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Abstract

In this paper, two existing quadrature filters, viz., the Gauss-Hermite filter (GHF) and the sparse-grid Gauss-Hermite

filter (SGHF) are extended to solve nonlinear filtering problems with one step randomly delayed measurements. The de-

veloped filters are applied to solve a maneuvering target tracking problem with one step randomly delayed measurements.

Simulation results demonstrate the enhanced accuracy of the proposed delayed filters compared to the delayed cubature

Kalman filter and delayed unscented Kalman filter.
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1 Introduction

The estimation of states of a dynamic system is necessary to solve problems in many active research areas, viz. target

tracking [1], economics and finance [2,3], wireless communication [4], traffic management [5], to name a few. For a linear

system with Gaussian noises, optimal solution exists and is popularly known as Kalman filter. However, for nonlinear

systems, no optimal solution is available. As most of the practical systems are nonlinear, it becomes necessary to develop

a more accurate and computationally efficient filter to solve nonlinear estimation problems. In order to achieve higher

estimation accuracy with reasonable computational load, several nonlinear filters have been introduced. These include

the extended Kalman filter (EKF) [6], the unscented Kalman filter (UKF) [7] and its variants [8], the cubature Kalman

filter (CKF) [9,10], the Gauss-Hermite filter (GHF) [11,12], the sparse-grid Gauss-Hermite filter (SGHF) [13], the central

difference filter (CDF) [14], the divided difference filter (DDF) [15] etc.

For all the above mentioned filters, it is assumed that the current measurements are available at every time instant.

However in practice, situations may arise where the measurement data arrives at the sensor with some random delay or

measurements may be randomly delayed from the sensors to the filter as a result of limited communication bandwidth.

In the literature, the problem appears with different names such as out of sequence measurement (OOSM) [16], filtering

with random sample delay [17], filtering with random time delayed measurements [18] etc.

The literature available on state estimation with non-delayed measurements is rich. However, the same is not true

for randomly delayed measurement problems except a few notable publications on linear systems [18–21], and nonlinear

systems [22–24]. The literature on the described problem began with the work of Ray et al., where the authors developed a

randomly delayed filtering method for the linear systems. Later, Carazo and others introduced nonlinear filtering algorithm

for one time step [22] and two time step [23] randomly delayed measurements using the extended and the unscented

Kalman filter approach. Recently, Wang et al. [24] incorporated cubature Kalman filter (CKF) [9] to solve the nonlinear

filtering problem with one-step randomly delayed measurements.

In the present work, initially GHF is extended to solve the nonlinear filtering problems with one step randomly delayed

measurements. We abbreviate the new filter as GHF-1RD. Accuracy of GHF-1RD is high, although the computational

load increases exponentially with the dimension of the system. To circumvent the problem, one step randomly delayed

SGHF (SGHF-1RD) has been developed in this paper. The proposed delay filters have been applied to a maneuvering

target tracking problem. The same problem was discussed in the context of delay-free filters previously in [25]. In

this paper, the chances of delays are incorporated and the developed delayed filters are implemented for tracking. The

simulation results show that the GHF-1RD provides better accuracy compared to its UKF and CKF counterparts. The

SGHF-1RD provides a similar accuracy as GHF-1RD with much lower computational cost.

2 Problem formulation

Let us consider a discrete nonlinear system with a state equation,

xk = φk−1(xk−1) + qk−1, (1)
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and a measurement equation,

zk = γk(xk) + wk, (2)

where xk ∈ <n denotes the state vector of a system, and zk ∈ <p is the measurement at any instant k, where k =

{1, 2, 3, ...}. φk(xk) and γk(xk) are known nonlinear functions of xk and k. The process noise qk ∈ <n and the measure-

ment noise wk ∈ <p are assumed to be uncorrelated, white, and following Gaussian distribution with covariance Qk, and

Rk respectively.

It is assumed that the measurement is one step randomly delayed, i.e., at any instant of time the received measurement

may be the measurement of that instant or one step earlier. So one step randomly delayed measurement equation could be

written as

yk = (1− βk)zk + βkzk−1, y1 = z1, (3)

where βk is mutually independent of the process and measurement noises qk and wk, and a sequence of Bernoulli random

variable. It may take values either 0 or 1, with the probability

P (βk = 1) = pk = E[βk],

P (βk = 0) = 1− pk,

E[(βk − pk)2] = pk(1− pk).

