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Abstract

Beauville surfaces are a class of complex surfaces defined by letting a finite group
G act on a product of Riemann surfaces. These surfaces possess many attractive
geometric properties several of which are dictated by properties of the group G.
In this survey we discuss the groups that may be used in this way. En route we
discuss several open problems, questions and conjectures.

1 Introduction

Roughly speaking (precise definitions will be given in the next section), a Beauville
surface is a complex surface S defined by taking a pair of complex curves, i.e. Rie-
mann surfaces, C1 and C2 and letting a finite group G act freely on their product to
define S as a quotient (C1×C2)/G. These surfaces have a wide variety of attractive
geometric properties: they are surfaces of general type; their automorphism groups
[50] and fundamental groups [20] are relatively easy to compute (being closely re-
lated to G - see Section 7.2 and 7.3); these surfaces are rigid surfaces in the sense
of admitting no nontrivial deformations [10] and thus correspond to isolated points
in the moduli space of surfaces of general type [37].

Much of this good behaviour stems from the fact that the surface (C1 × C2)/G
is uniquely determined by a particular pair of generating sets of G known as a
‘Beauville structure’. This converts the study of Beauville surfaces to the study of
groups with Beauville structures, i.e. Beauville groups.

Beauville surfaces were first defined by Catanese in [20] as a generalisation of
an earlier example of Beauville [14, Exercise X.13(4)] (native English speakers
may find the English translation [15] somewhat easier to read and get hold of) in
which C = C′ and the curves are both the Fermat curve defined by the equation
X5 + Y 5 + Z5 = 0 being acted on by the group (Z/5Z) × (Z/5Z) (this choice of
group may seem somewhat odd at first, but the reason will become clear later).
Bauer, Catanese and Grunewald went on to use these surfaces to construct exam-
ples of smooth regular surfaces with vanishing geometric genus [11]. Early motiva-
tion came from the consideration of the ‘Friedman-Morgan speculation’ – a tech-
nical conjecture concerning when two algebraic surfaces are diffeomorphic which
Beauville surfaces provide counterexamples to. More recently, they have been used
to construct interesting orbits of the absolute Galois group Gal(Q/Q) (connections
with Gothendeick’s theory of dessins d’enfant make it possible for this group to act
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on the set of all Beauville surfaces). We will discuss this in slightly more detail in
Section 7.6. Furthermore, Beauville’s original example has also recently been used
by Galkin and Shinder in [34] to construct examples of exceptional collections of
line bundles.

Like any survey article, the topics discussed here reflect the research interests
of the author. Slightly older surveys discussing related geometric and topological
matters are given by Bauer, Catanese and Pignatelli in [12, 13]. Other notable
works in the area include [7, 51, 58, 63].

We remark that throughout we shall use the standard ‘Atlas’ natation for finite
groups and related concepts as described in [24], excepting that we will occasionally
deviate to minimise confusion with similar notation for geometric concepts.

In Section 2 we will introduce the preliminary definitions before proceeding in
Section 3 to discuss the case of the finite simple groups. We then go on in Section 4
to discuss the abelian and nilpotent groups. Next, we focus our attention on special
types of Beauville structures when we discuss strongly real Beauville structures
in Section 5 and mixed Beauville structures in Section 6. Finally, we discuss a
miscellany of related but less well studied topics in Section 7.

2 Preliminaries

Definition 2.1 A surface S is a Beauville surface of unmixed type if

• the surface S is isogenous to a higher product, that is, S ∼= (C1×C2)/G where
C1 and C2 are algebraic curves of genus at least 2 and G is a finite group acting
faithfully on C1 and C2 by holomorphic transformations in such a way that it
acts freely on the product C1 × C2, and

• each Ci/G is isomorphic to the projective line P1(C) and the covering map
Ci → Ci/G is ramified over three points.

There also exists a concept of Beauville surfaces of mixed type but we shall
postpone our discussion of these until Section 6. In the first of the above conditions
the genus of the curves in question needs to be at least 2. It was later proved by
Fuertes, González-Diez and Jaikin-Zapirain in [32] that in fact we can take the genus
as being at least 6. The second of the above conditions implies that each Ci carries a
regular dessin in the sense of Grothendieck’s theory of dessins d’enfants (childeren’s
drawings) [45]. Furthermore, by Bely̆ı’s Theorem [16] this ensures that S is defined
over an algebraic number field in the sense that when we view each Riemann
surface as being the zeros of some polynomial we find that the coeffcients of that
polynomial belong to some number field. Equivalently they admit an orientably
regular hypermap [52], with G acting as the orientation-preserving automorphism
group. A modern account of dessins d’enfants and proofs of Bely̆ı’s theorem may
be found in the recent book of Girondo and González-Diez [38].

This can also be described instead in terms of uniformisation and the language
of Fuchsian groups [40, 61].

