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Relaxation rates provide important information about tissue microstructure.
Multi-parameter mapping (MPM) estimates multiple relaxation parameters from
multi-echo FLASH acquisitions with different basic contrasts, i.e., proton density
(PD), T1 or magnetization transfer (MT) weighting. Motion can particularly affect maps
of the apparent transverse relaxation rate R2∗, which are derived from the signal of
PD-weighted images acquired at different echo times. To address the motion artifacts,
we introduce ESTATICS, which robustly estimates R2∗ from images even when acquired
with different basic contrasts. ESTATICS extends the fitted signal model to account for
inherent contrast differences in the PDw, T1w and MTw images. The fit was implemented
as a conventional ordinary least squares optimization and as a robust fit with a small
or large confidence interval. These three different implementations of ESTATICS were
tested on data affected by severe motion artifacts and data with no prominent motion
artifacts as determined by visual assessment or fast optical motion tracking. ESTATICS
improved the quality of the R2∗ maps and reduced the coefficient of variation for both
types of data—with average reductions of 30% when severe motion artifacts were
present. ESTATICS can be applied to any protocol comprised of multiple 2D/3D multi-echo
FLASH acquisitions as used in the general research and clinical setting.

Keywords: T2∗, transverse relaxation, apparent transverse relaxation, robust fit, multiple contrasts, motion,
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INTRODUCTION
Quantitative magnetic resonance imaging (qMRI) provides stan-
dardized information about the tissue microstructure that can
be compared across time points and imaging sites (e.g., Tofts,
2003; Schmierer et al., 2004; Dick et al., 2012; Weiskopf et al.,
2013). Quantitative multi-parameter mapping (MPM) is a fast
method for mapping the longitudinal relaxation rate R1, effec-
tive proton density PD∗ (Lin et al., 1997; Weiskopf et al., 2013),
magnetization transfer saturation (MT) and apparent transverse
relaxation rate R2∗ across the entire brain. These parameters are
estimated from three differently weighted datasets acquired with a
3D fast low angle shot (FLASH) sequence using established phys-
ical models (Helms et al., 2008a,b; Weiskopf et al., 2013). The
method was shown to provide important information about tis-
sue microstructure, including tissue myelination in health and
disease (Draganski et al., 2011; Dick et al., 2012; Freund et al.,
2013; Sereno et al., 2013; Lutti et al., 2014) or iron concentration
(Ordidge et al., 1994; Langkammer et al., 2010; Draganski et al.,
2011; Callaghan et al., 2014a), which is based on the measurement
of R2∗.

The R2∗ maps are particularly prone to motion artifacts, since
their estimation requires images acquired at long echo times that

are more affected by motions [TE ∼> 10 ms; (Versluis et al.,
2010; Magerkurth et al., 2011)]. The other quantitative maps (R1,
MT, PD∗) generated from the MPM protocol are significantly less
affected by motion, since they are estimated from averages across
multiple echo times (including short echo times, Weiskopf et al.,
2013).

Different methods were developed to address motion-
related artifacts in high-resolution anatomical imaging. Standard
retrospective rigid body motion correction cannot account for
intra-scan motion artifacts and thus is less useful for long
anatomical imaging (Friston et al., 1995; Kochunov et al., 2006).
Most approaches correcting for intra-scan motion require mod-
ified pulse sequences, bespoke image reconstruction methods
(Pipe, 1999; Versluis et al., 2010) or access to raw k-space data
(Bydder et al., 2003; Lin et al., 2007; Magerkurth et al., 2011; Nöth
et al., 2014). Prospective motion correction based on fast optical
tracking provides a high quality flexible correction approach but
it requires specialized hardware and software (Zaitsev et al., 2006;
Maclaren et al., 2012). Frequently, the correction methods are not
readily available on clinical MRI scanners. Also, the majority were
developed for 2D imaging rather than 3D imaging that is usually
used for high-resolution anatomical imaging.
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We propose a novel method for correcting motion artifacts
and increasing signal-to-noise ratio (SNR) in the R2* maps esti-
mated from 3D MPM modulus image data or similar protocols
with multiple acquisitions: ESTimating the Apparent Transverse
relaxation time (R2∗) from Images with different ContrastS
(ESTATICS). The MPM method estimates R2∗ from the echoes
of the PD-weighted FLASH acquisition only. ESTATICS extends
the method to using data from all three differently weighted
acquisitions by accounting for the varying contrasts. We also
complement the standard ordinary least squares (OLS) log-linear
fit with a robust fitting procedure, which detects and down
weights echoes affected by motion artifacts. We demonstrate the
validity and effectiveness of ESTATICS in data with no promi-
nent motion artifacts and data affected by severe motion artifacts.
In addition to testing on typical data acquired in a neuroimag-
ing center, fast optical motion tracking and prospective motion
correction is employed to define a motion artifact-free gold
standard.

METHODS
ESTATICS
The MPM protocol yields three multi-echo FLASH datasets
with PD-, T1- and MT-weighting and between 6 and 8 echoes
per dataset at different echo times TE: IPD (TE), IT1 (TE), and
IMT (TE). Assuming mono-exponential signal decay with TE, the
signal equation is (here for the PD-weighted scan):

IPD (TE) = IPD (0) e−R∗
2TE (1)

with IPD (0) being the signal at TE = 0 determined by the net
magnetization and sensitivity of the MR system. Note that we
also assume that R∗

2 is constant across the different FLASH acqui-
sitions, an assumption that is tested in this study. The standard
MPM method estimates ÎPD(0) and R̂∗

2 by a log-linear fit of the
PD-weighted data, i.e., minimizing the error ε of:

ε =
nmax∑
n = 1

[
ln (IPD (TE (n))) + R̂∗

2TE (n) − ln
(

ÎPD (0)
)]2

(2)

with n being the echo number and nmax the maximal number of
echoes.