βk = 0 implies that the current measurement has arrived (no delay measurement), while βk = 1 means that the previous

step’s measurement has arrived (one step delayed measurement).

The objective here is to design a nonlinear filter for the system described by equations (1)-(3). More specifically,

posterior pdf P (xk|Yk), where Yk = {yi} with i = {1, 2, ..., k} denotes the set of the delayed measurements, needs to be

determined.

To solve the above mentioned problem, we propose two new estimators in this paper, namely Gauss-Hermite filter with

one step randomly delayed measurement (GHF-1RD) and sparse Gauss-Hermite filter with one step randomly delayed

measurement (SGHF-1RD). For an arbitrary nonlinear system, the posterior probability density function (pdf), P (xk|Yk),

will no longer be Gaussian. However, we approximate it with a Gaussian distribution which is characterized by posterior

mean x̂k|k and covariance Pk|k. This is a standard assumption in the literature on filters based on numerical integration

such as GHF and SGHF, see, e.g. [11] and [13]. The proposed filters estimate the posterior mean and the covariance at

each step recursively.

Through simulation experiments, we show that the proposed methods perform better compared to the existing UKF and

CKF based filters for single step randomly delayed measurements. GHF-1RD uses product rule to generate support points

in multidimensional space. So the support point requirement for GHF-1RD increases exponentially with the dimension

of the system, hence suffers from the curse of dimensionality problem. The said problem is overcome in the SGHF-1RD

which uses Smolyak rule, introduced in [13, 26] to extend the single dimensional quadrature points to multidimensional

space without affecting estimation accuracy achieved in GHF-1RD.
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3 Filtering with one step randomly delayed measurements under Bayesian

framework

The measurement equation, where the measurements are randomly delayed by one sampling time, could be written as

yk = (1− βk)zk + βkzk−1

= (1− βk)(γk(xk) + wk) + βk(γk−1(xk−1) + wk−1).

To estimate the states, P (wk|Yk) needs to be calculated along with P (xk|Yk). Hence, the state vector is augmented with

measurement noise (xak+1 = [xTk+1 wTk+1]T ), and we estimate the posterior pdf of augmented states P (xak|Yk). Here

superscript ‘a’ stands to represent the augmentation.

3.1 Assumptions

The probability densities at each time step in general are non-Gaussian in nature. The quadrature filters assume them as

Gaussian and approximate with first and second order moments. We assume the following:

• The probability density function, P (xk+1|Yk+1), is Gaussian with mean x̂k+1|k+1, and covariance Pk+1|k+1.

• The probability density function, P (wk+1|Yk+1) is Gaussian with mean ŵk+1|k+1 and covariance Pwwk+1|k+1.

• The pdf of augmented states follows Gaussian distribution, i.e.,

P (xak+1|Yk+1) = ℵ(xak+1; x̂ak+1|k+1,P
a
k+1|k+1)

where ℵ(x;µ,Σ) represents the Gaussian distribution of ‘x’ with mean µ and covariance Σ, and

xak+1|k+1 =

 x̂k+1|k+1

ŵk+1|k+1

 ,
and

Pak+1|k+1 =

 Pk+1|k+1 Pxw
k+1|k+1

(Pxw
k+1|k+1)T Pwwk+1|k+1

 ,
with ŵk+1|k+1 being the posterior estimate for measurement noise, while Pwwk+1|k+1 and Pxw

k+1|k+1 being the noise

covariance and cross-covariance between the state and measurement noise respectively.

• The one-step predictive pdf of xk+1 is Gaussian:

P (xk+1|Yk) = ℵ(xk+1; x̂k+1|k,Pk+1|k)

• The one-step predictive pdf of delayed measurement yk+1 is Gaussian, i.e.

P (yk+1|Yk) = ℵ(yk+1; ŷk+1|k,P
yy
k+1|k).
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• The pdf of non-delayed measurement, P (zk|Yk), and P (zk+1|Yk) are Gaussian with mean ẑk|k, ẑk+1|k and covari-

ance Pzzk|k, and Pzzk+1|k respectively.

The estimation of the augmented states can be done in two steps [13], namely (i) measurement noise estimation (ii)

state estimation.

