METHODOLOGY ARTICLE

3

5

6 7

10

11

12

13

14

15

16

⁴Consistency of biological networks inferred from ⁶microarray and sequencing data

⁸Veronica Vinciotti^{1*}, Ernst C. Wit², Rick Jansen³, Eco J.C.N. de Geus³, Brenda W.J.H. Penninx³, Dorret⁸
⁹I. Boomsma³ and Peter A.C. 't Hoen⁴

10 11

12

Abstract

Background: Sparse Gaussian graphical models are popular for inferring biological networks, such as gene regulatory networks. In this paper, we investigate the consistency of these models across different data platforms, such as microarray and next generation sequencing, on the basis of a rich dataset containing samples that are profiled under both techniques as well as a large set of independent samples.

17 17 Results: Our analysis shows that individual node variances can have a remarkable effect on the connectivity of 18 18 the resulting network. Their inconsistency across platforms and the fact that the variability level of a node may 19 19 not be linked to its regulatory role mean that, failing to scale the data prior to the network analysis, leads to 20 20 networks that are not reproducible across different platforms and that may be misleading. Moreover, we show 21 21 how the reproducibility of networks across different platforms is significantly higher if networks are summarised 22 22 in terms of enrichment amongst functional groups of interest, such as pathways, rather than at the level of 23 individual edges. 23

Conclusions: Careful pre-processing of transcriptional data and summaries of networks beyond individual edges
 can improve the consistency of network inference across platforms. However, caution is needed at this stage in
 the (over)interpretation of gene regulatory networks inferred from biological data.

Keywords: Gaussian graphical models; gene regulatory network; microarray; next-generation sequencing

28 29

24

25

26

27

³⁰Introduction

27

28

29

³¹One important direction in systems biology is to dis³²cover gene regulatory networks from transcriptional
³³data based on the observed mRNA levels of a large
³⁴number of genes. The nodes of the network are genes
³⁵and the edges are the corresponding interactions, such
³⁶as activation, repression or translation. Transcrip-

 $^{\mathbf{38}}_{\phantom{\mathbf{10}}}$ Department of Mathematics, Brunel University London, London, UK

tional data can be generated using two different high-³⁰ throughput technologies: gene expression microarrays³¹ [18] and tag-based sequencing methods, like Deep-³² SAGE [12, 21] and RNA-seq [19]. ³³

Statistical models have been proposed in the lit-³⁴ erature for reverse engineering networks from data³⁵ and different adaptations have been developed to deal³⁶ with the high dimensionality and complexity of bi-³⁷ ological networks in particular, e.g. [8, 15, 22, 31].³⁸ Amongst these approaches, Gaussian graphical mod-³⁹

³⁷______*Correspondence: veronica.vinciotti@brunel.ac.uk

 $^{^{\}rm 39}{\rm Full}$ list of author information is available at the end of the article

¹els have shown to be particularly popular. The com-²putationally efficient method introduced by [8] allowed ³the estimation of these models for the case of a large ⁴number of nodes relative to the sample size $(p \gg n)$ ⁵via the use of an L_1 penalised likelihood approach. ⁶This approach is suited to microarray data, as the ⁷data are continuous and, after normalization, well-⁸approximated by a multivariate normal distribution. ⁹A number of papers have extended the original model ¹⁰to different cases, such as dynamic networks from mi-¹¹croarray data [1], hub-type networks from microarray ¹²data [31], condition-specific networks from microarray ¹³data [7] and networks from next generation sequencing ¹⁴data, which are discrete, e.g. [4, 36].

After the advent of next generation sequencing tech-16 17 nologies, a number of studies have evaluated the con-18 sistency between the two platforms, both at the level $_{19}$ of expression values and at the level of differentially $_{20}$ expressed genes, e.g. [12, 27, 30, 33, 37]. The general 21 conclusion from these studies is that sequencing tech-22 nologies not only allow to identify transcripts that have $_{\rm 23}{\rm not}$ been previously annotated, but they also allow to $_{\rm 24} {\rm better}$ quantify very low and very high expression tran-₂₅scripts, which would be masked by microarray's back- $_{\rm 26}{\rm ground}$ noise and saturation effects, respectively. In the ₂₇ intermediate range, there is high replication and de- $_{\rm 28} {\rm tection}$ amongst the two platforms, although platform $_{29}$ specific and dataset-specific effects can limit the level $_{30}$ of consistency significantly [27]. A small number of 31 studies has gone beyond expression and differential ex- $_{32}$ pression. In particular, [29] studied the consistency of $_{\rm 33} {\rm clustering}$ methods on microarray and RNA-seq data $_{34}$ and [11] studied the consistency of co-expression net- $_{\rm 35}$ works on microarray and RNA-seq data, where the $_{\rm 36}$ networks are inferred by Pearson correlation values.

³⁷ Linked to the work of [11], the aim of this paper is
³⁸to quantify the consistency, across platforms and sam³⁹ples, of biological networks inferred by sparse Gaussian

Page 2 of 12

11

12

13

graphical models. We consider a rich dataset contain-¹ ing samples that are profiled under both microarray² and sequencing techniques as well as a large set of³ independent samples [39]. We assess the consistency⁴ of networks both at the level of individual edges and⁵ at the level of enrichment among pathways extracted⁶ from the Kyoto Encyclopedia of Genes and Genomes⁷ (KEGG) database (http://www.genome.jp/kegg).⁸ For the latter, we make use of a recently developed⁹ test for network enrichment [28].