For the ESTATICS approach, we generalize this optimization
problem to three or more contrasts by simultaneously optimizing
across all contrasts minimizing the error ε now defined as:

ε =
kmax∑
k=1

nmax(k)∑
n=1

[
ln (Ik (TE (n))) + R̂∗

2TE (n) − ln
(

Îk (0)
)]2

(3)

with k being the contrast number (e.g., for PD-weighting or T1-
weighting), kmax the maximal number of contrasts and nmax(k)
the maximal number of echoes for contrast k.

Note that the different contrast weighting is accounted for by
different contrast specific Îk(0) and that R2∗ is assumed to be
independent of the contrast weighting, i.e., resulting in only a
single R̂∗

2 estimate.

The generalized optimization problem (Equation 3) was
solved with established OLS (e.g., Aster and Thurber, 2012) and
robust fitting approaches. The robust fitting approach, which
is routinely used in other quantitative imaging modalities (e.g.,
Mohammadi et al., 2013a), is further decribed in the Data
Analysis Section.

DATA ACQUISITION
Two studies assessed the performance of the different R2∗ esti-
mation approaches. The first study was based on a group of
volunteers representing the typical population at a cognitive neu-
roimaging center. The second study assessed the performance in a
single volunteer with precise tracking of motion trajectories using
an optical motion tracking system.

Group study
The data of 20 healthy volunteers (10 female, mean age 22.6
years, std. dev. 2.9 years) acquired as part of studies conducted
within the cognitive neuroimaging program at the Wellcome
Trust Centre for Neuroimaging were analyzed. The studies were
approved by the local ethics committee and informed written
consent was obtained prior to scanning. Although volunteers
were instructed to minimize head motion as part of the rou-
tine pre-scan briefing, severe head motion artifacts were visible
in some volunteers’ data. Two groups of 10 datasets were visually
selected so that one group was corrupted by severe motion arti-
facts (large-motion group) while the other was free of prominent
motion artifacts (small-motion group). The two groups were also
matched for age and gender.

Whole-brain quantitative MPM data (Weiskopf et al., 2013)
were acquired on a 3T whole body MRI scanner (Magnetom TIM
Trio, Siemens Healthcare, Erlangen, Germany) equipped with a
standard 32 channel head coil for receive and radiofrequency (RF)
body coil for transmission. The details of the data acquisition are
reported in Weiskopf et al. (2013) and are briefly summarized
here for convenience. The three different multi-echo FLASH scans
were acquired with predominant T1-, PD-, and MT-weighting
by specific choice of the repetition time (TR) and the flip angle
α: TR/α = 18.7 ms/20◦ for the T1w scan and 23.7 ms/6◦ for the
PDw and the MTw scans. MT-weighting was achieved by applying
an off-resonance Gaussian-shaped RF pulse (4 ms duration, 220◦
nominal flip angle, 2 kHz frequency offset from water resonance)
prior to the excitation. Multiple gradient echoes were acquired
with alternating readout polarity at six equidistant echo times
(TE) between 2.2 and 14.7 ms for the T1w and MTw acquisitions
and at 8 equidistant TE between 2.2 and 19.7 ms for the PDw
acquisition. Thus, following the notation in the Theory section,
the number of contrasts was kmax = 3, and the correspond-
ing number of echoes were nmax(T1) = nmax(MT) = 6, nmax

(PD) = 8.
Other acquisition parameters were: 1 mm isotropic resolution,

176 sagittal partitions, field of view (FOV) = 256 mm × 240 mm,
parallel imaging using GRAPPA factor 2 in phase-encoding (PE)
direction, 6/8 partial Fourier in partition direction, non-selective
RF excitation, readout bandwidth BW = 425 Hz/pixel, RF spoil-
ing phase increment = 50◦, total acquisition time for the FLASH
sequences ∼ 19 min. Additional reference data for correction
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of RF transmit field inhomogeneities (Lutti et al., 2012) were
acquired. The total scanning time of the MPM protocol was
approximately 25 min.

High-resolution R2∗ mapping with optical motion tracking
To characterize the relation between particular motion trajecto-
ries and the artifact level in R2∗ maps, a single healthy volunteer
(male, age 45 years) was scanned on the same MRI scanner setup
but with an additional optical motion tracking system (Kineticor,
HI; Maclaren et al., 2012). The study was approved by the local
ethics committee and informed written consent was obtained
prior to scanning.

The optical motion tracking system provided and recorded
information about the head position with high precision on the
order of tens of microns at 85 Hz frame rate. Using special soft-
ware libraries (Zaitsev et al., 2006; Herbst et al., 2012, 2014), the
information could also be used to dynamically update the imag-
ing volume such that it followed the head, i.e., for prospective
motion correction (PMC).

The MPM data acquisition was similar to the protocol used in
the group study but achieved an isotropic resolution of 800 μm
instead of 1 mm. The three different multi-echo FLASH scans
were acquired with predominant T1-, PD-, and MT-weighting by
specific choice of the repetition time (TR) and the flip angle α:
TR/α = 27 ms/21◦ for the T1w scan and 27 ms/6◦ for the PDw
and the MTw scans. MT-weighting was achieved by applying
an off-resonance Gaussian-shaped RF pulse as described above.
Multiple gradient echoes were acquired with alternating read-
out polarity at six equidistant echo times (TE) between 2.34 and
13.84 ms for the MTw acquisitions and at 8 equidistant echo times
for the T1w and PDw acquisitions with TE between 2.34 and
18.44 ms.