3.2 Measurement noise estimation

The first and second order moments of prior and posterior pdf of measurements are given by

ẑk+1|k =

∫
γk+1(xk+1)ℵ(xk+1; x̂k+1|k,Pk+1|k)dxk+1 (4)

Pzzk+1|k =

∫
γk+1(xk+1)γTk+1(xk+1)ℵ(xk+1; x̂k+1|k,Pk+1|k)dxk+1 − ẑk+1|kẑ

T
k+1|k +Rk+1 (5)

ẑk|k =

∫
[γk(xk) + wk]ℵ(xak; x̂ak|k,P

a
k|k)dxak (6)

Pzzk|k =

∫
[γk(xk) + wk][γk(xk) + wk]Tℵ(xak; x̂ak|k,P

a
k|k)dxak − ẑk|kẑTk|k (7)

The predicted mean and error covariance of the delayed measurements are given by:

ŷk+1|k = (1− pk+1)ẑk+1|k + pk+1ẑk|k

Pyyk+1|k = (1− pk+1)Pzzk+1|k + pk+1Pzzk|k + pk+1(1− pk+1)(ẑk+1|k − ẑk|k)(ẑk+1|k − ẑk|k)T

The Kalman gain for noise is

Kw
k = Pwyk+1|k(Pyyk+1|k)−1,

where the cross error covariance is given by

Pwyk+1|k = (1− pk+1)Rk+1.

Finally, the expressions for the posterior estimate of the measurement noise, and its error covariance are

ŵk+1|k+1 = Kw
k (yk+1 − ŷk+1|k),

and

Pwwk+1|k+1 = Rk+1 −Kw
k Pyyk+1|k(Kw

k )T .

3.3 State estimation

Prior estimated state and its covariance can be written as

x̂k+1|k =

∫
φk(xk)ℵ(xk; x̂k|k,Pk|k)dxk (8)

Pk+1|k =

∫
φk(xk)φTk (xk)ℵ(xk; x̂k|k,Pk|k)dxk − x̂k+1|kx̂Tk+1|k +Qk (9)
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The cross error covariances are given by

Pxz
k+1,k|k = E[x̃k+1|kz̃

T
k|k|Yk]

=

∫
φk(xk)[γk(xk) + wk]Tℵ(xak; x̂ak|k,P

a
k|k)dxak − x̂k+1|kẑ

T
k|k,

(10)

and

Pxz
k+1|k = E[x̃k+1|kz̃

T
k+1|k|Yk]

=

∫
xk+1γk+1(xk+1)Tℵ(xk+1; x̂k+1|k,Pk+1|k)dxk+1 − x̂k+1|kẑ

T
k+1|k.

(11)

The Kalman gain for state estimation is

Kx
k = Pxy

k+1|k(Pyyk+1|k)−1,

where

Pxy
k+1|k = (1− pk+1)Pxz

k+1|k + pk+1Pxz
k+1,k|k.

Finally, the posterior state estimate and the posterior error covariance of the states are

x̂k+1|k+1 = x̂k+1|k +Kx
k(yk+1 − ŷk+1|k),

and

Pk+1|k+1 = Pk+1|k −Kx
kPyyk+1|k(Kx

k)T .

The cross covariance between the measurement noise and the state is

Pxw
k+1|k+1 = −Kx

kPyyk+1|k(Kw
k )T .

Note-1 Under the assumption that the measurements are not delayed i.e., βk = 0, the delayed measurement equa-

tion reduces to the non-delayed measurement equation, and the formulated problem reduces to ordinary state estimation

problem.

Note-2 The integrals appeared in equations (4) to (7), and (8) to (11) are generally intractable, hence these are approx-

imated numerically. The accuracy of the filter depends on the accuracy of the numerical evaluation of the integrals.

As discussed earlier, the Gauss-Hermite quadrature rule is applied for approximating the intractable integrals.

3.4 Evaluation of multi-dimensional integral with Gauss quadrature rule

In this subsection, the evaluation of multi-dimensional integrals is described using the Gauss-Hermite quadrature rule.

Although the Gauss-Hermite quadrature rule of integration is available in mathematics literature [27] for more than fifty

years, the same has been incorporated in signal processing very recently, mainly due to the work of Ito and Xiong [14].
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3.4.1 Single dimensional Gauss-Hermite quadrature rule

The single dimensional Gauss-Hermite quadrature rule is given by∫ ∞
−∞

f(x)
1

(2π)1/2
e−x

2

dx =

N∑
i=1

f(qi)Wi,

where qi and Wi represent the N quadrature points and the weights associated with them. To calculate the quadrature

points and weights, let us consider a symmetric tridiagonal matrix J with zero diagonal elements and Ji,i+1 =
√
i/2; 1 ≤

i ≤ N − 1. The quadrature points are located at
√

2xi, where xi are the eigenvalues of J [11]. The weights Wi is the

square of the first element of the ith normalized vector.