Method

Data

The data used in this study contain DeepSAGE (DS)¹⁴ sequencing of 21bp tags and corresponding Affymetrix¹⁵ expression data from total blood RNA samples from¹⁶ unrelated individuals from the Netherlands Twin¹⁷ Register (NTR) [5] and the Netherlands Study of¹⁸ Depression and Anxiety (NESDA) [24]. From the¹⁹ NTR/NESDA cohorts, we selected healthy (and thus²⁰ non-diabetic) individuals at the extremes of the fasting²¹ glucose serum level distribution: 41 individuals with²² fasting glucose concentrations $\leq 4.8 \text{ mmol/l}; 53 \text{ in-}^{23}$ dividuals with fasting glucose concentrations $\geq 5.9^{24}$ mmol/l. This selection comprised 28 males and 66^{25} female individuals. Microarray and DeepSAGE data²⁶ generation, processing and quality control have been²⁷ described previously [13, 35, 39]. In addition, we used²⁸ Affymetrix-profiled blood samples of 1272 additional²⁹ participants of the NTR and NESDA studies, selected³⁰ using the same glucose based criterion as above. In par-³¹ ticular, of these there are 418 high glucose and 854 low^{32} glucose samples. We later refer to the three datasets³³ as DS (the 94 DeepSAGE samples), MA(DS) (the 94³⁴ corresponding microarray samples) and MA(Add) (the³⁵ 1272 additional microarray samples). Together with³⁶ gene expression data, a number of corresponding co-³⁷ variates are used: age (in years), sex, Body Mass Index³⁸

(BMI), glucose level and smoking (yes and no). These³⁹

¹were obtained during the interview at the time of blood ²draw. Glucose was measured in blood plasma using the ³Vitros 250 glucose assay (Johnson and Johnson). The ⁴DS samples are corrected for GC content.

⁵ For the analysis, we select the 1500 most highly ex-⁶pressed genes for which there are concept profiles, i.e. ⁷ for which there is information in the literature in at ⁸least 5 papers. This group of genes is expected to be ⁹least affected by observational noise in their expres-¹⁰sion measurements and, therefore, to be most consis-¹¹tent across platforms. This aids in focussing on the ¹²actual contribution of network modelling to the con-¹³sistency across platforms, which is the focus of this ¹⁴paper. From these 1500 genes, we select 1435 genes ¹⁵that are common to both DS and microarray data. ¹⁶For microarray data, we take the average expression ¹⁷of all probes targeting the same gene. Figure 1 (left) ¹⁸shows the correspondence between count data and ex-¹⁹ pression data for the 1435 genes, averaged over the $^{20}94$ samples. The correlation between the two is 0.49, ²¹suggesting a moderate reproducibility across the two ²²platforms at the level of expression data. The right ²³plot shows a very high reproducibility for the microar-²⁴ray experiments between the 94 samples and the 1272 ²⁵independent samples.

26

27Sparse Gaussian graphical models

28In this paper, we use Gaussian graphical models for 29inferring networks from data. A Gaussian graphical 30model makes the assumption that the vector of nodes $_{31}D$ follows a multivariate Gaussian distribution, so

32 33

 $D \sim N(\mu, \Sigma),$

with mean vector μ and variance-covariance matrix Σ . $^{35}\mbox{Of}$ particular importance is the inverse of the variance-36 covariance matrix, also called precision or concentra-37 tion matrix, which is usually denoted by 38 39 1.

$$\Theta = (\theta_{ij}) = \Sigma^{-1}$$

This matrix holds a special role in Gaussian graphical¹ models: in fact, zeros in the precision matrix corre-² spond to conditional independence between the corre-³ sponding variables, i.e. the absence of an edge in the⁴ corresponding graph. In particular, there is a direct⁵ link between the precision value θ_{ij} and the partial⁶ correlation ρ_{ij} between D_i and D_j conditioning on all⁷ other nodes, as

$$p_{ij} = -\frac{\theta_{ij}}{\sqrt{\theta_{ii}\theta_{jj}}}.$$
(1)

Thus inferring the network of interactions can be re-13 casted into the problem of estimating the precision¹⁴ matrix Θ and extracting its zero structure. Of par-¹⁵ ticular importance for the analysis in this paper is¹⁶ the fact that the diagonal of the matrix Θ is given¹⁷ by the inverse of the conditional variances, i.e. $\theta_{ii} = {}^{18}$ $\frac{1}{\operatorname{var}(D_i|D_j, j \neq i)}$ [34]. Thus, the scale of individual¹⁹ nodes can play a significant role in the dependency²⁰ 21 structure.

22 In the case of high-dimensional networks, that is where the sample size n (number of experiments) is smaller than the number of nodes p (number of genes), a sparse estimate of the precision matrix Θ can be ob-26 tained by imposing an L_1 -penalty constraint on the entries of the precision matrix. This results in the pe-28 nalised likelihood optimization

> 29 30

$$\max_{\Theta} \left[\log |\Theta| - \operatorname{Trace}(S\Theta) - \lambda ||\Theta||_1 \right],$$

32

with S the sample covariance matrix and λ the penalty³³ parameter controlling sparsity. [8] provide an efficient³⁴ optimization procedure for this problem, by maximis-³⁵ ing the penalised log-likelihood iteratively for each³⁶ node and, at each step, by re-writing the problem into³⁷ an equivalent lasso regression problem. The latter is es-³⁸ timated efficiently using coordinate descent methods.³⁹

¹Network Inference

²We adopt a Poisson regression model for the Deep-³SAGE data to correct for spurious confounders in mea-⁴suring the interaction between the genes. Let $Y_i =$ ⁵ (Y_{i1}, \ldots, Y_{ip}) be the count data for gene *i* under *p* ex-⁶periments. Let $X = (X_1, \ldots, X_c)$ be a vector of covari-⁷ates. Then

9 $Y_{ij} \sim \text{Poisson}(\lambda_{ij})$ 10 $\log(\lambda_{ij}) = \log(n_j) + \sum_{c=1}^C x_{jc}^T \beta_{ic},$ 11

¹²with n_j the total number of counts in experiment j, ¹³ $x_j = (x_{j1}, \ldots, x_{jC})$ the vector of covariates for sample ¹⁴(experiment) j and β_i the vector of parameters for gene ¹⁵i. For microarray data, a multiple regression model ¹⁶is used to correct for the same covariates, with the ¹⁷exception of GC content and total number of counts ¹⁸which are specific to count data.