The other acquisition parameters were: 208 sagittal partitions,
field of view (FOV) = 256 × 224 mm, parallel imaging using
GRAPPA factor 2 in phase-encoding (PE) direction, 6/8 partial
Fourier in partition direction, non-selective RF excitation, read-
out bandwidth BW = 488 Hz/pixel, RF spoiling phase increment
= 137◦, total acquisition time for the FLASH sequences ∼ 32 min.
Additional reference data for correction of RF transmit field inho-
mogeneities (Lutti et al., 2012) were acquired. The total scanning
time of the MPM protocol was approximately 40 min. The PDw
acquisition was repeated with the PMC system turned on (i.e.,
tracking and correcting for motion) and off (i.e., tracking but not
correcting for motion). The volunteer was then allowed to move
freely during an additional acquisition with the PMC system off.

DATA ANALYSIS
Group study
Data were analyzed using tools implemented in Matlab (The
Mathworks) including SPM8 (Friston et al., 2007) and the VBQ
toolbox for analyzing MPM data (Draganski et al., 2011; Weiskopf
et al., 2013), which was extended to include the ESTATICS
approach. The different acquisitions were coregistered for each
participant. T1-weighted images were segmented into different
tissue classes including gray and white matter using the uni-
fied segmentation approach (Ashburner and Friston, 2005). The
non-linear transform from single subject space to MNI space

was estimated also using unified segmentation. For quantitative
analysis, a frontal region-of-interest (ROI) was defined in MNI
space and transformed into the individual subject space using the
inverse non-linear transform. The ROI encompassed a cube with
face length 10 mm in each hemisphere. Only voxels with a white
matter probability higher than 95% within the ROI were included
in the analysis.

The R2∗ maps were estimated in six different ways for assess-
ment of the ESTATICS method. Three estimations were based on
an ordinary least squares (OLS) fit of the single PDw, T1w or MTw
scan. The other three estimations used the three weighted scans in
combination and were based on an OLS fit and two different types
of robust fits.

As a reference, OLS fits were performed separately for the
multi-echo data of the PDw (=standard approach, denoted
R∗

2(PDw)), T1w (denoted R∗
2(T1w)) and MTw (denoted

R∗
2(MTw)) scans. For ESTATICS, the multi-echo data com-

bined across the three different weightings were modeled using
OLS (denoted R∗

2(OLS)) and robust fitting. The robust-fitting
approach down-weighted outliers and corrected the distortion of
the residual error distribution from using the logarithm of the
signal in Equation (1). The confidence interval that determined
whether data points were within the noise variation or should
be treated as outliers was estimated from the distribution of
the residuals of the model fit using the standard procedure (for
details see e.g., Meer et al., 1991; Mangin et al., 2002).

We used two different approaches to calculate the weight
functions for the outlier rejection: the first approach used a voxel-
wise varying weighting function (similar to Holland and Welsch,
1977), whereas the second approach factorized the weighting
function into a voxel-wise, a line-wise, and a plane-wise vary-
ing component (similar to the procedures described in Zwiers,
2010; Mohammadi et al., 2013a,b). The first method resulted in
a normal SNR but was less robust against outliers, whereas the
second method was more robust against outliers but resulted in
a lower SNR. We denote the former method high SNR robust fit-
ting (R∗

2(Robust Fitting High SNR)) and the latter robust fitting
(denoted R∗

2(Robust Fitting)) in the following.
For quantitative assessment, the mean and standard devia-

tion (sd) across voxels, and the coefficient of variation (CoV =
sd/mean) within the frontal white matter ROI were determined
for each volunteer and estimation method. The validity of this
particular measure of CoV depends on negligible physiological
variations within the ROI (Helms et al., 2009; Weiskopf et al.,
2013). Therefore, the ROI was limited to a small cube containing
white matter only, providing a conservative estimate of the noise
level.

Statistical analysis was performed to test for differences in
CoV depending on the fitting method. The analysis was con-
ducted separately for the small-motion and large-motion group
of volunteers, since the statistical distributions were expected to
be considerably different. Since the data affected by motion was
not Gaussian distributed, a non-parametric two-tailed Wilcoxon
signed rank test was used to test for pair-wise significant differ-
ences between the OLS fit based on the PDw images and the other
five different estimation methods. In addition, the same test was
used to test for pair-wise differences between ESTATICS based on
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the OLS and the two robust fitting methods. A conservative sta-
tistical threshold of p < 0.05/8 = 0.0063 was used to correct for
multiple comparisons within each group of volunteers (8 tests in
total per group).

To test for bias induced by motion artifacts, the percent devi-
ations of R2∗ estimates between the large-motion group and the
small-motion group were estimated for each method separately.
A two-tailed Wilcoxon signed rank test with a liberal statistical
threshold of p < 0.05 determined significance, to achieve a high
sensitivity to any bias.

To assess a potential bias of the alternative R2∗ estimation
approaches, the percent difference between each method-specific
R2∗ estimate and the current standard approach (R∗

2(PDw)) was
determined.

High-resolution R2∗ mapping with optical motion tracking
R2∗ maps of the high-resolution data were estimated with the
same methods as in the group study. The quality of the maps
was determined by careful visual inspection. To assess the relation
between motion and artifacts, a summary scalar metric capturing
the rate of motion per TR was estimated from the motion tracking
data by numerical differentiation and square root sum of squares
combination of the rotation (pitch, roll, yaw) and translation (x,
y, z) measures.