The method of calculating quadrature points and the weights was first introduced by Golub et al. [28]. It works

on the principle of moment matching. Instead of choosing the quadrature points arbitrarily in moment matching method,

Golub’s method can provide a deterministic way to select them with the best possible accuracy. Moment matching method

is briefly outlined in the Appendix-A, for the sake of completeness.

3.4.2 Multidimensional extension of single dimensional Gauss-Hermite quadrature rule

Product rule:

Using product rule, the n dimensional integral given by

IN =

∫
<n

f(x)
1

(2π)n/2
e−(1/2)|x|2dx (12)

could approximately be evaluated as

IN =

N∑
i1=1

...

N∑
in=1

f(qi1 , qi2 , ..., qin)Wi1Wi2 ...Win =

nsp∑
j=1

f(ξpj )ωpj ,

where ξpj = [qi1 , qi2 , ..., qin ]T are multidimensional sample points, ωpj = Wi1Wi2 ...Win are corresponding weights and

nsp is the number of sample points for the product rule. With this rule, the number of sample points i.e. nsp is equal to

Nn.

In order to evaluate IN for nth order system, Nn number of quadrature points and weights are necessary. As an

example, for a second order system and three point GHF, nine quadrature points and weights are required. Hence, the

quadrature point requirement increases exponentially with the dimension of the system, i.e., the method suffers from the

curse of dimensionality problem. As a result, it can only be implemented for lower dimensional problems. To a very

limited extent this could be overcome by ignoring the quadrature points on the diagonals because the weights associated

with them are very small and hence they contribute negligibly to the computation of the integral. But with this crude way

of approximation, the curse of dimensionality problem could not be overcome. To drastically reduce the support points

requirement, the Smolyak rule [26] is introduced. It sharply reduces the computational burden and make the filter free

from the curse of dimensionality problem.

Smolyak rule:
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The curse of dimensionality problem associated with product rule could be circumvented by considerably reducing

the number of support points using Smolyak formula [26]; also see [13] for its use in filtering. Using this rule, the product

rule is replaced by a linear combination of tensor product. The Smolyak rule for approximating the n dimensional integral

of a function f(x) over a Gaussian pdf with accuracy level L, where L is a natural number, is described with the formula,

In,L(f) =

∫
<n

f(x)ℵ(x; 0, In)

=

∫
<n

f(x)
1

(2π)n/2
e−(1/2)|x|2dx

≈
L−1∑

q=L−n
(−1)L−1−qCL−1−q

n−1

∑
Φ∈Nn

q

(Ii1 ⊗ Ii2 ⊗ ...⊗ Iin)(f),

(13)

where C is the binomial coefficient (Cnk = n!/k!(n− k)!), ⊗ stands for the tensor product of Iij which is obtained from

the univariate Gauss-Hermite quadrature rule of accuracy level ij ∈ Φ, where Φ , {i1, ..., in} is an accuracy level set.

The set Nn
q is defined as:

Nn
q =

Φ :

n∑
j=1

ij = n+ q

 for q ≥ 0(where L− n ≤ q ≤ L− 1)

= {} for q < 0

where {} represents the null set. Accuracy level L implies that In,L(f) is exact for the polynomials of the form

xi11 x
i2
2 ... x

in
n for

∑n
j=1 ij ≤ (2L − 1) [13]. Iij is single dimensional approximate of integral of function over Gaus-

sian distribution, i.e.,

Iij =

∫
<
f(x)ℵ(x; 0, 1)dx =

∑
x∈Xij

f(x)Wij (x) (14)

where Xij is the univariate point set with accuracy level ij ∈ Φ, j = 1, ..., n. Combining (13) and (14), the integral