¹⁹ We then extract the residuals of the regression mod-²⁰els. For the Poisson regression, we take the deviance ²¹residuals defined by ²²

²³
$$d_{ij} = \operatorname{sign}(y_{ij} - \hat{\lambda}_{ij}) \sqrt{2y_{ij} \log \frac{y_{ij}}{\hat{\lambda}_{ij}} - 2(y_{ij} - \hat{\lambda}_{ij})}$$

²⁵These are approximately normally distributed [20] and
²⁶are used for network modelling.

²⁷ This two-step method does not take into account the ²⁸uncertainty of the regression estimates and could, es-²⁹pecially when the number of samples is similar to the ³⁰number of regressors, lead to biased estimates. We ac-³¹count for this uncertainty by non-parametrically boot-³²strapping the data and repeating the analyses on the ³³bootstrap samples. This provides typically asymmet-³⁴ric confidence intervals of the quantities of interest that ³⁵will account both for the bias and the under-estimated ³⁶variance of the original two-step estimation procedure. ³⁷ In order to assess the impact of individual node ³⁸variances and of correction for confounding effects on ³⁹the resulting inferred network and on the consistency of network models across different samples and plat-¹ forms, we fit sparse Gaussian graphical models in the² following three cases: ³

- 1 Residuals standardised to have mean zero and variance one per node.
- 2 Residuals not standardised.
- 3 Normalised expression data standardised to have mean zero and variance one but not corrected for confounding effects.

For the first and the third case, we use the package₁₁ huge [38], which automatically scales the data prior to₁₂ network inference. In terms of the choice of the penalty₁₃ parameter λ , we select this based on the rotation infor-₁₄ mation criterion (ric) approach, which is available in₁₅ the R function huge.select. We take the optimal net-₁₆ work for the case of standardised residuals from the 94₁₇ DS samples. This returns a network with 1435 nodes₁₈ and 29865 edges. We then select λ for all other net-₁₉ works in such a way that all networks in the compar-₂₀ ative study are of similar size. For the second case,₂₁ we use the function glasso in the package glasso [9],₂₂ which does not automatically scale the data.

Given the estimated networks, the test developed by₂₄ [28], and implemented in the R package neat, is used₂₅ to detect enrichment of the networks among KEGG₂₆ pathways. In particular, the test detects whether the₂₇ number of edges between two pathways in the inferred₂₈ network is larger than what is expected by chance. For₂₉ this, we download all human KEGG pathways using₃₀ the R package KEGGREST [32]. Out of the total 299₃₁ pathways, we filter 62 pathways as those that contain₃₂ at least 20 of the selected genes and test for enrich-₃₃ ment amongst any pair of pathways. Finally, we rank₃₄ the p-values and build a network with 62 nodes (the₃₅ pathways) and with edges corresponding to the top₃₆ enrichments.

Throughout the analysis, the agreement between any³⁸ two networks is measured using the product-moment³⁹ ¹correlation between the corresponding adjacency ma-²trices. This is implemented in the function gcor of ³the R package sna. The function qaptest in the same ⁴package is used to compute the p-values under a re-⁵labelling of the nodes of the network.

0

"Results and Discussion

₉The Confounders Effect

¹⁰In a first set of experiments, we evaluate the impact ¹¹of confounders on network inference and thus justify ¹²the choice of performing the network modelling on the ¹³residuals. In order to do this, we fit networks under ¹⁴two cases. In the first case the data are scaled but not ¹⁵corrected for confounders (with the exception of GC ¹⁶and number of experiments for DS data). In the second ¹⁷case, the data are scaled and corrected for confounders ¹⁸as explained before.

¹⁹ The results on our data show a high correlation $^{20}\mathrm{between}$ the networks in the two cases, with 95%²¹bootstrapped confidence intervals (0.56, 0.94) for DS, $^{22}(0.68, 0.75)$ for MA(DS) and (0.95, 0.98) for MA(Add). ²³The agreement is particularly high in the MA(Add) ²⁴case due to the larger sample size. However, looking at ²⁵the difference between the two networks for each of the ²⁶three datasets, we can see how genuine regulatory in-²⁷teractions, when one transcript directly regulates the ²⁸expression of another transcript, may be masked by ²⁹confounding effects. Figure 2 shows two examples of 30 edges that are found in the MA(DS) network when not ³¹correcting for confounders but they are not found when ³²correcting for confounders. In general, any two differ-³³entially expressed genes may be highly correlated, but ³⁴they may not be directly interacting, i.e. this may be a ³⁵spurious correlation caused by a third factor. One way ³⁶of distinguishing between direct and indirect interac-³⁷tions is by correcting for confounders: if the correlation ³⁸is still at the level of residuals (i.e. partial correla-³⁹tion), then it may be a sign of a genuine relationship.

10

11

In conclusion, regulatory interactions between genes¹ may be masked by confounders effects. Although their² effect in the network reconstruction is found to be³ small for our particularly study, performing this step⁴ increases the chances of detecting genuine regulatory⁵ mechanisms. For the remaining of the paper, we there-⁶ fore fit networks to the residuals, after correcting for⁷ the confounders mentioned in the description of the⁸ data.

The Node Variance Effect

The fact that the variance of a node has an impact on¹² the dependency structure is natural for models that are¹³ based on estimating the inverse of covariances, as ex-¹⁴ plained in the description of Gaussian graphical mod-¹⁵ els. Due to computational stability of the estimation¹⁶ procedure, in most cases the variables are standard-¹⁷ ized prior to the estimation of the dependency struc-¹⁸ ture. However, this is not always included in the im-¹⁹ plementations that are made available. For example,²⁰ the original implementation of sparse Gaussian graph-²¹ ical models in the glasso package [9] does not auto-²² matically standardize the variables. Of 44 citations of²³ the package in Google scholar, we found that 14 use²⁴ glasso for inferring biological networks, and only 3²⁵ of these make explicit mentioning to standardization²⁶ of the data. This is the same for JGL [6], where the²⁷ variables are only centralised per condition, and for²⁸ SparseTSCGM [2], where the variables are not standard-²⁹ ized. Amongst other implementations of sparse Gaus-³⁰ sian graphical models, huge [38] automatically scales³¹ the data, and similarly, the function sugm in the flare³² R package [16] is based on estimation of the inverse of³³ the correlation matrix and, thus, is scale independent.³⁴ These are only few examples of the most popular im-³⁵ plementations. In general, the decision as to whether³⁶ to scale the data or not is not always done automati-³⁷ cally by the software, so it is important to appreciate³⁸ the impact of this choice on the resulting network and³⁹ 3

¹the implications when interpreting the network for bi-²ological findings.