RESULTS
ESTATICS significantly reduced motion artifacts in the R2∗ maps
as can be seen in Figure 1 for a volunteer from the large-motion
group. Severe ringing artifacts occurred in the R∗

2(MTw) map
(top center, Figure 1) but were not present in the robust fitting
ESTATICS estimates R∗

2(Robust Fitting) and R∗
2(Robust Fitting

High SNR); (bottom center and right) and were also reduced
in the OLS ESTATICS estimate R∗

2(OLS) (bottom left). If several
contrasts were affected by motion, ESTATICS did not achieve a
complete correction of artifacts as can be seen in a case where
the MTw and PDw images were affected and some artifacts in
the frontal cortex remained (Figure 2). The R2∗ map quality was
improved even in the small-motion group unaffected by promi-
nent motion artifacts as can be seen in Figure 3. In particular the
SNR and definition of contrast edges were improved.

The CoV in the frontal white matter ROI was significantly
decreased for all three different ESTATICS methods compared to
the standard approach (R∗

2(PDw)) for both groups of volunteers
(Figures 4A,B; all p < 0.0059; all W ≤ 2). For the large-motion
group, there was no significant difference between R∗

2(OLS),
R∗

2(Robust Fitting) and R∗
2(Robust Fitting High SNR) when

accounting for multiple comparisons (Figure 4A; all p > 0.011,
all W ≥ 2). For the small-motion group, the CoV was increased
for the R∗

2(Robust Fitting) method compared to the R∗
2(OLS)

FIGURE 1 | Correction of motion artifacts in R2∗ maps estimated from

multi-echo FLASH data. The top row shows maps generated from
multiple echoes of a single primary contrast weighting, i.e., R2∗(T1w),
R2∗(MTw) or R2∗(PDw) (= standard method) maps. The bottom row

shows maps estimated with the ESTATICS approach, i.e., R2∗(OLS),
R2∗(Robust Fitting) and R2∗(Robust Fitting High SNR). ESTATICS
significantly reduced the motion artifacts seen in the R2∗(MTw) map. All
maps are windowed from 5 to 50 s−1.
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FIGURE 2 | Correction of motion artifacts in R2∗ maps estimated

from multi-echo FLASH. ESTATICS significantly reduced the motion
artifacts seen in R2∗(MTw) and R2∗(PDw) maps. Since two contrast
weightings were affected by motion, the motion correction was

less effective than when a single contrast weighting was affected
(see Figure 1), e.g., some artifacts remained in the frontal cortex.
See Figure 1 for further details. All maps are windowed from 5
to 50 s−1.

and R∗
2(Robust Fitting High SNR) methods (Figure 4B; both p <

0.0039; both W = 0).
The improvement of R2∗ maps by ESTATICS was also clearly

visible in the high-resolution dataset (Figure 5, left column vs.
three right columns in the bottom row). In particular, the frontal
brain regions showed considerably reduced artifact levels com-
pared to the standard approach. Ringing was reduced and homo-
geneity of the R2∗ maps was improved. The motion tracking
(Figure 5, top right panel) confirmed extensive head motion in
the large motion case and minimal movement in the other cases.

Motion induced bias was assessed by comparing the R2∗ esti-
mates in the large-motion group with the small-motion group (in
the frontal ROI; note—no figure shown). There was no significant
difference in the amount of motion induced bias for the different
methods when compared to the standard approach (all p > 0.12;
all W ≥ 11.5). However, the R2∗ (Robust Fitting) method showed
a lower deviation when directly compared to the R∗

2(OLS) and
R∗

2(Robust Fitting high SNR) methods (both p < 0.039; both
W ≤ 7.5), indicating a higher robustness and accuracy of the
robust fitting.

The absolute R2∗ estimates in the frontal ROI depended on
the fitting method (Figure 6). For example in the small-motion
group, the R2∗(T1w) estimates were 9.5 ± 9.1% (median±inter
quartile range) higher than R∗

2(PDw), and the R∗
2(MTw) estimates

were 2.3 ± 10.5% higher than R∗
2(PDw). When using ESTATICS,

the R2∗ was increased by 3.0 ± 5.2%, 2.6 ± 3.8% and 3.1 ±
5.1%, for R∗

2(OLS), R∗
2(Robust Fitting) and R∗

2(Robust Fitting
High SNR) respectively.

DISCUSSION
Motion artifacts in R2∗ maps were significantly reduced and the
SNR was significantly increased by ESTATICS—a novel approach
to fitting the multi-echo data from FLASH acquisitions with
different contrast weighting, as e.g., acquired for quantitative
multi-parameter mapping (MPM; Weiskopf et al., 2013). The
coefficient of variation of R2∗ estimates was reduced by ca. 30%
in data affected by motion (Figure 4). The homogeneity and
appearance of R2∗ maps were clearly improved (Figures 1–3,5).

Motion artifacts in long echo time acquisitions are a limiting
factor for R2∗ mapping, particularly in non-compliant volunteers
or patients (Versluis et al., 2010; Nöth et al., 2014). For example,
in Parkinson’s disease R2∗ maps can be difficult to measure due to
involuntary head motion but they are an important tissue probe
due to known iron concentration changes.

Several methods were developed to avoid and correct
for motion artifacts in high resolution anatomical imaging.
Retrospective rigid body motion correction (Friston et al., 1995;
Kochunov et al., 2006) can be used for correcting inter-scan
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FIGURE 3 | R2∗ maps estimated from multi-echo FLASH data unaffected by motion. ESTATICS improved the SNR and delineation of contrast edges even
when there were no significant motion artifacts apparent. See Figure 1 for further details. All maps are windowed from 5 to 50 s−1.

motion but does not address intra-scan motion, which is par-
ticularly problematic for the long 3D acquisitions used for
anatomical imaging. The majority of methods correcting for
intra-scan motion require modified pulse sequences, advanced
image reconstruction methods (Pipe, 1999; Versluis et al., 2010),
access to raw k-space data (Bydder et al., 2003; Lin et al., 2007;
Magerkurth et al., 2011; Nöth et al., 2014) or even special-
ized hardware (Maclaren et al., 2012). Handling of raw k-space
is difficult in large scale research and clinical scanning. Most
intra-scan motion correction methods were not designed for
and may not be applicable to 3D acquisitions that are fre-
quently used in high-resolution anatomical scanning due to
their higher signal-to-noise ratio and high through-slice reso-
lution (e.g., Pipe, 1999; Magerkurth et al., 2011; Nöth et al.,
2014).