In,L(f) becomes,

In,L(f) ≈
L−1∑

q=L−n

∑
Φ∈Nn

q

∑
x1∈Xi1

...
∑

xn∈Xin

f(x1, ..., xn) (−1)L−1−qCL−1−q
n−1

∏
Wip︸ ︷︷ ︸

weight

,

where Wip is the weight associated with xp. It must be noted that, for a grid point which appears more than one time

in tensor product, the final weight of the point is the sum of the weights over all combinations of Xi1 ⊗ Xi2 , ..., Xin

containing that point. The final set of the sparse-grid Gauss-Hermite (SGH) points and their corresponding weights are

given by

ξsj = Xn,L =

L−1⋃
q=L−n

⋃
Φ∈Nn

q

(Xi1 ⊗Xi2 ⊗ ...⊗Xin)

and

ωsj = (−1)L−1−qCL−1−q
n−1

∏
Wip , (15)

where
⋃

is the union of the individual SGH points. Fig 1 illustrates the construction of sparse-grid Gauss-Hermite points

for a two dimensional system with third degree of accuracy level (L = 3).
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Hence, the integral of interest can be approximated as

In,L(f) ≈
nss∑
j=1

f(ξsj )ωsj ,

where nss is the number of sample points used in Smolyak rule [13, 26] for given accuracy level L and dimension n.

Note 1 The choice of the quadrature points are not unique. In [13], the single dimensional quadrature points (Xij ) and

weights are generated using the moment matching method. In this paper, we adopt the method described by Golub [28].

Note 2 The number of points in univariate Xij is higher than or equal to ij . Similar to [13], here the number of

elements in Xij is taken as (2ij − 1).

Note 3 The exactness of integration with the SGH points increases with the accuracy level L, however the computa-

tional burden also increases with it.

Note 4 The points and weights generated by unscented transform used in UKF-1RD are similar to the points and

weights obtained from the Smolyak rule with L = 2 [13, 26]. Also, Bin Jia and others [29] proved that the third-degree

spherical-radial rule used in CKF-1RD can directly be obtained from the Smolyak rule under certain conditions. Hence,

the existing UKF-1RD and CKR-1RD algorithms are special cases of SGHF-1RD.

4 Gauss-Hermite and sparse Gauss-Hermite filters for one step randomly de-

layed measurement

In this section, the Gauss-Hermite filter (GHF) and the sparse Gauss-Hermite filter (SGHF) are extended to deal with the

one step randomly delayed measurement problems. To formulate a filter, the equations (4) to (7), and (8) to (11) are to be

evaluated. The above mentioned equations contain an integral in the form,

I =

∫
<n

f(x)ℵ(x;µ,Σ)dx =

∫
<n

f(x)
1

(2π)n/2|Σ|1/2
e−(1/2)(x−µ)T Σ−1(x−µ)dx,

where µ and Σ are mean and covariance of x. Unfortunately the integral mentioned above is intractable and hence can

not be solved analytically for any arbitrary nonlinear function f(x). In this paper, the integral is solved using multi

dimensional Gauss-Hermite quadrature rule and multi dimensional sparse Gauss-Hermite quadrature rule.

4.1 GHF-1RD

To approximate the above integral, initially the Gauss-Hermite quadrature points (ξpj ) and weights (ωpj ) have been gen-

erated using the product rule described in section 3.4.2. Next the points are transformed (χpj =
√

Σξpj + µ) depending

on the mean and the covariance of Gaussian distribution over which the nonlinear function has to be integrated. Finally

the integral is evaluated as: I =
∑
j f(
√

Σξpj + µ)ωpj =
∑
j f(χpj )ωpj .
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4.2 SGHF-1RD

In SGHF-1RD, the multidimensional support points (ξsj ) and weights (ωsj ) are generated using Gauss-Hermite quadrature

rule and the Smolyak formula [13,26] as mentioned in section 3.4.2. Similar to GHF-1RD case the points are transformed

and integral is approximately evaluated as, I =
∑
j f(
√

Σξsj + µ)ωsj =
∑
j f(χsj )ωsj .

4.3 Algorithm

The algorithm of the proposed GHF-1RD and SGHF-1RD is summarized as follows:

Step (i) Generation of Gauss-Hermite quadrature points and weights

• Generate univariate quadrature points and weight using Golub’s technique.

• Combine them to obtain multidimensional Gauss-Hermite quadrature points and weights using product rule

for GHF-1RD and Smolyak rule for SGHF-1RD.