Figure 3 plots the connectivity of each node versus _its variance (both in the log scale) for the networks inferred from non-scaled data (case 2). Figure 3 (a) is for the case of DS data, whereas (b) is for the case of MA(DS) data. A similar relationship exists for the MA(Add) data. The plots show how the connectivity of a node is strongly linked with its variance. The panel 11(c) of the figure shows how the variance of a node is ¹²not consistent across platforms. Thus the conclusion is 13 that the networks inferred in this analysis from non- $_{\tt 14}$ scaled data will mainly reflect measurement scale and platform specific effects rather than biological effects. In addition, Figure 4 shows how the residuals with the 17 largest variances tend to correspond to the highly ex-18 pressed genes. Looking at the list of these genes, we infind various markers for cellular composition. In par-₂₀ticular, as the data come from blood samples, many of the highly expressed genes are related to blood mark- $_{\rm 22}{\rm ers},$ e.g. HBB is the gene with the highest variance and $_{\rm 23}$ is the most connected gene of the DS network (1307 $_{\rm 24}{\rm edges}),$ whereas HLA-C is the highest connected gene $_{25}$ in the MA(DS) network (811 edges). Markers for cel- $_{\rm 26}$ lular composition are in general not expected to have $_{\rm 27} {\rm also}$ a regulatory role, thus the network on non-scaled 28 data may show features that, in some cases, may be 29 consistent across platform but they may not necessar- $_{30}$ ily be linked to regulation.

³¹ In general, the connectivity of a network inferred ³²from non-scaled data is strongly influenced by the in-³³dividual node variances. As shown by Figure 5, the ³⁴network on non-scaled data has a very pronounced ³⁵right tail, i.e. a small number of highly connected ³⁶nodes (hubs), whereas the network on scaled data has ³⁷a more uniform level of connectivity. The plots show ³⁸how the effect is more pronounced for the DS than for ³⁹the MA(DS) network, as in count data the variance scales with the mean and there is therefore a larger¹ variability in node variances.²

If networks on non-scaled data exhibit a gene vari- 3 ance effect and if the measurement scales are not con-⁴ sistent across platforms, then one would expect a lower⁵ consistency of networks across samples and platforms⁶ if the data are not standardized. Table 1 shows the cor-⁷ relations of networks across different samples and plat-⁸ forms, distinguishing the case of scaled and not-scaled⁹ data. The correlation between adjacency matrices is¹⁰ computed using the function gcor of the R package¹¹ sna. Firstly, the table shows varying levels of corre-¹² lations, which all tested significant using the qaptest¹³ function (p-values < 0.001). Secondly, the networks on¹⁴ the same data, but scaled versus non-scaled, are rather¹⁵ different, particularly for the DS case, where the cor-¹⁶ relation is only 0.18. This is less pronounced for the¹⁷ MA(Add) case, due to the larger sample size. Thirdly.¹⁸ the correlation across samples improves when the data¹⁹ are scaled, e.g. 0.26 between MA(DS) and $MA(Add)^{20}$ when they are both scaled versus 0.22 when they are²¹ not scaled, and 0.06 between DS and MA(Add) when²² they are both scaled versus 0.04 when they are not. $^{\tt 23}$ The correlations between the scaled networks tested²⁴ significantly larger than those between the non-scaled²⁵ networks (p-values < 0.001). Fourthly, the correlation²⁶ across platforms is significant, but generally very low²⁷ (top second and third quadrant), even when the data 28 are scaled. We will expand on this point in the next^{29} 30 section.

Agreement of Enrichment Networks

Table 1 shows a very small agreement of network mod-³³ els, particularly across different platforms. The ques-³⁴ tion could therefore be asked whether the overlap be-³⁵ tween the two networks is at all biologically relevant. In³⁶ this section, we aim to summarise the networks at the³⁷ higher level of functional groups and interactions be-³⁸ tween these. In particular, we summarise the networks³⁹

31

32

¹in terms of interactions among 62 KEGG pathways. ²The test **neat** [28] is used to detect enrichment among ³any pair of pathways. Figure 6 shows the quantile-⁴quantile plots (q-q plots) of the p-values for all pair-⁵wise comparisons. Under no enrichment, the p-values ⁶should follow a uniform distribution. In that case, the ⁷q-q plot would follow the diagonal line. For the case ⁸of DS and MA(DS), it is obvious how scaling the data ⁹returns networks that are enriched of biological edges. ¹⁰as the q-q plots are those of right-skewed distributions. ¹¹The node variance effect of the networks on non-scaled ¹²data may therefore mask biological facts and the de-¹³tection of biologically meaningful interactions. For the ¹⁴case of MA(Add), there is detection of interactions ¹⁵among pathways both for the networks on scaled and ¹⁶non-scaled data. In fact, Table 1 showed a relatively ¹⁷large agreement between the two networks (correlation ¹⁸0.54). This is most likely due to the significantly larger ¹⁹sample size of MA(Add) (1272 versus 94), which limits $^{20}{\rm the}$ effect of the variances of individual nodes on the ²¹network inference. 22