Prospective motion correction based on fast optical track-
ing has great promise for flexible and effective motion correc-
tion but depends on additional hardware and stable tracking
marker fixation (Maclaren et al., 2012). MR pulse sequences
acquiring rotating blades in k-space, such as PROPELLER (Pipe,
1999), are usually only implemented for 2D multi-slice imag-
ing, limiting the correction of 3D motion and also their appli-
cation to 3D MRI acquisitions. The PROPELLER approach
(Pipe, 1999) and also navigator based correction (Versluis et al.,
2010) further require extra scans, modified pulses sequences
and advanced image reconstruction. Alternative autofocusing

techniques require access to raw k-space data and bespoke
reconstruction methods (Lin et al., 2007).

Motion correction methods were also tailored to R2∗ map-
ping using 2D FLASH acquisitions (Magerkurth et al., 2011; Nöth
et al., 2014). They are based on repeated acquisitions of different
central k-space parts and optimization of data consistency across
scans with respect to a mono-exponential signal decay across echo
time. Considerable improvements in scan quality were demon-
strated for healthy volunteers and patients (Magerkurth et al.,
2011; Nöth et al., 2014). However, the methods were only devel-
oped for 2D multi-slice acquisitions and cannot combine data
acquired with different contrasts such as MPM datasets. They also
rely on access to k-space raw data.

Compared to the previous correction methods, ESTATICS is
a genuine post-processing method and only requires modulus
image data as, e.g., acquired by multi-echo FLASH sequences and
usually available in the clinical environment. It is compatible with
both 2D multi-slice and 3D data acquisition. In combination with
the established MPM protocol it offers a comprehensive tool for
robust quantitative imaging and assessment of tissue microstruc-
ture (Draganski et al., 2011; Weiskopf et al., 2011, 2013; Dick et al.,
2012; Freund et al., 2013; Sereno et al., 2013; Callaghan et al.,
2014a,b; Lutti et al., 2014). We would like to note that motion
artifacts usually affect the R2∗ maps more severely than the other
MPM maps that are estimated from averages of multiple images
at different echo times (Weiskopf et al., 2013).
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FIGURE 4 | Coefficient of varation (CoV) of R2∗ was reduced by

ESTATICS (as measured in the frontal white matter ROI). (A) In the
large-motion group the CoV was considerably reduced using ESTATICS.
Also the consistency between volunteers was increased as can be seen by
reduced inter-subject variation. (B) In the small-motion group the CoV was
also reduced using ESTATICS but the absolute effect was smaller. Box plots
provide descriptive statistics for CoV across the group with blue box =
25/75% percentile, red line = median, black whisker = most extreme data
value excluding outliers, red cross = outlier (probability < 0.01 under
assumption of normally distributed data). Note the different scale of the
y-axis for the data of small-motion and large-motion groups. See Figure 1

for explanation of abbreviations.

The ESTATICS approach improves SNR and contrast defini-
tion in the R2∗ maps relative to the standard single contrast R2∗
estimation approach since it utilizes data from all contrasts. The
robust fitting methods may reduce the SNR in the R2∗ maps com-
pared to OLS fitting, since it intrinsically reduces the degrees of
freedom in the dataset. Especially data with high SNR and mini-
mal artifact level may benefit from using OLS fitting. To alleviate
this issue, the confidence interval of the robust fitting algorithm
can be tuned to optimize for SNR and ignore low-amplitude
outliers—as done in this study. However, in our study the SNR
difference between OLS and robust fitting was almost negligible
compared to the general improvement due to ESTATICS as can
be seen in Figure 4B.

ESTATICS is based on the assumption that R2∗ is constant
across the different FLASH acquisitions. Strictly, this is not cor-
rect when the FLASH data are acquired with different T1 or MT
weightings, since different tissue compartments contribute dif-
ferently to the FLASH signal depending on the weighting. For
example, R2∗ estimates from T1-weighted images were increased
by approximately 9.5%, since presumably the relative contri-
bution from myelin water was increased, which has a higher
R2∗ than other tissue. Tests in a doped water phantom (not

shown) resulted in maximal deviations of 2.5% in R2∗ using
the different weightings. Although the phantom tests do not
fully exclude the possibility of technical artifacts introducing bias,
they indicate that they are not the major source of the bias.
ESTATICS using the entire dataset showed a much smaller dif-
ference of ca. 3% from the standard R2∗ estimates based on
the PD-weighted images only. Although this difference is small,
the possibility of bias should be considered when interpreting
or comparing results across studies. We are developing biophys-
ical models, such as the linear relaxometry model (Callaghan
et al., 2014b), which may help in reducing this bias in the
future since they can in principle account for the interaction
between the free induction decay and contrast weighting in
FLASH images.

Our implementation of ESTATICS assumes mono-exponential
free induction decay in line with previous correction approaches
(Magerkurth et al., 2011; Nöth et al., 2014). This assumption
will be violated in brain areas suffering from significant suscep-
tibility artifacts (Posse et al., 2003; Neeb et al., 2006) or partial
volume effects. The rather high ≤1 mm isotropic resolution used
in our study reduced the impact of susceptibility artifacts and
partial volume effects on the R2∗ maps but imaging protocols
with lower resolution may be more affected. It is also known that
non mono-exponential decays occur due to intrinsic properties of
myelination (Wharton and Bowtell, 2012). However, these effects
are expected to be rather small compared to the aforementioned
susceptibility artifacts.