What makes this class of surfaces so good to work with is the fact that all of
the above definition can be ‘internalised’ into the group. It turns out that a group
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G can be used to define a Beauville surface if and only if it has a certain pair of
generating sets known as a Beauville structure.

Definition 2.2 Let G be a finite group. Let x, y ∈ G and let

Σ(x, y) :=

|G|⋃
i=1

⋃
g∈G
{(xi)g, (yi)g, ((xy)i)g}.

An unmixed Beauville structure for the group G is a set of pairs of elements
{{x1, y1}, {x2, y2}} ⊂ G × G with the property that 〈x1, y1〉 = 〈x2, y2〉 = G such
that

Σ(x1, y1) ∩ Σ(x2, y2) = {e}.

If G has a Beauville structure we say that G is a Beauville group. Furthermore
we say that the structure has type

((o(x1), o(y1), o(x1y1)), (o(x2), o(y2), o(x2y2))).

Traditionally, authors have defined the above structure in terms of so-called
‘spherical systems of generators of length 3’, meaning {x, y, z} ⊂ G with xyz = e,
but we omit z = (xy)−1 from our notation in this survey. (The reader is warned that
this terminology is a little misleading since the underlying geometry of Beauville
surfaces is hyperbolic thanks to the below constraint on the orders of the elements.)
Furthermore, many earlier papers on Beauville structures add the condition that
for i = 1, 2 we have that

1

o(xi)
+

1

o(yi)
+

1

o(xiyi)
< 1,

but this condition was subsequently found to be unnecessary following Bauer,
Catanese and Grunewald’s investigation of the wall-paper groups in [9]. A triple of
elements and their orders satisfying this condition are said to be hyperbolic. Geo-
metrically, the type gives us considerable amounts of geometric information about
the surface: the Riemann-Hurwitz formula

g(Ci) = 1 +
|G|
2

(
1− 1

o(xi)
− 1

o(yi)
− 1

o(xiyi)

)
tells us the genus of each of the curves used to define the surface S and by a theorem
of Zeuthen-Segre this in turn gives us the Euler number of the surface S since

e(S) = 4
(g(C1)− 1)(g(C2)− 1)

|G|

which in turn gives us the holomorphic Euler-Poincaré characteristic of S, namely
4χ(S) = e(S) (see [20, Theorem 3.4]).

Furthermore, if a group can be generated by a pair of elements of orders a and
b whose product has order c then G is a homomorphic image of the triangle group

Ta,b,c = 〈x, y, z|xa = yb = zc = xyz = 1〉.
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Homomorphic images of the triangle group T2,3,7 are known as Hurwitz groups. In
several places in the literature, knowing that a particular group is a Hurwitz group
has proved useful for deciding its status as a Beauville group. For a discussion of
known results on Hurwitz groups see the excellent surveys of Conder [22, 23].

3 Finite Simple Groups

A necessary condition for a group to be a Beauville group is that it is 2-generated.
In [1, 59] it is proved that all non-abelian finite simple groups are 2-generated.
For a long time it was conjectured that every non-abelian finite simple group, aside
from the alternating group A5, is a Beauville group [10, Conjecture 7.17], providing
a rich source of examples. Various authors proved special cases of this [10, 31, 33].
The full result comes from the following Theorem which is proved by the author,
Magaard and Parker in [27, 28].

Theorem 3.1 With the exceptions of SL2(5) and PSL2(5)(∼= A5
∼= SL2(4)), every

finite quasisimple group is a Beauville group.

Similar results were proved at around the same time by Garion, Larsen and Lubotzky
in [36] (using probabilistic results concerning triangle groups from the PhD thesis
of Marion [55]) and by Guralnick and Malle in [46] using the theory of linear al-
gebraic groups. Since the overriding ideas behind the proofs given in [27, 36, 46]
are in many ways quite general we sketch these ideas in the hope that they may be
useful in proving other conjectures that appear later in this survey.

First note that the alternating groups can be dealt with using classical permu-
tation group theory. Furthermore, the low rank groups of Lie type may be dealt
with using explicit matrix calculations (see for instance the work of Fuertes and
Jones in [33] concerning the groups PSL2(q),

2B2(2
2n+1) and 2G2(3

2n+1).) The
sporadic simple groups are easily dealt with on a case by case basis with structure
constant calculations being useful for the larger groups. The real difficulty lies with
the groups of Lie type of unbounded rank.

Let G be a finite simple group of Lie type of characteristic p. To ensure that we
can choose elements of the group G whose product behaves as we require we use
a theorem of Gow [44] (a slight generalisation of this result to quasisimple groups
is given in [27, Theorem 2.6]). An element of G is said to be ‘semisimple’ if its
order is coprime to p and is said to be ‘regular semisimple’ if its centralizer in G
has order coprime to p.

Theorem 3.2 Let G be a finite simple group of Lie type of characteristic p and
let s ∈ G be a semisimple element. Let R1, R2 ⊂ G be conjugacy classes of regular
semisimple elements of G. Then there exist elements x ∈ R1 and y ∈ R2 such that
s = xy.

