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A New Genetic Algorithm Approach to Smooth

Path Planning for Mobile Robots
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Abstract

In this paper, the smooth path planning problem is considered for a mobile robot based on the genetic algorithm

and the Bezier curve. The workspace of a mobile robot is described by a new grid-based representation (2
n × 2

n

grids) that facilitates the operations of the adopted genetic algorithm. The chromosome of the genetic algorithm

is composed of a sequence of binary numbered grids (i.e., control points of the Bezier curve). Ordinary genetic

operators including crossover and mutation are used to search the optimum chromosome where the optimization

criterion is the length of a piecewise collision-free Bezier curve path determined by the control points. A numerical

experiment is given to demonstrate the effectiveness of theproposed smooth path planning approach for a mobile

robot.
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I. INTRODUCTION

With the rapid development of modern industry, mobile robots have been widely used in a wide range of

applications such as manufacturing, assembly, logistics and transportation [14], [25]. The path planning is

one of the most important topics in mobile robotics whose objective is to find a feasible and optimal path
from a start position to a target position. A path is said to be“feasible” and “optimal” if the mobile robot

moving along it could avoid collisions with obstacles and also satisfy certain optimal criteria. In other

words, the path planning can be considered as an optimization problem on certain indices (e.g. shortest
distance) under certain constraints (e.g. collision-freeroute). As shown in [20], the path planning problem

of a mobile robot is a NP-hard optimization one that can only be solved by heuristic algorithms such as

evolutionary computation techniques. Among various algorithms capable of handling NP-hard problems,
the genetic algorithm (GA) has proven to be the simple yet effective one that has been frequently used

in industry especially in mobile robotics [20].
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Recently, a variety of GA-based approaches have been developed for the mobile robot path planning

problems [24]. A problem-specific GA for the path planning ofa mobile robot has been proposed in
[13] that incorporates the domain knowledge into its specialized operators. A new mutation operator has

been presented in [31] for the GA and applied to the path planning problem of mobile robots in dynamic

environments. In addition to the ordinary crossover, another new mutation operator has been developed in
[21] as a subset of mutation in order to manipulate an individual. A vibrational GA has been put forward

in [23] to reduce the possibility of premature convergence and therefore help the candidate solution to

reach the global optimum. A parallel elite GA has been proposed in [30] along with a migration operator

to maintain better population diversity, avoid premature convergence and keep parallelism in comparison
with the conventional GA.

In almost all aforementioned literature, the genetic-algorithm-based path planning approaches have

been concerned with the issue of planning a feasible path with certain simple optimal criterion (e.g. the
minimum length of the path). Actually, a collision-free shortest path is often not sufficient for the planed

movement of a mobile robot. For example, it is quite common that a traditional path planning algorithm

gives rise to a path that contains some polygonal lines or even sharp turns. When moving along the
polygonal lines, a mobile robot would have to switch betweendifferent modes (e.g. stop, rotate and

restart) frequently, and such a switching process is both time- and energy-consuming. Such undesirable

switches are even impermissible when the smoothness of the movement is a requirement for some service
tasks [35]. Therefore, in addition to the distances, some other optimization criteria should be included

such as the path smoothness, energy evaluation, time consumption and robot speed, see [19], [32], [34]

for more details. Note that, apart from the length of the path, the path smoothness has been considered to
be another important criterion because the smoothness is a closely related to other optimization criteria

[2].

In recent years, the Bezier curve has been increasingly applied in the smooth path planning problems [1],
[22], [29]. For example, a Bezier-curve-based approach hasbeen proposed in [15] for the path planning of a

mobile robot in a multi-agent robot soccer system which is compatible with the velocity and acceleration

limits. A collision-free curvature-bounded smooth path planning technique has been presented in [11]
whose idea is to divide the nodes on the piecewise linear pathinto control point subsequences so as

to generate a collision-free composite Bezier curve under the curvature constraint. A new cooperative

collision-avoidance method has been developed in [27] for multiple and nonholonomic robots based on
the Bernstein-Bezier curves, and a model-predictive trajectory tracking algorithm has been used to drive

the robots on the obtained reference paths. In order to form asmooth path based on the path points,

the Bezier curve and other parameter curves are usually produced by the Voronoi diagram, the Dijkstra

algorithm, theA∗ algorithm and theD∗ algorithm, etc.
Up to now, some scattered results have been available in literature on the smooth path planning problem

of mobile robots or multi-agent systems by combining the heuristic intelligent optimization algorithm