If the SNR in the multi-echo data is low, the fitting of the
log-linear modulus signal is suboptimal and will lead to bias due
to the non Gaussian noise distribution. We did not observe this
problem in our data but lower SNR acquisitions, for example, at
higher resolution or longer echo times, may be affected.

In principle, the multi-echo data may be combined using var-
ious alternative strategies. We chose established OLS and robust
fitting methods for their well known characteristics and descrip-
tion. However, further improvements may be possible, e.g., by
tailoring the data combination approach for specific types of
motion. As an example for such an optimization, we implemented
a high SNR robust fitting variant. We would like to note that sim-
ply averaging the R2∗ maps from the different basic contrasts (i.e.,
averaging R∗

2(MTw), R∗
2(PDw) and R∗

2(T1w)) resulted in a higher
bias in the R2∗ estimates within the frontal white matter ROI than
robust or OLS fitting (data not shown).

Assessment of motion correction methods relies on test

motion trajectories that are realistic for the scanned target groups
of patients and volunteers and ideally are precisely known. So

far, knowledge about typical head motion in patients and volun-
teers is limited. To capture realistic motion in healthy volunteers,
we manually selected large- and small-motion groups from stud-
ies conducted within the cognitive neuroimaging program at our
center. In addition, we used a fast and precise optical tracking
system in one volunteer, to allow for the exact characterization
of the head motion (Figure 5). However, we did not test our
method in patients as some previous studies (Versluis et al., 2010;
Magerkurth et al., 2011; Nöth et al., 2014). The typical motion
trajectories may differ between volunteers and patients but also
between different patient populations, warranting further studies
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FIGURE 5 | R2∗ maps at 800 μm isotropic resolution and corresponding

motion trajectories in a single volunteer. High-speed optical motion
tracking determined head motion and allowed for prospective motion
correction (PMC). R2∗ maps were estimated with different methods. First
column shows R2∗(PDw), the last three columns show the different
ESTATICS implementations. Rows show data with increasing levels of

motion artifacts. First row shows data acquired with PMC and serves as
the no motion artifact gold standard. Second row shows data acquired
with minimal head motion without PMC. Third row shows data affected by
motion during the PDw image acquisition without PMC. Top right panel
shows speed of motion traces for the PDw image acquisitions for the
three conditions.

FIGURE 6 | Mean R2∗ in the frontal white ROI estimated by different fitting approaches. For definition of abbreviations and box plots see Figures 1,4.

for their characterization. This characterization will be facilitated
by the advent of fast and non interfering optical tracking systems.

ESTATICS efficiently addresses the artifacts caused by head
motion in R2∗ maps derived from multiple FLASH acquisitions.

Since it is a post-processing method that does not require tai-
lored pulse sequences and is applied to standard modulus image
data, it can be readily applied to 2D and 3D FLASH data
widely accessible in research and clinics. In combination with
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quantitative multi-parameter mapping it enables robust, fast,
whole brain, high resolution mapping of image parameters and
tissue microstructure.

ACKNOWLEDGMENTS
The Wellcome Trust Centre for Neuroimaging is supported by
core funding from the Wellcome Trust 0915/Z/10/Z. SM was
supported by the Deutsche Forschungsgemeinschaft (DFG, MO
2397/1-1). Funding for the optical tracking system was provided
by a SLMS Captial Equipment Award (UCL). Open access to
this article was funded by the Wellcome Trust. We thank Maxim
Zaitsev and Michael Herbst (University of Freiburg, Germany) for
providing the software libraries for PMC and help with the use
and installation of the optical tracking system.

REFERENCES
Ashburner, J., and Friston, K. J. (2005). Unified segmentation. Neuroimage 26,

839–851. doi: 10.1016/j.neuroimage.2005.02.018
Aster, R. C., and Thurber, C. H. (2012). Parameter Estimation and Inverse Problems.

Waltham, MA: Academic Press.
Bydder, M., Atkinson, D., Larkman, D. J., Hill, D. L. G., and Hajnal, J. V.

(2003). SMASH navigators. Magn. Reson. Med. 49, 493–500. doi: 10.1002/mrm.
10388

Callaghan, M. F., Freund, P., Draganski, B., Anderson, E., Cappelletti, M.,
Chowdhury, R., et al. (2014a). Widespread age-related differences in the human
brain microstructure revealed by quantitative magnetic resonance imaging.
Neurobiol. Aging 35, 1862–1872. doi: 10.1016/j.neurobiolaging.2014.02.008

Callaghan, M. F., Helms, G., Lutti, A., Mohammadi, S., and Weiskopf, N. (2014b). A
general linear relaxometry model of R1 using imaging data. Magn. Reson. Med.
doi: 10.1002/mrm.25210. [Epub ahead of print].

Dick, F., Tierney, A., Lutti, A., Josephs, O., Sereno, M. I., and Weiskopf, N. (2012).
In vivo functional and myeloarchitectonic mapping of human primary auditory
areas. J. Neurosci. 32, 16095–16105. doi: 10.1523/JNEUROSCI.1712-12.2012

Draganski, B., Ashburner, J., Hutton, C., Kherif, F., Frackowiak, R. S. J., Helms,
G., et al. (2011). Regional specificity of MRI contrast parameter changes in
normal ageing revealed by voxel-based quantification (VBQ). Neuroimage 55,
1423–1434. doi: 10.1016/j.neuroimage.2011.01.052

Freund, P., Weiskopf, N., Ashburner, J., Wolf, K., Sutter, R., Altmann, D. R., et al.
(2013). MRI investigation of the sensorimotor cortex and the corticospinal tract
after acute spinal cord injury: a prospective longitudinal study. Lancet Neurol.
12, 873–881. doi: 10.1016/S1474-4422(13)70146-7

Friston, K., Ashburner, J., Kiebel, S., Nichols, T., and Penny, W. (eds.). (2007).
Statistical Parametric Mapping: The Analysis of Functional Brain Images. London:
Elsevier.