To ensure that the conjugacy part of the definition of a Beauville structure is
satisfied we aim to choose x1, x2, y1, y2 ∈ G such that o(x1)o(y1)o(x1y1) is coprime
to o(x2)o(y2)o(x2y2). This is made possible by a classical theorem of Zsigmondy
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[64] (or rather Bang [2] in the case p = 2.) Whilst [2] and [64] are over a century
old and therefore difficult to read and get hold of, a more recent account of a proof
is given by Lünburg in [54].

Theorem 3.3 For any positive integers a and n there exists a prime that divides
an − 1 but not ak − 1 for any k < n with the following exceptions:

• a = 2 and n = 6; and

• a+ 1 is a power of 2 and n = 2.

The real significance of the above results stems from the fact that most groups
of Lie type have an order that is a product of numbers of the form pk − 1 and so
the above result guarantees the existence of a rich supply of distinct primes that
can be taken as being the orders of the elements of our Beauville structure.

It remains to decide if a given triple will generate the group. Since our elements
have orders given by Theorem 3.3 we can use a theorem of Guralnick, Pentilla,
Praeger and Saxl [47] concerning subgroups of the general linear group GLn(pa)
containing elements of these orders and closely related results of Niemeyer and
Praeger [56] for the other classical groups to show that no proper subgroups contain
our elements. It follows that our chosen elements will generate the group.

4 Abelian and Nilpotent Groups

The abelian Beauville groups were essentially classified by Catanese in [20, page
24.] and the full argument is given explicitly in [9, Theorem 3.4] where the following
is proved.

Theorem 4.1 Let G be an abelian group. Then G is a Beauville group if, and
only if, G = (Z/nZ)× (Z/nZ) where n > 1 is coprime to 6.

This explains why Beauville’s original example used the group (Z/5Z)× (Z/5Z)
- it is the smallest abelian Beauville group.

Theorem 4.1 has been put to great use by González-Diez, Jones and Torres-
Teigell in [42] where several structural results concerning the surfaces defined by
abelian Beauville groups are proved. For each abelian Beauville group they describe
all the surfaces arising from that group, enumerate them up to isomorphism and
impose constraints on their automorphism groups. As a consequence they show
that all such surfaces are defined over Q.

After the abelian groups, the next most natural class of finite groups to consider
are the nilpotent groups. In [3, Lemma 1.3] Barker, Boston and the author note
the following easy Lemma.

Lemma 4.2 Let G and G′ be Beauville groups and let {{x1, y1, }, {x2, y2}} and
{{x′1, y′1, }, {x′2, y′2}} be their respective Beauville structures. Suppose that

gcd(o(xi), o(x
′
i)) = gcd(o(yi), o(y

′
i)) = 1

for i = 1, 2. Then {{(x1, x′1, ), (y1, y′1)}, {(x2, x′2), (y2, y′2)}} is a Beauville structure
for the group G×G′.
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Recall that a finite group is nilpotent if, and only if, it isomorphic to the direct
product of its Sylow subgroups. It thus follows that this lemma, and its easy to
prove converse, reduces the study of nilpotent Beauville groups to that of Beauville
p-groups. Note that Theorem 4.1 gives us infinitely many examples of Beauville
p-groups for every prime p > 3 - simply let n be any power of p. Early examples of
Beauville 2-groups and 3-groups were constructed by Fuertes, González-Diez and
Jaikin-Zapirain in [32] where a Beauville group of order 212 and another of order
312 were constructed. Even earlier than this, two Beauville 2-groups of order 28

arose as part of a classification due to Bauer, Catanese and Grunewald in [11] of
certain classes of surfaces of general type.

More recently, in [3] Barker, Boston and the author classified the Beauville p-
groups of order at most p4 and made substantial progress on the cases of groups
of order p5 and p6. In particular, the number of Beauville p-groups of order p4 is
two for every p > 3 and zero otherwise, but for p5 we have the following.

Conjecture 4.3 For all p ≥ 5, the number of Beauville p-groups of order p5 is
given by p+ 10.

In [3, Theorem 1.4] we prove that there are at least p + 8 Beauville groups of
order p5. Furthermore, the above conjecture has been verified computationally
for all primes p such that 5 ≤ p ≤ 19. Perhaps more interestingly, other results
proved in [3] verify that the proportion of 2-generated p-groups of order p5 that
are Beauville tends to 1 as p tends to infinity, however this fails to to be true for
p-groups of order p6.

Question 4.4 If n > 6 what is the behaviour, as p tends to infinity, of the pro-
portion of 2-generated p-groups that are Beauville?

Another consequence of this work was determining the smallest Beauville p-
group for all primes. In the below presentations, if no relationship between two
generators is specified by a relation or relator then it should be assumed that the
two generators commute.