23 Considering the case of scaled data, we build net-²⁴works among pathways testing for "Overenrichment" ²⁵at a 10% significance level. The resulting networks 26 have 240 edges in the case of DS, 240 edges for MA(DS) ²⁷and 427 edges for MA(Add). Figure 7 shows the in-²⁸tersection of the three networks. The network reveals ²⁹some links between pathways that are supported by ³⁰existing literature. For example, the link between the ³¹Focal Adhesion and Calcium pathways is found signif-³²icant in the DS network (p-value 0.006, 34 links be-³³tween the two pathways), MA(DS) (p-value 0.041, 32 ³⁴links) and MA(Add) (p-value 0.009, 39 links). Look-³⁵ing closely at the links, there are many connections ³⁶between the protein tyrosine kinase 2 (PTK2B) from ³⁷the calcium pathway with genes in the focal adhe-³⁸sion pathway, for example a link between VAV1 and ³⁹PTK2B in the DS network that was found previously by [10]. In the other direction, AKT2 from the focal¹ adhesion pathway was found to be regulated by cal-² cium signalling [26] and the link between AKT2 and³ calcium-dependent regulators such as CALM3, which⁴ is found in the microarray networks, is supported by⁵ [23, 25].

Table 2 shows the agreement among the three net_8 works in terms of correlation. Comparing this table⁹ with Table 1, we observe the same agreement between₁₀ MA(DS) and MA(Add) (p-value 0.532), but a signifi-₁₁ cantly higher agreement across platforms: 0.11 versus₁₂ 0.04 for DS-MA(DS) (p-value 0.019) and 0.12 versus₁₃ 0.06 for DS-MA(Add) (p-value 0.017). Overall, this₁₄ suggests a higher level of consistency at the level of in-₁₅ teractions between pathways, rather than at the level₁₆ of individual edges.

In many cases, the biological objective of the analysis¹⁸ is to detect differences in regulatory patterns among¹⁹ biological conditions. Then the interest is in the dif-²⁰ ferential networks, that is in the edges that are found²¹ only in one of the conditions. Consistency of differ-²² ential network analyses among different samples and²³ platforms is therefore also important. In order to assess²⁴ this, we fitted networks on high glucose and low glu-²⁵ cose samples separately. A similar agreement to that in²⁶ Table 1 was found across platforms, both for high and²⁷ low glucose networks. We then considered the networks²⁸ containing the edges that are in high glucose but not in²⁹ low glucose. We found 18686 edges unique to high glu-³⁰ cose from the networks inferred from DS data, 25522³¹ edges in the networks inferred from MA(DS) data and³² 15974 edges in the networks inferred from MA(Add)³³ data. But the three networks altogether have only 100^{34} edges in common, suggesting that the detection of dif-³⁵ ferences at the level of individual edges is not robust.³⁶ In contrast to this, when enrichment among pathways³⁷ is considered. Figure 8 shows a low level of pathway³⁸ enrichment for all three networks, particularly for the³⁹

¹network from the DS data. Similar results are ob-²tained when considering the networks unique to low ³glucose. For example, there are 21218 edges unique to ⁴high glucose from the networks inferred from DS data, ⁵24684 edges in the networks inferred from MA(DS) ⁶data and 13489 edges in the networks inferred from ⁷MA(Add) data, but the three networks altogether have ⁸only 98 edges in common. This means that the net-⁹works, across samples and platforms, have little signa-¹⁰ture of differences between high and low glucose con-¹¹ditions. Of course, there may be genuine differences, ¹²but there is not enough evidence in the data to pick ¹³these up. These examples show that consistency across ¹⁴platforms can be particularly low for differential net-¹⁵works, since one is looking for a robust detection of ¹⁶edges that are in one condition but not in the other ¹⁷condition, so sensitivity as well as specificity of sparse ¹⁸Gaussian graphical models play a role in this case. 19

²⁰Discussion and Conclusion

²¹The aim of this paper was to assess the consistency of ²²networks inferred by sparse Gaussian graphical mod-²³els across different samples and data platforms. To this ²⁴aim, we used a rich dataset containing samples that are ²⁵profiled under both techniques as well as a large set of ²⁶independent samples. We first of all showed the impact ²⁷of confounding effects (such as age and gender) on the ²⁸network reconstruction. The effect was not very strong ²⁹in our study. Nevertheless, we show how confounding ³⁰effects may return spurious interactions amongst genes ³¹and may mask the search for genuine regulatory inter-³²actions. Although the inference method does not cor-³³respond to any generative model of the data, i.e., it is ³⁴impossible to set up a sampling scheme that exactly ³⁵correspond to the two-step inference procedure, we ³⁶have investigated how realistic sampling schemes for ³⁷genetic networks are affected by confounding variables. ³⁸The results, included in the supplementary materials, ³⁹show that the inferred precision matrix in the two10

step procedure relates closely the underlying network¹ in all kind of confounding scenarios. Moreover, [3] show² that the precision matrix can approximately be inter-³ preted in terms of conditional odds ratios, which are⁴ more natural ways to interpret conditional indepen-⁵ dence for count data. Given these considerations, we⁶ recommend to devise an appropriate regression model⁷ and fit networks to the residuals of this model, i.e. to⁸ data adjusted for confounders.⁹

Our analysis of the inferred networks shows that in-11 dividual node variances can have a remarkable $effect_{12}$ on the connectivity of the resulting network. In partic- $_{\tt 13}$ ular, they result in hub-type networks with hubs made_{14} of the nodes with the highest variances. The incon- $_{\rm 15}$ sistency of node variances across platforms and the fact that the variability level of a node may not be₁₇ linked to its regulatory role mean that, failing to scale the data prior to the network analysis, leads to networks that are not reproducible across different plat-20 forms and that may be misleading. This point is of particular importance given that not all available implementations of sparse Gaussian graphical models au- $_{\it 23}$ to matically scale the data and thus this step is often ____ left to the user. Failure to scale the data prior to network modelling may in part explain the belief, $partic_{26}$ ularly in the early days of network modelling of biological systems, that biological networks are scale-free $_{28}$ and the later contributions which questioned this as- $_{29}$ sumption, e.g. [14, 17] and references therein. 30

However, even after scaling of the data, our analysis³¹ shows that a large number of edges are not replicated³² across platforms. We then show how the reproducibil-³³ ity of networks across different samples and platforms³⁴ is notably higher if networks are summarised in terms³⁵ of enrichment amongst functional groups of interest,³⁶ such as KEGG pathways, rather than at the level of³⁷ individual edges. In particular, we show, for the case³⁸ of differential networks, how conclusions from individ-³⁹

Page 9 of 12

¹ual edges are not consistent across platforms and, once ²again, how conclusions drawn from analyses of individ-³ual edges may be misleading.