Friston, K. J., Ashburner, J., Frith, C. D., Poline, J.-B., Heather, J. D., Williams, S.
C., et al. (1995). Spatial registration and normalization of images. Hum. Brain
Mapp. 2, 165–189. doi: 10.1002/hbm.460030303

Helms, G., Dathe, H., and Dechent, P. (2008a). Quantitative FLASH MRI at 3T
using a rational approximation of the Ernst equation. Magn. Reson. Med. 59,
667–672. doi: 10.1002/mrm.21542

Helms, G., Dathe, H., Kallenberg, K., and Dechent, P. (2008b). High-resolution
maps of magnetization transfer with inherent correction for RF inhomogene-
ity and T1 relaxation obtained from 3D FLASH MRI. Magn. Reson. Med. 60,
1396–1407. doi: 10.1002/mrm.21732

Helms, G., Draganski, B., Frackowiak, R., Ashburner, J., and Weiskopf, N.
(2009). Improved segmentation of deep brain grey matter structures using
magnetization transfer (MT) parameter maps. Neuroimage 47, 194–198. doi:
10.1016/j.neuroimage.2009.03.053

Herbst, M., Maclaren, J., Lovell-Smith, C., Sostheim, R., Egger, K., Harloff, A.,
et al. (2014). Reproduction of motion artifacts for performance analysis of
prospective motion correction in MRI. Magn. Reson. Med. 71, 182–190. doi:
10.1002/mrm.24645

Herbst, M., Maclaren, J., Weigel, M., Korvink, J., Hennig, J., and Zaitsev, M.
(2012). Prospective motion correction with continuous gradient updates in dif-
fusion weighted imaging. Magn. Reson. Med. 67, 326–338. doi: 10.1002/mrm.
23230

Holland, P. W., and Welsch, R. E. (1977). Robust regression using iteratively
reweighted least-squares. Commun. Stat. Theory Methods 6, 813–827. doi:
10.1080/03610927708827533

Kochunov, P., Lancaster, J. L., Glahn, D. C., Purdy, D., Laird, A. R., Gao,
F., et al. (2006). Retrospective motion correction protocol for high-
resolution anatomical MRI. Hum. Brain Mapp. 27, 957–962. doi: 10.1002/hbm.
20235

Langkammer, C., Krebs, N., Goessler, W., Scheurer, E., Ebner, F., Yen,
K., et al. (2010). Quantitative MR imaging of brain iron: a post-
mortem validation study. Radiology 257, 455–462. doi: 10.1148/radiol.
10100495

Lin, W., Ladinsky, G. A., Wehrli, F. W., and Song, H. K. (2007). Image metric-
based correction (autofocusing) of motion artifacts in high-resolution trabec-
ular bone imaging. J. Magn. Reson. Imaging 26, 191–197. doi: 10.1002/jmri.
20958

Lin, W., Paczynski, R. P., Venkatesan, R., He, Y. Y., Powers, W. J., Hsu, C. Y., et al.
(1997). Quantitative regional brain water measurement with magnetic reso-
nance imaging in a focal ischemia model. Magn. Reson. Med. 38, 303–310. doi:
10.1002/mrm.1910380221

Lutti, A., Dick, F., Sereno, M. I., and Weiskopf, N. (2014). Using high-resolution
quantitative mapping of R1 as an index of cortical myelination. Neuroimage
93(Pt 2), 176–188. doi: 10.1016/j.neuroimage.2013.06.005

Lutti, A., Stadler, J., Josephs, O., Windischberger, C., Speck, O., Bernarding, J., et al.
(2012). Robust and fast whole brain mapping of the RF transmit field B1 at 7T.
PLoS ONE 7:e32379. doi: 10.1371/journal.pone.0032379

Maclaren, J., Armstrong, B. S. R., Barrows, R. T., Danishad, K. A., Ernst, T., Foster,
C. L., et al. (2012). Measurement and correction of microscopic head motion
during magnetic resonance imaging of the brain. PLoS ONE 7:e48088. doi:
10.1371/journal.pone.0048088

Magerkurth, J., Volz, S., Wagner, M., Jurcoane, A., Anti, S., Seiler, A., et al. (2011).
Quantitative T*2-mapping based on multi-slice multiple gradient echo flash
imaging: retrospective correction for subject motion effects. Magn. Reson. Med.
66, 989–997. doi: 10.1002/mrm.22878

Mangin, J.-F., Poupon, C., Clark, C., Le Bihan, D., and Bloch, I. (2002). Distortion
correction and robust tensor estimation for MR diffusion imaging. Med. Image
Anal. 6, 191–198. doi: 10.1016/S1361-8415(02)00079-8

Meer, P., Mintz, D., Rosenfeld, A., and Kim, D. Y. (1991). Robust regression
methods for computer vision: a review. Int. J. Comput. Vision 6, 59–70. doi:
10.1007/BF00127126

Mohammadi, S., Freund, P., Feiweier, T., Curt, A., and Weiskopf, N. (2013a). The
impact of post-processing on spinal cord diffusion tensor imaging. Neuroimage
70, 377–385. doi: 10.1016/j.neuroimage.2012.12.058