Theorem 4.5 The smallest Beauville p-groups are as follows.

• For p = 2 the group

〈x, y |x4, y4, [x, y2]22, [x, y3]2, [x2, y3]〉

of order 27.

• For p = 3 the group

〈x, y, z, w, t |x3, y3, z3, w3, t3, yx = yz, zx = zw, zy = zt〉

of order 35.

• For p ≥ 5 the group

〈x, y, z |x5, y5, z5, [x, y] = z〉

of order p3.
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Further examples are given by the following unpublished constructions due to
Jones and Wolfart.

Theorem 4.6 Let G be a finite group of exponent n = pe > 1 for some prime
p ≥ 5, such that the abelianisation G/G′ of G is isomorphic to Zn × Zn. Then G
has a Beauville structure.

Corollary 4.7 Let G be a 2-generated finite group of exponent p for some prime
p ≥ 5. Then G has a Beauville structure.

As noted earlier Beauville p-groups for p > 3 are in bountiful supply. Several
examples of Beauville 2-groups and 3-groups are constructed by Barker, Boston,
Peyerimhoff and Vdovina in [5, 6] by considering sections of groups defined using
projective planes. More recently, in [4] Barker, Boston, Peyerimhoff and Vdovina
using similar ideas constructed the first infinite family of Beauville 2-groups. At
the time of writing, as far as the author is aware, only finitely many Beauville
3-groups are known leading to the following natural problem.

Problem 4.8 Construct infinitely many Beauville 3-groups.

More recently in [60] Stix and Vdovina give a construction of Beauville p-groups
that provides infinitely many examples for every p ≥ 5. More specifically they
prove the following.

Theorem 4.9 Let p be a prime, n,m ∈ N and λ ∈ (Z/pmZ)× with λp
n ∼= 1 mod

pm. The semidirect product Z/pmZ : Z/pnZ with action Z/pnZ → Aut(Z/pmZ)
sending 1 7→ λ admits an unmixed Beauville structure if and only if p ≥ 5 and
n = m.

They go on to prove related results using the theory of pro-p groups.
We conclude this section with the following remarks. Nigel Boston has recently

undertaken some substantial and as yet unpublished computations regarding the
relationship between p-groups’ status as Beauville groups and their position on
the so-called ‘O’Brien Trees’ [57]. Whilst little global pattern appears to exist in
general, there does appear to be some mysterious relationship with an invariant
known as the ‘nuclear rank’ of the group - see [17]. Since defining this concept is
somewhat involved we shall say no more about this here.

5 Strongly Real Beauville Groups

Given any complex surface S it is natural to consider the complex conjugate surface
S. In particular it is natural to ask if the surfaces are biholomorphic.

Definition 5.1 Let S be a complex surface. We say that S is real if there exists
a biholomorphism σ : S → S such that σ2 is the identity map.

As noted earlier this geometric condition can be translated into algebraic terms.
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Definition 5.2 Let G be a Beauville group and let X = {{x1, y1}, {x2, y2}} be a
Beauville structure for G. We say that G and X are strongly real if there exists
an automorphism φ ∈ Aut(G) and elements gi ∈ G for i = 1, 2 such that

g1φ(xi)g
−1
1 = x−1i and g2φ(yi)g

−1
2 = y−1i

for i = 1, 2.

It is often, but not always, convenient to take g1 = g2.
Our first examples come immediately from Theorem 4.1 since for any abelian

group the function x 7→ −x is an automorphism.

Corollary 5.3 Every Beauville structure of an abelian Beauville group is strongly
real.

A little more generally, when it comes to strongly real Beauville p-groups the
examples given by Theorem 4.1 are, as far as the author is aware, the only known
examples. Furthermore, the Beauville 2-groups constructed by Barker, Boston,
Peyerimhoff and Vdovina in [4] are explicitly shown to not be strongly real. How-
ever, a combination of Corollary 5.3 and the fact that p-groups in general tend
to have large automorphism groups [18, 19] it seems likely that most Beauville p-
groups are in fact strongly real Beauville groups. This makes the following problem
particularly pressing.

Problem 5.4 Construct examples of strongly real Beauville p-groups.

In [25] the following conjecture, a refinement of an earlier conjecture of Bauer,
Catanese and Grunewald [9, Section 5.4], is made.

Conjecture 5.5 All non-abelian finite simple groups apart from A5, M11 and M23

are strongly real Beauville groups.

Only a few cases of this conjecture are known.

• In [31] Fuertes and González-Diez showed that the alternating groups An

(n ≥ 7) and the symmetric groups Sn (n ≥ 5) are strongly real Beauville
groups by explicitly writing down permutations for their generators and the
automorphisms used and applying some of the classical theory of permutation
groups to show that their elements had the properties they claimed. It was
subsequently found that the group A6 is also strongly real.