⁴ Overall, while the field of network modelling makes ⁵steady advances and new network models with higher ⁶specificity, sensitivity and computational efficiency are ⁷proposed in the literature, this study shows that cau-⁸tion is needed at this stage in the (over)interpretation ⁹of the inferred networks for biological findings. In par-¹⁰ticular, we show how summarising the networks at the ¹¹level of functional groups of interest, such as KEGG ¹²pathways, provides a more robust representation of ¹³the underlying network and allows to reach conclu-¹⁴ sions that are most consistent across platforms. The ¹⁵network of functional groups is also of a significantly ¹⁶smaller scale than the network of genes and, thus, it ¹⁷can be more easily interrogated to generate hypotheses ¹⁸that can be tested by further biological experiments. 19

²⁰Additional Files

21Additional file 1: Simulation showing the effect of confounders on network $_{22}$ reconstruction.

₂₃List of abbreviations

SAGE: Serial Analysis of Gene Expression; MA: MicroArray; DS: ²⁴DeepSAGE; KEGG: Kyoto Encyclopedia of Genes and Genomes; q-q plot: ²⁵quantile-quantile plot; NTR: Netherlands Twin Register; NESDA: ₂₆Netherlands Study of Depression and Anxiety; Body Mass Index (BMI).

27Ethics approval and consent to participate

 $_{28}$ The research protocol was approved by the Ethical Committees of the participating universities and all subjects have provided written informed $^{29}_{\rm consent.}$

30 Consent for publication

³¹Not applicable.

32 Availability of data and materials

33Gene expression data used for this study are available at dbGaP, accession 34number phs000486.v1.p1 (http://www.ncbi.nlm.nih.gov/projects/ gap/cgi-bin/study.cgi?study_id=phs000486.v1.p1). 35

36 Competing interests

The authors declare that they have no competing interests.

Funding

Gene-expression data was funded by the US National Institute of Mental ³⁹Health (RC2 MH089951) as part of the American Recovery and

Reir	vestment Act of 2009. NESDA and NTR were funded by the	1
Net	herlands Organization for Scientific Research (MagW/ZonMW grants	2
904-	61-090, 985-10-002,904-61-193,480-04-004, 400-05-717, 912-100-20;	3
Spir	ozapremie 56-464-14192; Geestkracht program grant 10-000-1002); the	
Cen	ter for Medical Systems Biology (NWO Genomics), Biobanking and	4
Bior	nolecular Resources Research Infrastructure (BBMRI-NL), VU	5
Univ	versity's Institutes for Health and Care Research and Neuroscience	6
Can	npus Amsterdam, NBIC/BioAssist/RK (2008.024); the European	
Scie	nce Foundation (EU/QLRT-2001-01254); the European Community's	7
Seve	enth Framework Program (FP7/2007-2013); ENGAGE	8
(HE	ALTH-F4-2007-201413); and the European Science Council (ERC,	9
230	374). Transport, extraction, cDNA preparation and generation of	5
mic	roarray data for the NTR samples were carried out under a supplement	10
to t	he NIMH Center for Collaborative Genomics Research on Mental	11
Disc	orders (U24 MH068457). R.J was supported by the Biobank-based	10
Inte	grative Omics Study (BIOS) consortium, which is funded by	12
	MRI-NL (NWO project 184.021.007).	13
		14
Aut	hors' contributions	
VV,	EW and PH conceived the study, discussed the methodology and	15
inte	rpreted the results. VV and EW performed the data analysis. RJ, EG,	16
BP,	DB provided the NTR and NESDA data. PH assisted in the biological	17
inte	rpretation of the results. VV wrote the manuscript. All authors read and	
аррі	roved the final manuscript.	18
At	hav details	19
	hor details	20
~	partment of Mathematics, Brunel University London, London, UK.	
	nann Bernoulli Institute of Mathematics and Computer Science, versity of Groningen, Groningen, The Netherlands. ³ VU University	21
	lical Center, Amsterdam, The Netherlands. ⁴ Leiden University Medical	22
		23
Cen	ter, Leiden University, Leiden, The Netherlands.	
Refe	erences	24
1.	Abegaz F, Wit E (2013) Sparse time series chain graphical models for	25
	reconstructing genetic networks. Biostatistics 14(3):586-599,	26
2.	Abegaz F, Wit E (2014) SparseTSCGM: Sparse time series chain	20
	graphical models. R package version 2.1.1	27
3.	Abegaz F, Wit E (2015) Copula Gaussian graphical models with	28
	penalized ascent Monte Carlo EM algorithm. Statistica Neerlandica	29
	69(4):419–441,	29
4.	Allen G, Liu Z (2013) A local Poisson graphical model for inferring	30
	networks from sequencing data. IEEE Transactions on NanoBioscience	31
	12(3):189–198,	~~
5.	Boomsma DI, Geus EJCd, Vink JM, Stubbe JH, Distel MA, Hottenga	32
	JJ, Posthuma D, Beijsterveldt TCEMv, Hudziak JJ, Bartels M,	33
	Willemsen G (2006) Netherlands twin register: From twins to twin	34
	families. Twin Research and Human Genetics 9:849–857	
6.	Danaher P (2013) JGL: Performs the Joint Graphical Lasso for sparse	35
	inverse covariance estimation on multiple classes. R package version	36
	2.3	37
7.		
	inverse covariance estimation across multiple classes. Journal of the	38
	Royal Statistical Society: Series B 76(2):373–397,	39
	,	