Step (ii) Filter initialization

• Initialize the filter with the initial estimate x̂a0|0 and the initial error covariance Pa0|0, where x̂a0|0 = [x̂T0 0]T ,

and Pa0|0 = diag(P0|0 0).

• Calculate the Gauss-Hermite quadrature points, ξj , and corresponding weightsWj for augmented state, where

j = 1, 2, ..., nas .

• Calculate another set of Gauss-Hermite quadrature points, ξi, and their corresponding weights Wi for non-

augmented state, where i = 1, 2, ..., ns.

Step (iii) Propagation of Gauss-Hermite quadrature points (predictor step)

• Perform the Cholesky decomposition of posterior error covariance of the augmented system:

Pak|k = Sak|k(Sak|k)T

• Generate Gauss-Hermite quadrature points for the augmented system:

χj,k|k = [(χx
j,k|k)T (χwj,k|k)T ]T = x̂ak|k + Sak|kξj

• Compute the time updated mean and covariance:

x̂k+1|k =

na
s∑

j=1

Wjφk(χx
j,k|k)

Pk+1|k =

na
s∑

j=1

Wjφk(χx
j,k|k)φk(χx

j,k|k)T − x̂k+1|kx̂Tk+1|k +Qk
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Step (iv) Measurement noise estimate

• Perform the Cholesky decomposition of prior error covariance of state:

Pk+1|k = Sk+1|k(Sk+1|k)T

• Generate Gauss-Hermite quadrature points around prior estimate of state:

χi,k+1|k = x̂k+1|k + Sk+1|kξi

• Calculate the statistics of the measurements:

ẑk+1|k =

ns∑
i=1

Wiγk(χi,k+1|k)

Pzzk+1|k =

ns∑
i=1

Wiγk(χi,k+1|k)γk(χi,k+1|k)T − ẑk+1|kẑ
T
k+1|k +Rk+1

ẑk|k =

na
s∑

j=1

Wj [γk(χx
j,k|k) + χwj,k|k]

Pzzk|k =

na
s∑

j=1

Wj [γk(χx
j,k|k) + χwj,k|k][γk(χx

j,k|k) + χwj,k|k]T − ẑk|kẑTk|k

• Mean and covariance of the randomly delayed measurement are given by:

ŷk+1|k = (1− pk+1)ẑk+1|k + pk+1ẑk|k

Pyyk+1|k = (1− pk+1)Pzzk+1|k + pk+1Pzzk|k + Pk+1(1− pk+1)(ẑk+1|k − ẑk|k)(ẑk+1|k − ẑk|k)T

• The Kalman gain for noise estimation is

(Kw
k ) = Pwyk+1|k(Pyyk+1|k)−1,

where

Pwyk+1|k = (1− pk+1)Rk+1.

• Compute posterior estimate of measurement noise and it’s error covariance:

ŵk+1|k+1 = Kw
k (yk+1 − ŷk+1|k)

Pwwk+1|k+1 = Rk+1 −Kw
k Pyyk+1|k(Kw

k )T

Step (v) State estimation
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• Calculate the cross covariances:

Pxz
k+1,k|k =

na
s∑

j=1

Wjφk(χx
j,k|k)[γk(χx

j,k|k) + χwj,k|k]T − x̂k+1|kẑ
T
k|k

Pxzk+1|k =

ns∑
i=1

Wiχ
x
i,k+1|kγk(χx

i,k+1|k)T − x̂k+1|kẑ
T
k+1|k

Pxy
k+1|k = (1− pk+1)Pxz

k+1|k + pk+1Pxz
k+1,k|k

• Evaluate the Kalman gain for state estimate:

Kx
k = Pxy

k+1|k(Pyyk+1|k)−1

• Compute the posterior state estimate and posterior error covariance of state:

x̂k+1|k+1 = x̂k+1|k +Kx
k(yk+1 − ŷk+1|k)

Pk+1|k+1 = Pk+1|k −Kx
kPyyk+1|k(Kx

k)T

• The cross covariance between state and measurement noise is given by

Pwx
k+1|k+1 = −Kx

kPyyk+1|k(Kw
k )T .

The filtering algorithm is implemented recursively to determine the state x̂k+1|k+1 at every time instant k. As discussed

earlier, the accuracy of a filter depends on the accuracy of approximation of intractable integrals which appear in equations

(4) to (7), and (8) to (11). UKF-1RD uses unscented transformation method and CKF-1RD uses spherical-radial rule to

compute the integral. We propose to use the multidimensional Gauss-Hermite quadrature rule to approximate the same

integrals. It is well established in literature that the multidimensional Gauss-Hermite quadrature method of integration

provides better accuracy, compared to spherical radial rule of integration. Hence our proposed method is expected to

perform with enhanced accuracy.