• In [33] Fuertes and Jones proved that the simple groups PSL2(q) for prime
powers q > 5 and the quasisimple groups SL2(q) for prime powers q > 5
are strongly real Beauville groups. As with the alternating and symmetric
groups, these results are proved by writing down explicit generators, this time
combined with a celebrated theorem usually (but historically inaccurately)
attributed to Dickson for the maximal subgroups of PSL2(q). (For a full
statement of this result and related theorems as well a detailed historical
account of the maximal subgroups of low dimensional classical groups see the
excellent survey of King in [53].) General lemmas for lifting structures from
a group to its covering groups are also used.
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• In [26] the author determined which of the sporadic simple groups are strongly
real Beauville groups, including the ‘27th sporadic simple group’, the Tits
group 2F4(2)′. Only the Mathieu groups M11 and M23 are not strongly real.
For all of the other sporadic groups smaller than the Baby Monster group B
explicit words in the ‘standard generators’ [62] for a strongly real Beauville
structure were given. For the Baby Monster group B and Monster group M
character theoretic methods were used.

• In [25] the author also verified this conjecture for the Suzuki groups 2B2(2
2n+1).

Again, this was achieved by writing down explicit elements of the group which
using the list of maximal subgroups of the Suzuki group are shown to gener-
ate.

• In [25] the author extended earlier computations of Bauer, Catanese and
Grunewald, verifying this conjecture for all non-abelian finite simple groups
of order at most 100 000 000.

We remark that several of the groups mentioned in the above bullet points are
not simple. More generally we ask the following.

Question 5.6 Which groups are strongly real Beauville groups?

Finally, we remark that in [25] the author constructs many further examples of
strongly real Beauville groups. This includes the characteristically simple groups
Ak

n for moderate values of k and sufficiently large values of n, the groups Sn × Sn
for n ≥ 5 and the almost simple sporadic groups. This last calculation combined
with the earlier remarks on the symmetric group lead to the following conjecture.

Corollary 5.7 A split extension of a simple group is a Beauville group if, and only
if, it is a strongly real Beauville group.

6 The Mixed Case

When we defined Beauville surfaces and groups we considered the action of a group
G on the product of two curves C1×C2. In an unmixed structure this action comes
solely from the action of G on each curve individually, however there is nothing to
stop us considering an action on the product that interchanges the two curves and
it is precisely this situation that we discuss in this section. Recall from Definition
2.2 that given x, y ∈ G we write

Σ(x, y) :=

|G|⋃
i=1

⋃
g∈G
{(xi)g, (yi)g, ((xy)i)g}.

Definition 6.1 Let G be a finite group. A mixed Beauville structure for G is
a quadruple (G0, g, h, k) where G0 is an index 2 subgroup and g, h, k ∈ G are such
that

• 〈g, h〉 = G0;

• k 6∈ G0;
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• for every γ ∈ G0 we have that (kγ)2 6∈ Σ(g, h) and

• Σ(g, h) ∩ Σ(gk, hk) = {e}
A Beauville surface defined by a mixed Beauville structure is called a mixed
Beauville surface and group possessing a mixed Beauville structure is called
a mixed Beauville group.

In terms of the curves defining the surface, the group G0 is the stabiliser of
the curves with the elements of G \ G0 interchanging the two terms of C1 × C2.
Moreover it is only possible for a Beauville surface (C1 × C2)/G to come from
a mixed Beauville structure if C1 ∼= C2. The above conditions also ensure that
{{g, h}, {gk, hk}} ⊂ G0 ×G0 is a Beauville structure for G0.

In general, mixed Beauville structures are much harder to construct than their
unmixed counterparts. The following lemma of Fuertes and González-Diez imposes
a strong condition on a group with a mixed Beauville structure [31, Lemma 5].

Lemma 6.2 Let (C1 × C2)/G be a mixed Beauville surface and let G0 be the sub-
group of G consisting of the elements which do not interchange the two curves.
Then the order of any element in G \G0 is divisible by 4.

Clearly no simple group can have a mixed Beauville structure since it is necessary
to have a subgroup of index 2 and the cyclic group of order 2 is not a Beauville
group, however that does not preclude the possibility of almost simple groups
having mixed Beauville structures. The above lemma was originally used to show
that no symmetric group has a mixed Beauville structure. In [26] the author used
the above to show that no almost simple sporadic group has a mixed Beauville
structure (though the almost simple Tits group 2F4(2) is not excluded by the above
lemma) and in general most almost simple groups are ruled out by it (though as
the groups PΣL2(p

2) show there are infinitely many exceptions to this). A further
restriction comes from [9, Theorem 4.3] where Bauer, Catanese and Grunewald
prove that G0 must be non-abelian. Various geometric constraints are proved by
Torres-Teigell in his PhD thesis [61]. Most notably the genus of a mixed Beauville
surface is odd and at least 17. Furthermore, this bound is sharp. This naturally
leads to the following problem.

Problem 6.3 Find mixed Beauville structures.