¹ 8.	Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance		International Journal of Methods in Psychiatric Research	1
2	estimation with the graphical lasso. Biostatistics $9(3)$:432–441,		17(3):121–140	2
3 ^{9.}	Friedman J, Hastie T, Tibshirani R (2014) glasso: Graphical lasso- estimation of Gaussian graphical models. R package version 1.8	25.	Pérez-García MJ, Gou-Fabregas M, de Pablo Y, Llovera M, Comella JX, Soler RM (2008) Neuroprotection by neurotrophic factors and	3
⁴ 10.	Gao C, Blystone SD (2009) A Pyk2–Vav1 complex is recruited to		membrane depolarization is regulated by Calmodulin Kinase IV.	4
5	eta3-adhesion sites to initiate Rho activation. Biochemical Journal		Journal of Biological Chemistry 283(7):4133–4144,	5
6	420(1):49–56,	26.	Reinartz M, Raupach A, Kaisers W, Gödecke A (2014) AKT1 and	6
11.	Giorgi FM, Del Fabbro C, Licausi F (2013) Comparative study of		AKT2 induce distinct phosphorylation patterns in HL-1 cardiac	
7	RNA-seq-and microarray-derived coexpression networks in Arabidopsis		myocytes. Journal of Proteome Research 13(10):4232–4245,	7
8	Thaliana. Bioinformatics 29(6):717–724,	27.	Richard A, Lyons P, Peters J, Biasci D, Flint S, Lee J, McKinney E,	8
9 ^{12.}	't Hoen PAC, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen		Siegel R, Smith K (2014) Comparison of gene expression microarray	9
10	RHAM, de Menezes RX, Boer JM, van Ommen GJB, den Dunnen JT		data with count-based RNA measurements informs microarray	10
10	(2008) Deep sequencing-based expression analysis shows major		interpretation. BMC Genomics 15(1):649,	10
11	advances in robustness, resolution and inter-lab portability over five	28.	Signorelli M, Vinciotti V, Wit EC (2016) NEAT: an efficient network	11
12	microarray platforms. Nucleic Acids Research 36(21):e141,		enrichment analysis test. ArXiv:1604.01210	12
13. 13	Jansen R, Batista S, Brooks AI, Tischfield JA, Willemsen G, van	29.	Sîrbu A, Kerr G, Crane M, Ruskin HJ (2012) RNA-Seq vs dual-and	13
	Grootheest G, Hottenga JJ, Milaneschi Y, Mbarek H, Madar V, Peyrot		single-channel microarray data: sensitivity analysis for differential	
14	W, Vink JM, Verweij CL, de Geus EJ, Smit JH, Wright FA, Sullivan	20	expression and clustering. PLoS One 7(12):e50,986	14
15	PF, Boomsma DI, Penninx BW (2014) Sex differences in the human	30.	Subramaniam S, Hsiao G (2012) Gene-expression measurement:	15
¹⁶ 14.	peripheral blood transcriptome. BMC Genomics 15(1):1–12 Khanin R, Wit E (2006) How scale-free are biological networks.		variance-modeling considerations for robust data analysis. Nature Immunology 13(3):199–203,	16
14.	Journal of Computational Biology 13(3):810–818	31	Tan KM, London P, Mohan K, Lee SI, Fazel M, Witten D (2014)	17
4.5		51.	Learning graphical models with hubs. Journal of Machine Learning	
18 ^{15.}	correlation network analysis. BMC Bioinformatics 9(1):1–13		Research 15(1):3297–3331	18
¹⁹ 16.	Li X, Zhao T, Wang L, Yuan X, Liu H (2014) flare: Family of Lasso	32.	Tenenbaum D (2015) KEGGREST: Client-side REST access to KEG	G. ¹⁹
20	Regression. R package version 1.5.0		R package version 1.8.0	20
21 ^{17.}	Lima-Mendez G, van Helden J (2009) The powerful law of the power	33.	Wang C, Gong B, Bushel PR, Thierry-Mieg J, Thierry-Mieg D, Xu J,	' 21
	law and other myths in network biology. Molecular BioSystems		Fang H, Hong H, Shen J, Su Z, Meehan J, Li X, Yang L, Li H, Labaj	j
22	5:1482–1493,		PP, Kreil DP, Megherbi D, Gaj S, Caiment F, van Delft J, Kleinjans	J, ²²
2318.	Lipshutz R, Fodor S, Gingeras T, Lockhart D (1999) High density		Scherer A, Devanarayan V, Wang J, Yang Y, Qian HR, Lancashire L.	J, 23
24	synthetic oligonucleotide arrays. Nature Genetics 21:20–24		Bessarabova M, Nikolsky Y, Furlanello C, Chierici M, Albanese D,	24
19. 25	Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008)		Jurman G, Riccadonna S, Filosi M, Visintainer R, Zhang KK, Li J,	25
	RNA-seq: An assessment of technical reproducibility and comparison		Hsieh JH, Svoboda DL, Fuscoe JC, Deng Y, Shi L, Paules RS,	
26	with gene expression arrays. Genome Research 18:1509–1517		Auerbach SS, Tong W (2014) The concordance between RNA-seq an	ıd 26
27 ^{20.}			microarray data depends on chemical treatment and transcript	27
²⁸ 21.	Edition. Chapman and Hall	24	abundance. Nature Biotechnology 32(9):926–932,	28
21. 29	Nielsen KL, Høgh A, Emmersen J (2006) DeepSAGE – digital transcriptomics with high sensitivity, simple experimental protocol and	34.	Whittaker J (1990) Graphical models in applied multivariate statistics Wiley, Chichester	s. 29
	multiplexing of samples. Nucleic Acids Research 34(19):e133,	35	Wright FA, Sullivan PF, Brooks AI, Zou F, Sun W, Xia K, Madar V,	
30 22.		55.	Jansen R, Chung W, Zhou YHH, Abdellaoui A, Batista S, Butler C,	30
31	networks: a simple approximate learning algorithm and its application		Chen G, Chen THH, D'Ambrosio D, Gallins P, Ha MJJ, Hottenga JJ.	
32	to high-dimensional plant gene expression data. BMC Systems Biology		Huang S, Kattenberg M, Kochar J, Middeldorp CM, Qu A, Shabalin	
33	1(1):1–10		A, Tischfield J, Todd L, Tzeng JYY, van Grootheest G, Vink JM,	33
23.	Park CH, Kim YS, Kim YH, Choi MY, Yoo JM, Kang SS, Choi WS,		Wang Q, Wang W, Wang W, Willemsen G, Smit JH, de Geus EJ, Yi	
34	Cho GJ (2008) Calcineurin mediates AKT dephosphorylation in the		Z, Penninx BW, Boomsma DI (2014) Heritability and genomics of	34
35	ischemic rat retina. Brain Research 1234:148 – 157,		gene expression in peripheral blood. Nature Genetics $46(5):430-437$	35
36 ^{24.}	Penninx BW, Beekman AT, Smit JH, Zitman FG, Nolen WA,	36.	Zhang L, Mallick BK (2013) Inferring gene networks from discrete	36
	Spinhoven P, Cuijpers P, De Jong PJ, Van Marwijk HW, Assendelft		expression data. Biostatistics 14(4):708–722,	27
37	WJ, Van Der Meer K, Verhaak P, Wensing M, De Graaf R, Hoogendijk	37.	Zhao S, Fung-Leung W, Bittner A, Nqo K, Liu X (2014) Comparison	
38	WJ, Ormel J, Van Dyck R (2008) The Netherlands Study of		of RNA-Seq and microarray in transcriptome profiling of activated T	38
39	Depression and Anxiety (NESDA): rationale, objectives and methods.		Cells. PLoS One 9(1):e78,644	39