Remark 1. The proposed method can also be extended for correlated noise case. If S = E[qkwk], a pseudo-noise term

q̄k = qk − SR−1wk can easily be shown to be uncorrelated with wk. This can be used in our formulation, following the

same steps as in [31] and [32] to compute the necessary covariance expressions and hence to get the approximate filter.

Since the underlying procedure to ‘de-correlate’ the noise is identical for all the Gaussian filters (UKF, GHF and SGHF)

which we compare our approximate filter with, we omit this extension in the simulation experiments in section 5.

5 Simulation

In this section, a problem of maneuvering target tracking with constant but unknown turn rate has been considered. The

same process model was used in our earlier publication [25] to demonstrate the performance of various quadrature filters
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when there was no delay in measurements. Here, we consider the measurements to be randomly delayed by up to one

time step and use the newly proposed filters from section 4 to solve the filtering problem. The problems has been solved

with the proposed delay filters. In this problem, the target is assumed to be maneuvering with constant turn rate. Such

problems are popularly known as coordinated turn in avionics vocabulary [6]. The coordinated turn model, adopted for

target motion is summarized in [30] and well described in [6].

5.1 Process model

To formulate the problem, we assume an object is maneuvering with a constant turn rate in a plane parallel to the ground

i.e., during maneuver the height of the vehicle remains constant. If the turn rate is a known constant, the process model

remains linear. If the turn rate is constant but unknown, it can be inferred recursively from the range and bearing mea-

surements using a filter. However, due to nonlinearity in measurements, the overall state space system becomes nonlinear.

The equation of motion of an object in plane (x, y) following coordinated turn model can be described with the following

equations:

ẍ = −Ωẏ,

ÿ = Ωẋ,

Ω̇ = 0,

where x, and y represent the position in x, and y direction respectively. Ω is the angular rate which is a constant. State

space representation of the above equations is

ẋ = Ax + w,

where x is a state vector defined as x = [x ẋ y ẏ Ω]T . The process noise is added to incorporate the uncertainties in

process equation, arises due to wind speed, variation in turn rate, change in velocity etc. The target dynamics is discretized

to obtain discrete process equation,

xk+1 = Fkxk + wk,

where

Fk =



1
sin(Ωk−1T )

Ωk−1
0 −1 − cos(Ωk−1T )

Ωk−1
0

0 cos(Ωk−1T ) 0 −sin(Ωk−1T ) 0

0
1 − cos(Ωk−1T )

Ωk−1
1

sin(Ωk−1T )

Ωk−1
0

0 sin(Ωk−1T ) 0 cos(Ωk−1T ) 0

0 0 0 0 1


.

5.2 Measurement model

In general, the nonlinear measurement equation could be written as

zk = γ(xk) + vk.
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In this problem, we assume both the range and the bearing angle are available from measurements. So the nonlinear

function γ(.) becomes

γ(Xk) =

 √
x2
k + y2

k

atan2(yk,xk)

 + vk,

where atan2 is the four quadrant inverse tangent function. Both wk and vk are white Gaussian noise of zero mean and Q

and R covariance respectively, and T is sampling time. The process noise covariance, (Q), is given by

Q = q



T 3

3

T 2

2
0 0 0

T 2

2
T 0 0 0

0 0
T 3

3

T 2

2
0

0 0
T 2

2
T 0

0 0 0 0 0.018T


,

where T = 0.5 seconds and q is some constant given as q = 0.1. R = diag([σ2
r σ

2
t ]) where σr = 120m and σt =

√
70mrad.

5.3 Simulation results

The truth state is initialized with x0 = [1000m 30m/s 1000m 0m/s − 3◦/s]T . The initial estimate x̂0 is generated from

a Gaussian distribution with mean x0 and covariance P0 = diag([200m2 20m2/s2 200m2 20m2/s2 100mrad2/s2])

respectively. The position, velocity and turn rate of the maneuvering target are estimated for 50 seconds using EKF-1RD,

UKF-1RD, CKF-1RD, 3 points GHF-1RD, and SGHF-1RD (with accuracy level 3). The probability of βk = 1 is taken as

0.5. To compare the performance of the above mentioned estimators, root mean square error (RMSE) of radial position,

velocity and turn rate are calculated over 500 Monte Carlo runs. It was observed that EKF-1RD failed to track and its

RMSE diverged in most of the Monte Carlo runs. Hence we exclude its results from the comparison.