The earliest examples of groups that do possess mixed Beauville structures were
given by Bauer, Catanese and Grunewald in [9]. Their general construction is of
the form (H ×H) : (Z/4Z), the generator of the group Z/4Z acting on the direct
product by interchanging its two factors and G0 = H ×H × Z/2Z.

Lemma 6.4 Let H be a finite group and let x1, y1, x2, y2 ∈ H. Suppose that

(1) o(x1) and o(y1) are even;

(2) 〈x21, y21, x1y1〉 = H;

(3) 〈x2, y2〉 = H and

(4) o(x1)o(y1)o(x1y1) is coprime to o(x2)o(y2)o(x2y2).
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If the above conditions are satisfied then (G0, x, y, g) is a mixed Beauville structure
for some g ∈ (H×H) : (Z/4Z) where x = (x1, x2, 2), y = (y1, y2, 2) ∈ H×H×Z/2Z
(note that 2 ∈ Z/4Z generates the subgroup isomorphic to Z/2Z). Furthermore, if
H is a perfect group then we cane replace condition (2) with the condition

(2’) 〈x1, y1〉 = H.

Note that in [9] this last hypothesis was incorrectly stated in terms of the per-
fectness of G rather than H. Bauer, Catanese and Grunewald go on to use the
above lemma to construct examples in the cases with the property that if H is
taken to be a sufficiently large alternating group or a special linear groups SL2(p)
with p 6= 2, 3, 5, 17 (though their argument also does not apply in the case p = 7),
then (H×H) : (Z/4Z) has a mixed Beauville structure. Given the extent to which
mixed Beauville groups are in short supply it would be interesting to see if the
above construction can be used in other cases.

Problem 6.5 Find other groups H that the above lemma can be applied to.

In [29] the author and Pierro prove a slight generalisation of Lemma 6.4 that
replaces the cyclic group of order 4 with the dicyclic group of order 4k defined by
the presentation

〈x, y |x2k = y4 = 1, xy = x−1, xk = y2〉

for some positive integer k. In particular, when finding examples of groups that
satisfy the hypotheses of this generalisation (which is sufficient to show that such
groups satisfy the hypotheses of Lemma 6.4) we obtain new examples of mixed
Beuville groups from the groups H and H ×H where H is any of the alternating
groups An (n ≥ 6), the linear groups PSL2(q) (q ≥ 7 odd), the unitary groups
PSU3(q) (q ≥ 3), the Suzuki groups 2B2(2

2n+1) (n ≥ 1), the small Ree groups
2G2(3

2n+1) (n ≥ 1), the large Ree groups 2F4(q) (q ≥ 8), the Steinberg triality
groups 3D4(q) (q ≥ 2) and the sporadic simple groups (including the Tits group
2F4(2)′) as well as the groups PSL2(2

n)× PSL2(2
n) (n ≥ 3).

What about p-groups? If p is odd then again, the absence of index 2 subgroups
ensures that there exist no mixed Beauville p-groups. In the construction described
above the technical constraints on H ensure that it cannot be a 2-group, stopping
this providing a source of examples. Early examples of mixed Beauville 2-groups
were given by Bauer, Cataneses and Grunewald constructed in [11] where they
constructed two mixed Beauville groups of order 28. Even so, the lack of known
Beauville 2-groups makes the following a natural problem.

Problem 6.6 Construct infinitely many mixed Beauville 2-groups.

7 Miscellanea

7.1 PSL2(q) and PGL2(q)

In [10, Question 7.7] Bauer, Catanese and Grunewald asked the following question,
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Existence and classification of Beauville surfaces, i.e.,
a) which finite groups G can occur?
b) classify all possible Beauville surfaces for a given finite group G.

In [35] Garion answered the above in the case of the groups PSL2(q) and
PGL2(q). For PSL2(q) we have the following.

Theorem 7.1 Let G = PSL2(q) where 5 < q = pe for some prime number p
and some positive integer e. Let τ1 = (r1, s1, t1), τ2 = (r2, s2, t2) be two hyperbolic
triples of integers. Then G admits an unmixed Beauville structure of type (τ1, τ2)
if, and only if, the following hold:

(i) the group G is a quotient of the triangle groups Tr1,s1,t1 and Tr2,s2,t2 with
torsion-free kernel;

(ii) if p = 2 or e is odd or q = 9, then r1s1t1 is coprime to r2s2t2. If p is odd,
e is even and q > 9, then g = gcd(r1s1t1, r2s2t2) ∈ {1, p, p2}. Moreover, if p
divides g and τ1 (respectively τ2) is up to a permutation (p, p, n) then n 6= p
and n is a ‘good G-order’.

Here by ‘good G-order’ we mean the following. Let q be an odd prime power
and let n > 1 be an integer. Then n is a good G-order if either

• n divides (q − 1)/2 and a primitive root of unity a of order 2n in Fq has the
property that −a = c2 for some c ∈ Fq or

• n divides (q + 1)/2 and a primitive root of unity a of order 2n in F2
q has the

property that −a = c2 for some c ∈ Fq2 such that cq+1 = 1.