(e.g. GA) with the path smoothing approach (e.g. Bezier curve). For example, in [33], the path planning
algorithm has been developed for obstacle avoidance problems of mobile robots by adopting the Bezier

curve based on the GA, but the general mathematical description of the optimal path planning problems

as well as the representation issue of the workspace have notbeen thoroughly discussed and this makes
it inconvenient to implement the GA in practice. In [26], theBezier curve-based flyable trajectories
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have been generated for multi-UAV systems with parallel genetic algorithm where the Bezier curve has

been used for smoothing the obtained path and, as such, it is difficult to guarantee the optimality of
the eventually planned path.The purpose of this paper is to improve the existing results by making the

following three distinctive contributions: 1) a rigorous mathematical formulation of the path planning

optimization problem is formulated; 2) a general grid-based representation (2n × 2n grids) is proposed

to describe the workspace of the mobile robots in order to facilitate the implementation of the GA where

n is chosen according to the trade-off between the accuracy and the computational burden; and 3) the

control points of the Bezier curve are directly linked to the optimization criteria so that the generated

paths are guaranteed to be optimal without any need for smoothing afterwards.

In this paper, a new approach is proposed to solve the smooth path planning problem of a mobile robot

based on the genetic algorithm and the Bezier curve. A new grid-based representation of the workspace is

presented in this paper which simplifies the population initialization, chromosome encoding and the genetic
operators in existing literature (e.g. [31]). The workspace of a mobile robot is divided into several orderly

numbered square grids and the center of a grid is defined as a candidate control point of a Bezier curve.

A sequence of binary number represented control points, namely, the genes, represent a chromosome
of genetic algorithm, and ordinary genetic operators are used to search the optimal chromosome. The

optimization criterion of the genetic algorithm is the length of all piecewise collision-free Bezier curves

determined by the control points. The numerical experimentresults verify the effectiveness of the proposed
smooth path planning approach.

The remainder of this paper is organized as follows. In Section II, the Bezier curve is introduced and

some preliminaries are briefly outlined. In Section III, thekey stages of the smooth path planning approach
are presented based on the genetic algorithm. In Section IV,the effectiveness of the obtained results is

illustrated by a simulation example and the expected performance is evaluated as well. Concluding remarks

and future work are given in Section V.

II. PRELIMINARY OF BEZIER CURVE

The Bezier curve is contained within the convex hull of a sequence of control points. In this case, the

Bezier curve is different from the traditional interpolation-based curves such as polynomials and cubic
splines. The control points, which define the Bezier curve, are not on the curve except the start and end

points. The high-order derivative continuity of the Beziercurve can guarantee the smooth variation of the

curve between the start point and the end point.
Given a set of control point vectorsP0,P1, · · · ,Pn, the corresponding Bezier curve is defined as

P(t) =
n
∑

i=0

Bn
i (t)Pi, 0 ≤ t ≤ 1, (1)

wheret is the normalized time variable,Bn
i (t) is a Bernstein polynomial andPi = (xi, yi)

T stands for the

coordinate vector of theith control point withxi and yi being the components corresponding to theX

andY coordinate, respectively. The Bernstein polynomial is thebase function in the expression of Bezier
curve, which is defined as

Bn
i (t) =

(

n

i

)

ti(1− t)n−i, i = 0, 1, . . . , n. (2)



FINAL VERSION 4

The derivatives of a Bezier curve can also be determined by the control points. The first derivative of

a Bezier curve is expressed as

Ṗ(t) =
dP(t)

dt
= n

n−1
∑

i=0

Bn−1
i (t)(Pi+1 −Pi) (3)

and the higher order derivative of a Bezier curve can be obtained by repeatedly using (3). For example,
the second derivative of a Bezier curve is expressed as

P̈(t) = n(n− 1)

n−2
∑

i=0

Bn−2
i (t)(Ṗi+2 − 2Ṗi+1 + Ṗi). (4)

Accordingly, in the two-dimensional plane, the curvature of a Bezier curve with respect tot can be

represented as

κ(t) =
1

R(t)
=

Ṗx(t)P̈y(t)− Ṗy(t)P̈x(t)

(Ṗ2
x(t) + Ṗ2

y(t))
3/2

, (5)

whereR(t) is the radius of curvature,̇Px(t), Ṗy(t), P̈x(t) andP̈y(t) areX andY coordinate components
of the first and second derivatives of the Bezier curveP(t), respectively.