Mohammadi, S., Hutton, C., Nagy, Z., Josephs, O., and Weiskopf, N. (2013b).
Retrospective correction of physiological noise in DTI using an extended ten-
sor model and peripheral measurements. Magn. Reson. Med. 70, 358–369. doi:
10.1002/mrm.24467

Neeb, H., Zilles, K., and Shah, N. J. (2006). A new method for fast quantitative
mapping of absolute water content in vivo. Neuroimage 31, 1156–1168. doi:
10.1016/j.neuroimage.2005.12.063

Nöth, U., Volz, S., Hattingen, E., and Deichmann, R. (2014). An improved method
for retrospective motion correction in quantitative T2* mapping. Neuroimage
92, 106–119. doi: 10.1016/j.neuroimage.2014.01.050

Ordidge, R. J., Gorell, J. M., Deniau, J. C., Knight, R. A., and Helpern, J. A.
(1994). Assessment of relative brain iron concentrations using T2-weighted
and T2*-weighted MRI at 3 Tesla. Magn. Reson. Med. 32, 335–341. doi:
10.1002/mrm.1910320309

Pipe, J. G. (1999). Motion correction with PROPELLER MRI: application to
head motion and free-breathing cardiac imaging. Magn. Reson. Med. 42,
963–969.

Posse, S., Shen, Z., Kiselev, V., and Kemna, L. J. (2003). Single-shot
T(2)* mapping with 3D compensation of local susceptibility gradients
in multiple regions. Neuroimage 18, 390–400. doi: 10.1016/S1053-8119(02)
00016-2

Schmierer, K., Scaravilli, F., Altmann, D. R., Barker, G. J., and Miller, D. H. (2004).
Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain.
Ann. Neurol. 56, 407–415. doi: 10.1002/ana.20202

Sereno, M. I., Lutti, A., Weiskopf, N., and Dick, F. (2013). Mapping the human
cortical surface by combining quantitative T1 with retinotopy. Cereb. Cortex 23,
2261–2268. doi: 10.1093/cercor/bhs213

www.frontiersin.org September 2014 | Volume 8 | Article 278 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Weiskopf et al. Estimating R2∗ from multiple contrasts (ESTATICS)

Tofts, P. (2003). Quantitative MRI of the Brain: Measuring Changes Caused by
Disease. West Sussex: John Wiley and Sons. doi: 10.1002/0470869526

Versluis, M. J., Peeters, J. M., van Rooden, S., van der Grond, J., van Buchem,
M. A., Webb, A. G., et al. (2010). Origin and reduction of motion and
f0 artifacts in high resolution T2*-weighted magnetic resonance imaging:
application in Alzheimer’s disease patients. Neuroimage 51, 1082–1088. doi:
10.1016/j.neuroimage.2010.03.048

Weiskopf, N., Lutti, A., Helms, G., Novak, M., Ashburner, J., and Hutton, C.
(2011). Unified segmentation based correction of R1 brain maps for RF
transmit field inhomogeneities (UNICORT). Neuroimage 54, 2116–2124. doi:
10.1016/j.neuroimage.2010.10.023

Weiskopf, N., Suckling, J., Williams, G., Correia, M. M., Inkster, B., Tait, R., et al.
(2013). Quantitative multi-parameter mapping of R1, PD*, MT, and R2* at
3T: a multi-center validation. Front. Neurosci. 7:95. doi: 10.3389/fnins.2013.
00095

Wharton, S., and Bowtell, R. (2012). Fiber orientation-dependent white matter
contrast in gradient echo MRI. Proc. Natl. Acad. Sci. U.S.A. 109, 18559–18564.
doi: 10.1073/pnas.1211075109

Zaitsev, M., Dold, C., Sakas, G., Hennig, J., and Speck, O. (2006).
Magnetic resonance imaging of freely moving objects: prospective
real-time motion correction using an external optical motion track-
ing system. Neuroimage 31, 1038–1050. doi: 10.1016/j.neuroimage.2006.
01.039

Zwiers, M. P. (2010). Patching cardiac and head motion artefacts in diffusion-
weighted images. Neuroimage 53, 565–575. doi: 10.1016/j.neuroimage.2010.
06.014

Conflict of Interest Statement: The Wellcome Trust Centre for Neuroimaging
has an institutional research agreement with Siemens and receives support from
Siemens. The reviewer, Dr Deichmann, declares that despite having collaborated
with the authors on previous occasions the review process was handled objectively.

Received: 11 April 2014; accepted: 18 August 2014; published online: 10 September
2014.
Citation: Weiskopf N, Callaghan MF, Josephs O, Lutti A and Mohammadi S (2014)
Estimating the apparent transverse relaxation time (R2*) from images with different
contrasts (ESTATICS) reduces motion artifacts. Front. Neurosci. 8:278. doi: 10.3389/
fnins.2014.00278
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers
in Neuroscience.
Copyright © 2014 Weiskopf, Callaghan, Josephs, Lutti and Mohammadi. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original publica-
tion in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | Brain Imaging Methods September 2014 | Volume 8 | Article 278 | 10

http://dx.doi.org/10.3389/fnins.2014.00278
http://dx.doi.org/10.3389/fnins.2014.00278
http://dx.doi.org/10.3389/fnins.2014.00278
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive

	Estimating the apparent transverse relaxation time (R2*) from images with different contrasts (ESTATICS) reduces motion artifacts
	Introduction
	Methods
	Estatics
	Data Acquisition
	Group study
	High-resolution R2 mapping with optical motion tracking

	Data Analysis
	Group study
	High-resolution R2 mapping with optical motion tracking


	Results
	Discussion
	Acknowledgments
	References