A similar theorem is given for the groups PGL2(q).
Given that generic lists of maximal subgroups of other low rank groups of Lie

type are well known in numerous other cases, it seems likely that analogous results
for these groups can also be obtained. We thus reiterate Bauer, Catanese and
Grunewald’s earlier question in this case.

Problem 7.2 Obtain results analogous to the above for other classes of finite
simple groups.

7.2 Fundamental Groups of Beauville Surfaces

We mentioned in the introduction that Beauville surfaces have fundamental groups
that are easy to work with. To make this vague remark a little more specific we note
the following. Suppose that if G is a Beauville group with a Beauville structure of
type ((a1, b1, c1), (a2, b2, c2)), then for i = 1, 2 there exist surjective homomorphisms
ρi : Tai,bi,ci → G. The direct product ker(ρ1)×ker(ρ2) is the fundamental group
of the product C1 × C2. The fundamental group of the surface (C1 × C2)/G is now
an extension of a normal subgroup ker(ρ1)×ker(ρ2) by G, or more precisely the
inverse image in Ta1,b1,c1 × Ta2,b2,c2 of the diagonal subgroup of G × G under the
epimorphism ρ1 × ρ2. It turns out that this simple description of the fundamental
group is responsible for the rigidity of Beauville surfaces and this in turn ensures
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that the topological and geometric features of the surfaces are closely intertwined
- see [51, Section 9] for details.

Unsurprisingly, since a Beauville group dictates so many features of its corre-
sponding Beauville surface which in turn determines its fundamental group we
also have the reverse relationship whereby the fundamental group determines the
original Beauville group. The following is proved by González-Diez and Torres-
Teigell [41, 61]. (It also worth noting related results given by Bauer, Catanese and
Grunewald in [10] and by Catanese in [20]).

Theorem 7.3 Two Beauville surfaces are isometric if and only if their fundamen-
tal groups are isomorphic.

The fundamental group is one of the most basic tools in algebraic topology. It
is, however, somewhat limited in its usefulness and topologists have found several
important higher dimensional analogues of the fundamental group and so it is
natural to pose the following question.

Question 7.4 Do the higher homotopy/homology/cohomology groups of a Beauville
surface have similar descriptions in terms of triangle groups and the corresponding
Beauville group and to what extent do they uniquely determine the surface?

By way of partial progress on this question in [8] Bauer, Catanese and Frapporti
recently showed that for any Beauville surface S the homology group H1(S,Z) is
finite. They also give a much more detailed discussion of geometric aspects of the
study of fundamental groups of Beauville surfaces and related objects as well as
computer calculations of these objects in some cases.

7.3 Automorphism Groups of Beauville Surfaces

In [50] Jones investigated the automorphism groups of unmixed Beauville surfaces.
Some of these results were obtained independently by Fuertes and González-Diez
in [30] and were later extended to mixed Beauville surfaces by González-Diez and
Torres-Teigell in [40, Section 5.3].

Theorem 7.5 The automorphism group Aut(S) of a Beauville surface S = (C1 ×
C2)/G has a normal subgroup Inn(S) / Z(G) with Aut(S)/Inn(S) isomorphic to a
subgroup of the wreath product S3 oS2. In particular Aut(S) is a finite soluble group
of order dividing 72|Z(G)| and of derived length at most 4.

Here the subgroup Inn(S) consists of automorphisms preserving the two curves
(or more precisely, induced by automorphisms of C ×C′ preserving them) though it
does not necessarily contain all of them: they form a subgroup of index at most 2
in Aut(S), whereas Inn(S) can have index up to 72. The results in the mixed case
are similar.
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7.4 Beauville Genus Spectra

In [10, Question 7.7(b)] Bauer, Catanese and Grunewald ask us to classify all
possible Beauville surfaces for a given finite group G.

As a partial answer to this, in [32, Section 4] Fuertes, González-Diez and Jaikin-
Zapirain introduce the concept of Beauville genus spectrum which we define as
follows.

Definition 7.6 Let G be a finite group. The Beauville genus spectrum of G is
the set Spec(G) of pairs of integers (g1, g2) such that g1 ≤ g2 and there are curves
C1 and C2 of genera g1 and g2 with an action of G on C1×C2 such that (C1×C2)/G
is a Beauville surface.

By the Riemann-Hurwitz formula each gi is bounded above by 1 + |G|
2 and so

this set is always finite. Fuertes, González-Diez and Jaikin-Zapirain determine the
Beauville spectra of several small groups.