In this paper, piecewise Bezier curves are connected to forma complete path in the smooth path
planning of a mobile robot, where second and lower order continuities are considered for the smoothness

of the path. The zero-order continuity (i.e., continuous position) is held by coincident end and start points

of the connected Bezier curves. The first-order continuity is ensured by equivalent tangent vectors at
the connection of two curves, and the second-order continuity is ensured by equivalent curvatures. For

simplicity, the curvature at the connection of two connected Bezier curves is usually set to zero, i.e., a

few adjacent points of the connected Bezier curves are on thesame line. Therefore, it is easy to satisfy
the continuity requirements in most cases.

III. SMOOTH PATH PLANNING BASED ON GENETIC ALGORITHM

In this paper, the genetic algorithm is combined with the Bezier curve for the smooth path planning of
a mobile robot. The genetic algorithm is applied to search the optimal control points which are used to

define the smooth Bezier curve. The feasible and shortest Bezier curve path is the optimum solution for

the smooth path planning problem of a mobile robot. Several key stages of the approach are presented in
this section as follows.

A. Problem description

In this paper, the working environment of a mobile robot is supposed to be a two-dimensional workspace.

The proposed genetic algorithm based smooth path planning is used to find a feasible and optimal Bezier

curve path for a mobile robot, which include three conditions, i.e., firstly the path should be collision-free,
secondly the smooth movement of a mobile robot should be considered by satisfying the second-order

continuity of the path, and thirdly the path should be the shortest distance from a start point to a target

point under the above two constraints. The formal expressions of above conditions are as follows:

min ‖P(t)‖, 0 ≤ t ≤ 1,

s.t. P(t) ∈ C2,

P(t) ∈ Pfree,

(6)
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(a) (b)

Fig. 1. (a) The workspace with 16×16 grids; (b) The workspace with 15×16 grids

where t is normalized time variable,‖P(t)‖ represents the length of the Bezier curve path,C2 is a set
of second-order differentiable function andPfree indicates a set of collision-free path. Since the Bezier

curve is defined by its control points, the above optimization problem is to find a sequence of control

points which determine the Bezier curve path under constraint conditions.

B. Representation of workspace

The workspace is an environment where the mobile robot and obstacles both exist. The grid-based

model is usually utilized to represent the workspace in the path planning of a mobile robot, since it is

easy to calculate distances and represent obstacles. The boundary of obstacles is formed by their actual

boundary plus minimum safety distance considering the sizeof a mobile robot, so that a mobile robot could
be treated as a point in the workspace [13]. The whole workspace is represented by orderly numbered

grids, and the size of the grids determines how many numbers there is. For each grid, it is defined to be

either empty (i.e., the white square grid in the workspace) or occupied (i.e., the black square grid in the
workspace), which depends on whether the boundary of obstacles is in the grid.

The whole workspace is divided intoM×N grids in this paper, where bothM andN are positive

integer power of number 2.M could be equal toN or not in practice, because a workspace withM×N

grids could be treated as a workspace withM×M grids and some of the grids are occupied. Fig. 1(a)

and Fig. 1(b) show a workspace withM ×M grids (M = 16, N = 16) and M ×N grids (M = 15,

N = 16) respectively. This representation approach simplifies the chromosome encoding and population
initialization of genetic algorithm. For example, if the workspace is divided into 10×10 grids, then the

numbers of the grids are from 0 to 99. Binary encoding is used for chromosome in this paper, and this

means a 7 bit binary number is necessary to represent one grid. However, some of the numbers (e.g.,
from 100 to 127) exceed all of the grid numbers in the workspace, so that additional process has to be

added to check whether the randomly generated chromosomes (defined in next section) are reasonable.
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Fig. 2. The workspace of a mobile robot in this paper

C. Chromosome encoding and population initialization

A sequence of grid numbers is used to represent the chromosomes of the genetic algorithm in this

paper and chromosomes are encoded by binary numbers for easier bit operations of genetic operators.