The RMSEs of radial position, velocity and turn rate obtained from different filters are plotted in Fig 2. We observed

that, during initial 7 seconds, the RMSEs obtained from the above mentioned filters are similar, hence we exclude that

period from the plot. From the Fig 2, it could be seen that the RMSEs of proposed GHF-1RD, and SGHF-1RD are less

compared to UKF-1RD and CKF-1RD. It indicates that the proposed methods provide better accuracy compared to their

UKF and CKF counterparts.

To study the effect of probability of delay (pk) on the estimation accuracy, in Fig 3, RMSEs of radial position, velocity

and turn rate averaged over the time horizon are plotted against pk. From the figure, it can be observed that for all the

values of pk, GHF-1RD and SGHF-1RD perform better compared to their UKF and CKF counterparts.

From Fig 2 and Fig 3, we observe that both the proposed GHF-1RD and SGHF-1RD are more accurate compared to

the available delay filters. We also study the computational time of the above mentioned filters in Table 1. The relative

differences in computational time, with the time for CKF-1RD taken as unity, are obtained on a personal computer with

64-bit operating system, 4 GB RAM and 3.33 GHz clock speed, on a MATLAB version 2010b. From the Table 1, we
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see that the execution time of GHF-1RD is quite high (almost 56 times of UKF-1RD and CKF-1RD). Despite the higher

estimation accuracy, the high computational cost of GHF-1RD could restrict it from on board implementation. To decrease

the computational load without affecting the accuracy, as we mentioned earlier, we proposed SGHF-1RD. The SGHF-1RD

reduced the computational time of GHF-1RD more than 13 times without affecting the accuracy. In summary, we advocate

to use SGHF-1RD, because it is capable of providing much accurate estimation with little increase in computational cost.

6 Discussions and conclusions

In this paper, two quadrature filtering algorithms, viz. the GHF and the SGHF are extended to estimate the states of a

nonlinear system with one step randomly delayed measurements. The superiority of the proposed methods compared

to its CKF and UKF counterparts has been demonstrated with the help of a maneuvering target tracking example. The

proposed GHF-1RD provides higher accuracy in state estimation compared to UKF-1RD and CKF-1RD. However, the

computational cost of GHF-1RD is very high and it suffers from the curse of dimensionality problem. To overcome the

problem, we further formulated SGFH-1RD, which may be seen as the main contribution of this work. The accuracy of

SGFH-1RD is comparable to GHF-1RD , while its computational load is significantly lower. Hence, we advocate to use

SGHF-1RD due to its enhanced estimation accuracy and comparable computational load with existing methods.

Appendix-A: Moment matching method for generating quadrature points and

weights

To evaluate a single dimensional integral withN number of quadrature points, 2N number of unknown parameters namely

N points and N weights are required. A commonly used method is moment matching method [10, 12] which is given by:


1 1 · · · 1

q1 q2 · · · qN
...

...
. . .

...

qN−1
1 qN−1

2 · · · qN−1
N




W1

W2

...

WN

 =


M0

M1

...

MN−1

 ,

where Mj is the jth moment, qj is the jth sample point and Wj is the weight associated with qj . The unknown param-

eters are evaluated by solving the moment equation described above. However from the above equation 2N unknown

parameters can not be evaluated. Some researchers advocate to select the quadrature points arbitrarily and calculate the

corresponding weights by using moment equations [12], while others prefer to choose the quadrature points as the zeros

of the Hermite polynomial [30], and determine the weights.
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Table 1: Relative computational time

Estimator No. of Q points Relative comp. time

CKF -1RD 14 1

UKF -1RD 15 1.015

GHF-1RD 2187 56.03

SGHF-1RD 127 4.412
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Figure 1: Generation of sparse-grid Gauss-Hermite points for n = 2, L = 3
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Figure 2: RMSE plot for p = 0.5: (a)position (b)velocity (c) turn rate in degree
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Figure 3: RMSE vs probability plot: (a)position (b)velocity (c) turn rate in degree
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