¹ 38.	Zhao T, Liu H, Roeder K, Lafferty J, Wasserman L (2014) huge:	1
2	High-dimensional Undirected Graph Estimation. R package version	2
3	1.2.6	3
39. 4	Zhernakova D, de Klerk E, Westra H, Mastrokolias A, Amini S,	4
	Ariyurek Y, Jansen R, Penninx B, Hottenga J, Willemsen G, de Geus E,	
5	Boomsma D, Veldink J, van den Berg L, Wijmenga C, den Dunnen J,	5
6	van Ommen G, 't Hoen P, Franke L (2013) DeepSAGE reveals genetic variants associated with alternative polyadenylation and expression of	6
7	coding and non-coding transcripts. PLoS Genetics 9(6):e1003,594	7
8		8
⁸ Figi ⁹ Tab		9
10		10
11		11
12		12
13		13
14		14
15		15
16		16
17		17
18		18
19		19
20		20
21		21
22		22
23		23
24		24
25		25
26		26
27		27
28		28
29		29
30		30
31		31
32		32
33		33
34		34
35		35
36		36
37		37
38		38
39		39

Figure 1 DS versus Microarray Expression. Left: Average (log) expression for the 1435 genes from the 94 DS samples (x-axis) and the 94 microarray samples (y-axis). Right: Average gene expression from the 94 microarray samples versus the 1272 additional microarray samples.

Figure 2 Confounders Effect. Two examples of the effect of confounders on the MA(DS) network: the two links are found when not correcting for confounders, but not after correction.

Figure 3 Node Variance Effect. Node connectivity versus node variance for DS network (a), MA(DS) network (b) and node variance from DS data versus node variance from MA data (b).

Figure 4 Node Connectivity versus Expression Node connectivity of DS network versus node expression level (measured as number of transcripts per million (tpm)).

Figure 5 Scaling Effect on Node Connectivity Node degree distributions of DS (left) and MA(DS) (right) networks on scaled (red) and non-scaled (blue) data. The networks have similar size (about 30000 edges).

Figure 6 Enrichment of Links between Pathways q-q plot of p-values of the enrichment test for all pairwise comparisons of 62 KEGG pathways for DS, MA(DS) and MA(Add) and distinguishing the case of scaled and not-scaled data.

Figure 7 Network of Pathways Overlap Overlap of Pathway Networks from DS, MA(DS) and MA(Add) at 10% significance level.

Figure 8 High versus Low Glucose Networks q-q plot of the enrichment test for all pairwise comparisons of 62 KEGG pathways for the differential networks between high and low glucose.

Table 1 Correlation among the 6 networks from expression data (DS, MA(DS) and MA(Add)) and two cases (SCALED - data centered to mean zero and variance one for each gene and NOT SCALED.)

29				DS	M	A(DS)	MA	A(Add)
30			SCALED	NOT SCALED	SCALED	NOT SCALED	SCALED	NOT SCALED
31	DS	SCALED	1.00	0.18	0.04	0.02	0.06	0.05
32	03	NOT SCALED		1.00	0.03	0.03	0.04	0.04
52	MA(DS)	SCALED			1.00	0.36	0.26	0.21
33	MA(D3)	NOT SCALED				1.00	0.14	0.22
34	MA(Add)	SCALED					1.00	0.54

35								
Table 2	Correlation	among	the	networks	at tl	he level	of KEGG	pathways.

Bit MA(DS) MA(DS) MA(Add) 37 DS 1.00 0.11 0.12 38 MA(DS) 1.00 0.26 39 MA(Add) 1.00 1.00	36		DS	MA(DS)	MA(Add)
Bit DS 1.00 0.11 0.12 38 MA(DS) 1.00 0.26 MA(Add) 1.00 1.00			03	MA(D3)	MA(Add)
MA(Add) 1.00	37	DS	1.00	0.11	0.12
39 MA(Add) 1.00	38	MA(DS)		1.00	0.26
	39	MA(Add)			1.00