Take the 160×160 units workspace with 16×16 grids (i.e., each grid is a 10×10 units square) in Fig. 2
for example hereinafter, each grid is assigned a number between 0 and 255, which could be represented

by a 8 bit binary number. All of the binary numbers are connected orderly to form a chromosome. This

kind of chromosome encoding is suitable for bothM×M andM×N grids. Moreover, genetic operators
will not bring unreasonable chromosome by using this approach because both crossover and mutation

operators will keep a grid number in the chromosome between 0and 255. This is another advantage of

the workspace representation approach mentioned above.
All of the control points are defined at the center of the gridsin the workspace. The transformation

from grid numbers to coordinate values is expressed as

Px(t) = (Number%16)× 10 + 5,

Py(t) = ⌊Number/16⌋ × 10 + 5,
(7)

where% indicates the complementation,⌊ ⌋ denotes the rounding down,Px(t) and Py(t) are X and

Y coordinate components of the center of the grid respectively. On the other hand, the transformation
from coordinate components of any point on the path to the number of a grid that contains the point is

expressed as

Number= ⌊Px(t)/10⌋+ ⌊Py(t)/10⌋ × 16. (8)

Considering the representation of the workspace and chromosome encoding approaches, it is very easy
to implement the population initialization of the generic algorithm. For example, if a chromosome hasn

grid numbers, then the initialized population is a set of 8×n bit binary numbers.
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D. Fitness function and selection method

The purpose of the genetic algorithm based smooth path planning in this paper is to find an optimal

path under constraint conditions (6). The fitness function is defined as

f =















1
n∑

i=1

‖Pi(t)‖
, for feasible paths

1
n∑

i=1

‖Pi(t)‖+penalty
, for infeasible paths

(9)

wherePi(t) is theith segment of the piecewise Bezier curves withn segments andpenalty is added when
the Bezier curve passes through an occupied grid. A shorter path will has a larger fitness value and the

optimal path is a shortest feasible Bezier curve path.

The proportional selection strategy is used in the selection method of the genetic algorithm, i.e., the
probability that the selected chromosome is proportional to the fitness value. Suppose the fitness value of

the ith chromosome isfi and the population size isSp, the selection probability of theith chromosome

can be expressed as

pi =
fi

Sp
∑

i=1

fi

, (10)

where pi is the selection probability and the roulette wheel method is used for selection operation
afterwards.

E. Genetic operators

Crossover and mutation are two heart genetic operators in the genetic algorithm. The crossover operator

is to combine the features of two parent chromosomes to produce two offspring chromosomes. The
crossover probability is randomly generated to determine whether the crossover operator is implemented

on two parent chromosomes. The single point crossover operator is used in this paper, i.e., the genes of

two chromosomes after a randomly generated crossover pointare swapped.
The mutation operator is implemented after the crossover operator on randomly selected chromosomes

in the population. The binary complement operation is implemented on a randomly generated mutation

point of the chromosomes. Above genetic operators will not produce genes (i.e., grid numbers) out of the
workspace by using the proposed approaches in Sections III-B and III-C.

Remark 1: The grid-based representation of the workspace is common inthe literature of mobile

robot path planning. However, a general grid-based representation is proposed in this paper. The whole
workspace is divided into2n × 2n grids in spite of whether the workspace is a square (the workspace

could be treated as a square with some occupied grids if it is not a square). This approach facilitates the

implementation of the GA in the processes of initialization, crossover and mutation.
Remark 2: In this paper, the control points of the Bezier curve are directly linked to the optimization

criteria, which is different from most Bezier-curve-basedpath planning approaches where Bezier curve

is used to smooth the path produced by some path planning methods [26]. Although the path planning
adopting the Bezier curve based on the GA has been developed in [33], the details of the implementation

have not been thoroughly discussed.
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(a) (b)

Fig. 3. (a) Smooth path planning from grid 0 to grid 255; (b) Smooth path planning from grid 15 to grid 240

IV. NUMERICAL EXPERIMENTS AND PERFORMANCE EVALUATION

In this section, the smooth path planning based on the genetic algorithm will be applied to the workspace

in Fig. 2 to demonstrate the effectiveness of the proposed approach. The parameters of the genetic algorithm
are as follows: the population size is taken as 200, the maximum generation is taken as 100, the crossover

probability is taken as 0.5, the mutation probability is taken as 0.1 and thepenalty is taken as 10 for each

infeasible point of the Bezier curve path.
Fig. 3(a) and Fig. 3(b) show the numerical experiment results with different start positions and target

positions in the workspace, where blue circles indicate thecontrol points of the Bezier curve path, blue

solid lines compose the convex hull and red solid lines is theoptimum smooth path. Eight control points
(i.e., eight grid numbers for each chromosome) are used for the Bezier curve path in this paper. In spite

of the difficulty in the two cases, the proposed approach can accomplish the smooth path planning task

successfully. Define the objective function as the reciprocal of the fitness functionf in (9). The objective
function value of the optimum chromosome in each generationis depicted in Fig. 4, which shows the

fast convergence of the genetic algorithm in this problem.