Proposition 7.7 1. Spec(S5) = {(19, 21)}
2. Spec(PSL2(7)) = {(8, 49), (15, 49), (17, 22), (22, 33), (22, 49)}
3. Spec(S6) = {(49, 91), (91, 121), (91, 169), (121, 169), (151, 169)}
4. If gcd(n, 6) = 1 and n > 1 then

Spec((Z/nZ)× (Z/nZ)) = {((n− 1)(n− 2)

2
,
(n− 1)(n− 2)

2
)}.

Unpublished calculations of the author’s PhD student, Emilio Pierro, has added
a few more finite simple and almost simple groups to the above list, the largest
being the Mathieu group M23. Furthermore, the Beauville genus structures of
PSL2(q) and PGL2(q) may be deduced from the results discussed in Subsection
7.1. This naturally leads us to ask the following.

Problem 7.8 Determine the Beauville genus spectrum of more groups.

7.5 Characteristically Simple Groups

Characteristically simple groups are usually defined in terms of characteristic sub-
groups, but for finite groups this turns out to be equivalent to the following.

Definition 7.9 A finite group G is said to be characteristically simple if G is
isomorphic to the direct product Hk where H is a finite simple group for some
positive integer k.

If we fix H then for large values of k the group Hk will not be 2-generated and
therefore will not be Beauville. For more modest values of k there is, however, still
hope. These groups have recently been investigated by Jones in [48, 49] where the
following conjecture is investigated.
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Conjecture 7.10 Let G be a finite characteristically simple group. Then G is
Beauville if and only if it is 2-generated and not isomorphic to the alternating
group A5.

Theorem 3.1 shows that this conjecture is true for the characteristically simple
group Hk in the case k = 1 for every non-abelian finite simple group H. If G is
abelian then this conjecture holds by Theorem 4.1 following the convention that
a cyclic group is not considered to be 2-generated. In [39] the above conjecture
is verified for the alternating groups and in [49] it is verified for the linear groups
PSL2(q) and PSL3(q), the unitary groups PSU3(q), the Suzuki groups 2B2(2

2n+1),
the small Ree groups 2G2(3

2n+1) and the sporadic simple groups. In addition to
the above the author has performed computations that verify the above conjecture
for all characteristically simple groups of order at most 1030. As an amusing aside
we note that this shows that whilst A5 is not a Beauville group, the direct product
of nineteen copies of A5 is!

In [25] the author considers which of the characteristically simple groups are
strongly real Beauville groups. The main conjecture is the following.

Conjecture 7.11 If G is a finite simple group of order greater than 3, then G×G
is a strongly real Beauville group.

It is likely that many larger direct products are also strongly real, however the
precise statement of a conjecture along these lines is likely to be much more com-
plicated. For example, a straightforward computation verifies that neither of the
groups M11×M11×M11 and M23×M23×M23 are strongly real despite the fact that
both of the groups M11×M11×M11×M11 and M23×M23×M23×M23 are.

The above conjecture has been verified for the alternating groups (though slightly
stronger results are true in this case), the sporadic simple groups, the linear groups
PSL2(q) (q > 5), the Suzuki groups 2B2(2

2n+1), the sporadic simple groups (in-
cluding the Mathieu groups M11 and M23, despite the statement of Conjecture 5.5)
and all of the finite simple groups of order at most 100 000 000.

7.6 Orbits of the Absolute Galois Group

The task of understanding the absolute Galois group Gal(Q/Q) is of central impor-
tance in algebraic number theory and is related to the Inverse Galois Problem (it
is equivalent to asking if every finite group is a quotient of Gal(Q/Q) under a topo-
logically closed normal subgroup) and this is arguably the hardest open problem in
algebra today. As things stand Gal(Q/Q) remains very poorly understood. A nat-
ural approach to understanding any group is to study some action(s) of the group.
An immeidate consequence of Bely̆ı’s Theorem is that Gal(Q/Q) acts on the set of
all Beauville surfaces. Recently there has been much interest in constructing orbits
consisting of mutually non-homeomorphic pairs of Beauville surfaces. In [41, 43]
González-Diez, Jones and Torres-Teigell have constructed arbitrarily large orbits
of Gal(Q/Q) consisting of mutually non-homeomorphic pairs of Beauville surfaces
defined by the Beauville groups PSL2(q) and PGL2(q).
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Problem 7.12 Construct arbitrarily large orbits of Gal(Q/Q) consisting of mu-
tually non-homeomorphic pairs of Beauville surfaces using other groups.

A slightly different motivation for addressing the above problem comes from the
following. Knowing whether or not Gal(Q/Q) acts faithfully on the set of Beauville
surfaces is equivalent to the longstanding question of whether or not Gal(Q/Q) acts
faithfully on the set of regular dessins. This was recently resolved by González-Diez
and Jaikin-Zapirain in [39] by showing that Gal(Q/Q) acts faithfully on the set of
Beauville surfaces.
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[31] Y. Fuertes and G. González-Diez, On Beauville structures on the groups Sn and An,
Math. Z. 264 (2010), no. 4, 959–968
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