lumen of
the Chlamydia trachomatis parasitophorous vacuole. Proc
Natl Acad Sci U S A 2008, 105:9379-9384.

36. Carabeo RA, Mead DJ, Hackstadt T: Golgi-dependent transport
of cholesterol to the Chlamydia trachomatis inclusion. Proc
Natl Acad Sci U S A 2003, 100:6771-6776.

37. Beatty WL: Late endocytic multivesicular bodies intersect the
chlamydial inclusion in the absence of CD63. Infect Immun
2008, 76:2872-2881.

38. Kumar Y, Valdivia RH: Actin and intermediate filaments
stabilise the Chlamydia trachomatis vacuole by forming
dynamic structural scaffolds. Cell Host Microbe 2008,
4:159-169.
www.sciencedirect.com 
39.
��

Derre I, Swiss R, Agaisse H: The lipid transfer protein CERT
interacts with the Chlamydia inclusion protein IncD and
participates in ER-Chlamydia inclusion membrane contact
sites. PLoS Pathog 2011, 7:e1002092.

Demonstrated an interaction between IncD and CERT at junctions
between the host ER and the chlamydial inclusion.

40.
��

Elwell CA, Jiang S, Kim JH, Lee A, Wittmann T, Hanada K,
Melancon P, Engel JN: Chlamydia trachomatis co-opts GBF1
and CERT to acquire host sphingomyelin for distinct roles
during intracellular development. PLoS Pathog 2011,
7:e1002198.

Showed that host lipid transporters are critical to the transport of sphin-
gomyelin into the inclusion.

41.
��

Dumoux M, Clare DK, Saibil HR, Hayward RD: Chlamydiae
assemble a pathogen synapse to hijack the host endoplasmic
reticulum. Traffic 2012, 13:1612-1627.

Identified a critical role for the host rER in inclusion biogenesis and
visualised the pathogen synapse linking the T3SS, inclusion membrane
and rER.

42. Ronzone E, Paumet F: Two coiled-coil domains of Chlamydia
trachomatis IncA affect membrane fusion events during
infection. PLoS One 2013, 8:e69769.

43. Scidmore MA, Hackstadt T: Mammalian 14-3-3b associates
with the Chlamydia trachomatis inclusion via its interaction
with IncG. Mol Microbiol 2001, 39:1638-1650.

44. Rzomp KA, Moorhead AR, Scidmore MA: The GTPase Rab4
interacts with Chlamydia trachomatis inclusion membrane
protein CT229. Infect Immun 2006, 74:5362-5373.

45. Moorhead AM, Jung JY, Smirnov A, Kaufer S, Scidmore MA:
Multiple host proteins that function in phosphatidylinositol-4-
phosphate metabolism are recruited to the chlamydial
inclusion. Infect Immun 2010, 78:1990-2007.

46. Hubber A, Arasaki K, Nakatsu F, Hardiman C, Lambright D, De
Camilli P, Nagai H, Roy CR: The machinery at endoplasmic
reticulum–plasma membrane contact sites contributes to
spatial regulation of multiple Legionella effector proteins.
PLoS Pathog 2014, 10:e10004222.

47. Weber SS, Ragaz C, Hilbi H: Pathogen trafficking pathways and
host phosphoinositide metabolism. Mol Microbiol 2009,
71:1341-1352.

48. Hegde RS, Keenan RJ: Tail-anchored membrane protein
insertion into the endoplasmic reticulum. Nat Rev Mol Cell Biol
2011, 12:787-798.

49. Araki K, Nagata K: Protein folding and quality control in the ER.
Cold Spring Harb Perspect Biol 2011, 3:a007526.

50. Kagan JC, Roy CR: Legionella phagosomes intercept vesicular
traffic from endoplasmic reticulum exit sites. Nat Cell Biol 2002,
4:945-954.

51. Shkarupeta MM, Kostrjukova ES, Lazarev VN, Levitskii SA,
Basovskii YI, Govorum VM: Localisation of C. trachomatis Inc
proteins in expression of their genes in HeLa cells. Bull Exp Biol
Med 2008, 146:237-242.

52. Mital J, Miller NJ, Fischer ER, Hackstadt T: Specific
chlamydial inclusion membrane proteins associate with
active Src family kinases in microdomains that interact
with the host microtubule network. Cell Microbiol 2010,
12:1235-1249.

53.
��

Kudryashev M et al.: In situ structural analysis of the Yersinia
enterocolitica injectisome. Elife 2013, 2:e00792.

Provided the first view of a T3SS in situ in the bacterial envelope.
Current Opinion in Microbiology 2015, 23:1–7

http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0115
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0115
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0120
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0120
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0120
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0120
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0120
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0125
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0125
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0125
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0125
http://dx.doi.org/10.1111/cmi. 12310
http://dx.doi.org/10.1111/cmi. 12310
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0135
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0135
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0140
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0140
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0140
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0140
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0145
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0145
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0145
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0145
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0150
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0150
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0150
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0155
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0155
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0155
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0160
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0160
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0160
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0160
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0160
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0165
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0165
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0165
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0165
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0170
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0170
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0170
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0170
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0175
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0175
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0175
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0175
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0180
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0180
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0180
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0185
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0185
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0185
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0190
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0190
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0190
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0190
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0195
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0195
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0195
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0195
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0200
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0200
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0200
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0200
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0200
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0205
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0205
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0205
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0210
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0210
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0210
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0215
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0215
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0215
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0220
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0220
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0220
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0225
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0225
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0225
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0225
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0230
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0230
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0230
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0230
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0230
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0235
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0235
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0235
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0240
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0240
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0240
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0245
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0245
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0250
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0250
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0250
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0255
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0255
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0255
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0255
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0260
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0260
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0260
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0260
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0260
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0265
http://refhub.elsevier.com/S1369-5274(14)00139-8/sbref0265

	Making connections: snapshots of chlamydial type III secretion systems in contact with host membranes
	Introduction
	The chlamydial T3SS: the exception or the rule?
	Polar organisation of T3SS arrays in Chlamydia EBs
	Pathogen synapses: ordered connections between the T3SS, the inclusion membrane and the host endoplasmic reticulum
	Host rER: a membrane source for inclusion growth and receiver for hydrophobic T3SS substrates?
	Conclusions
	References and recommended reading
	Acknowledgements