Fig. 5 shows the curvature of each point on the Bezier curve path, and it is obvious that the maximal
curvature is lower than 0.1 according to the coordinates of the workspace. The low curvature values reflect

the smoothness of the obtained path. Table I presents some comparisons on smooth path planning and

non-smooth path planning both based on the genetic algorithm. The experiment results with different start
positions and target positions indicate that, by using the proposed smooth path planning approach, we

can derive an optimal path with the similar length as in the non-smooth path planning. Moreover, there is

little difference on the minimal convergence generation between smooth and non-smooth path planning.
Remark 3: It is very important to choose the control point vectors in practical applications. Generally

speaking, more control point vectors are required if the workspace is more complicated (e.g., with more

obstacles). The GA could be implemented with different numbers of control points in practice. It is worth
mentioning that the redundant control point, which is coincide with the other, will be rejected in the
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Fig. 4. (a) Optimum objective function value in the case of Fig. 3(a); (b) Optimum objective function value in the case of Fig. 3(b)
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Fig. 5. (a) Path curvature in the case of Fig. 3(a); (b) Path curvature in the case of Fig. 3(b)

optimum control point sequence at the end of the procedure (e.g., eight control points are used for the
GA and seven control points are remained in Fig. 3(a)).

Remark 4: Compared with other smooth path planning methods [1], [22],[29], one of the advantages

of the proposed approach is the general grid-based representation of the workspace, which facilitates the
implementation of the GA. The other but more meaningful one is that this approach is a “real” smooth

path planning approach combining a heuristic intelligent optimization algorithm (e.g., the GA in this

paper) with a path smoothing approach (e.g., Bezier curve inthis paper). In this paper, the control points
of the Bezier curve are directly linked to the optimization criteria of the GA, so that the generated paths

are guaranteed to be optimal instead of smoothing the paths after some path planning processes.

Remark 5: In (9), thepenalty is added when the Bezier curve passes through an occupied grid. In some
special cases, a path will has larger fitness value, even it’scontrol points lie in the occupied grids and
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TABLE I

COMPARISON OF GENETIC ALGORITHM BASED SMOOTH PATH PLANNING AND NON-SMOOTH PATH PLANNING

Minimal generation Objective value Minimal generation Objective value

non smooth path non smooth path smooth path smooth path

Grid 0 to 15 26 225.4982 49 221.0383

Grid 15 to 255 88 211.2393 67 218.5059

Grid 240 to 255 76 178.3131 47 195.3404

Grid 0 to 240 69 244.9847 73 247.8467

the penalty is added in the fitness function. For example, it can be found that optimum control points

can be in theoccupied grids as shown in Fig. 3(b). Moreover, how to select thepenalty to improve the
performance of the algorithm is still an open problem for further discussion.

V. CONCLUSIONS AND FUTURE WORK

This paper has proposed a new smooth path planning for a mobile robot by resorting to the genetic

algorithm and the Bezier curve. A new grid-based representation of the workspace has been presented,
which makes it convenient to perform operations in the genetic algorithm. The genetic algorithm has

been used to search the optimum control points that determine the Bezier curve based smooth path.

The effectiveness of the proposed approach has been verifiedby a numerical experiment, and some
performances of the obtained method have also been analyzed. There still remain many interesting topics,

for example, 1) how to solve the specific smooth path planningproblem by using the genetic algorithm; 2)

how to promote the computational efficiency in the more gridscase; 3) how to select the number of control

points and value of the “penalty”; and 4) how to apply the developed algorithms to more complicated
situations (e.g. mobile navigations in networked environments [3]–[10], [12], [16]–[18], [28], [36]. These

issues deserve further research.

REFERENCES

[1] N. Arana-Daniel, A. A. Gallegos, C. Lopez-Franco, and A.Y. Alanis, “Smooth global and local path planning for mobilerobot using

particle swarm optimization, radial basis functions, splines and Bezier curves,” InProceedings of IEEE Congress on Evolutionary

Computation, pp. 175-182, Beijing, July, 2014.

[2] O. Castillo, L. Ttrujillo, and P. Melin, “Multiple objective genetic algorithms for path-planning optimization inautonomous mobile
robots,” Soft Computing, vol. 11, pp. 269-279, 2007.

[3] D. Ding, Z. Wang, F. E. Alsaadi, and B. Shen, Receding horizon filtering for a class of discrete time-varying nonlinearsystems with

multiple missing measurements,International Journal of General Systems, vol. 44, no. 2, pp. 198-211, 2015.
[4] D. Ding, Z. Wang, B. Shen and G. Wei, “Event-triggered consensus control for discrete-time stochastic multi-agent systems: the

input-to-state stability in probability,”Automatica, Vol. 62, Dec. 2015, pp. 284-291.
[5] D. Ding, Z. Wang, J. Lam and B. Shen, Finite-HorizonH∞ control for discrete time-varying systems with randomly occurring

nonlinearities and fading measurements,IEEE Transactions on Automatic Control, Vol. 60, No. 9, Sept. 2015, pp. 2488-2493.

[6] D. Ding, Z. Wang, B. Shen and H. Dong,H∞ state estimation with fading measurements, randomly varying nonlinearities and
probabilistic distributed delays,International Journal of Robust and Nonlinear Control, Vol. 25, No. 13, Sept. 2015, pp. 2180-2195.

[7] D. Ding, Z. Wang, B. Shen and H. Dong, Event-triggered distributedH∞ state estimation with packet dropouts through sensor networks,
IET Control Theory & Applications, Vol. 9, No. 13, Aug. 2015, pp. 1948-1955.

[8] D. Ding, Z. Wang, B. Shen and H. Dong, Envelope-constrained H∞ filtering with fading measurements and randomly occurring

nonlinearities: the finite horizon case,Automatica, Vol. 55, May 2015, pp. 37-45.
[9] H. Dong, Z. Wang, S. X. Ding and H. Gao, Finite-horizon reliable control with randomly occurring uncertainties and nonlinearities

subject to output quantization,Automatica, Vol. 52, Feb. 2015, pp. 355-362.



FINAL VERSION 11

[10] H. Dong, Z. Wang, S. X. Ding and H. Gao, Finite-horizon estimation of randomly occurring faults for a class of nonlinear time-varying

systems,Automatica, Vol. 50, No. 12, Dec. 2014, pp. 3182-3189.
[11] Y. J. Ho, and J. S. Liu, “Collision-free curvature-bounded smooth path planning using composite Bezier curve basedon Voronoi

Diagram,” In Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 463-468,

Daejeon, December, 2009.
[12] J. Hu, Z. Wang, S. Liu and H. Gao, “A variance-constrained approach to recursive state estimation for time-varying complex networks

with missing measurements”,Automatica, Vol. 64, Feb. 2016, pp. 155-162.
[13] Y. Hu, and X. S. Yang, “A knowledge based genetic algorithm for path planning of a mobile robot,” InProceedings of IEEE International

Conference on Robotics and Automation, pp. 4350-4355, New Orieans, April, 2004.

[14] R. Li, W. Wu and H. Qiao, “The compliance of robotic hands- from functionality to mechanism”,Assembly Automation, Vol. 35, No.
3, 2015, pp. 281-286.

[15] K. G. Jolly, R. S. Kumar, and R. Vijayakumar, “A Bezier curve based path planning in a multi-agent robot soccer systemwithout
violating the acceleration limits,”Robotics and Autonomous Systems, vol. 57, pp. 23-33, 2009.

[16] Y. Liu, Y. Wang, X. Zhu, and X. Liu, “Optimal guaranteed cost control of a class of hybrid systems with mode-dependentmixed time

delays”, International Journal of Systems Science, vol. 45, no. 7, pp. 1528-1538, 2014.
[17] Y. Liu, F. E. Alsaadi, X. Yin, and Y. Wang, RobustH∞ filtering for discrete nonlinear delayed stochastic systems with missing

measurements and randomly occurring nonlinearities,International Journal of General Systems, vol. 44, no. 2, pp. 169-181, 2015.
[18] Y. Luo, G. Wei, Y. Liu, and X. Ding, ReliableH∞ state estimation for 2-D discrete systems with infinite distributed delays and

incomplete observations,International Journal of General Systems, vol. 44, no. 2, pp. 155-168, 2015.

[19] H. Mahjoubi, F. Bahrami, and C. Lucas, “Path planning inan environment with static and dynamic obstacles using genetic algorithm:
a simplified search space approach,” InProceedings of IEEE Congress on Evolutionary Computation, pp. 2483-2489, Vancouver, July,

2006.
[20] T. W. Manikas, K. Ashenayi, and R. L. Wainwright, “Genetic algorithms for autonomous robot navigation,”IEEE Instrumentation and

Measurement Magazine, vol. 12, pp. 26-31, 2007.

[21] M. Naderan-Tahan, and M. T. Manzuri-Shalmani, “Efficient and safe path planning for a mobile robot using genetic algorithm,” In
Proceedings of IEEE International Conference on Evolutionary Computation, pp. 2091-2097, Trondheim, May, 2009.

[22] A. A. Neto, D. G. Macharet, and M. F. M. Campos, “FeasibleRRT-based path planning using seventh order Bezier curves,” In
Proceedings of IEEE International Conference on Intelligent Robots and Systems, pp. 1445-1450, Taipei, Taiwan, October, 2010.

[23] Y. V. Pehlivanoglu, O. Baysal, and A. Hacioglu, “Path planning for autonomous UAV via vibrational genetic algorithm,” Aircraft

Engineering and Aerospace Technology: An International Journal, vol. 79, pp. 352-359, 2007.
[24] R. S. Pol, and M. Murgugan, “A review on indoor human aware autonomous mobile robot navigation through a dynamic environment,”

In Proceedings of IEEE International Conference on Industrial Instrumentation and Control, pp. 1339-1344, Pune, May, 2015.

[25] D. C. Robinson, D. A. Sanders and E. Mazharsolook, “Ambient intelligence for optimal manufacturing and energy efficiency”, Assembly

Automation, Vol. 35, No. 3, pp. 234-248, 2015.

[26] O. K. Sahingoz, “Generation of Bezier curve-based flyable trajectories for multi-UAV systems with parallel genetic algorithm,”Journal

of Intelligent and Robotic Systems, vol. 74, pp. 499-511, 2014.

[27] I. Skrjanc, and G. Klancar, “Optimal cooperative collision avoidance between multiple robots based on Bernstein-Beizier curves,”

Robotics and Autonomous Systems, vol. 58, pp. 1-9, 2010.
[28] B. Shen, Z. Wang and T. Huang, “Stabilization for sampled-data systems under noisy sampling interval”,Automatica, Vol. 63, Jan.

2016, pp. 162-166.
[29] B. Song, G. Tian, and F. Zhou, “A comparison study on pathsmoothing algorithms for laser robot navigated mobile robot path planning

in intelligent space,”Journal of Information and Computational Science, vol. 7, pp. 2943-2950, 2010.

[30] C. C. Tsai, H. C. Huang, and C. K. Chan, “Parallel elite genetic algorithm and its application to global path planningfor autonomous
robot navigation.IEEE Transactions on Industrial Electronics, vol. 58, pp. 4813-4821, 2011.

[31] A. Tuncer, and M. Yildirim, “Dynamic path planning of mobile robots with improved genetic algorithm,”Computers and Electrical

Engineering, vol. 38, pp. 1564-1572, 2012.

[32] Y. Wang, P. W. I. Sillitoe, and J. D. Mulvaney, “Mobile robot path planning in dynamic environments,” InProceedings of IEEE

International Conference on Robotics and Automation, pp. 71-76, Roma, April, 2007.
[33] L. Yang, Z. Luo, Z. Tang, and W. Lv, “Path planning algorithm for mobile robot obstacle avoidance adopting Bezier curve based on

genetic algorithm,” InProceedings of Chinese Control and Decision Conference (CCDC 2008), pp. 3286-3289, Yantai, China, July,
2008.

[34] J. Yuan, T. Yu, K. Wang, and X. Liu, “Step-spreading map knowledge based multi-objective genetic algorithm for robot-path planning,”

In Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp. 3402-3407, Montreal, October, 2007.
[35] F. Zhou, B. Song, and G. Tian, “Bezier curve based smoothpath planning for mobile robot,”Journal of Information and Computational

Science, vol. 8, pp. 2441-2450, 2011.



FINAL VERSION 12

[36] L. Zou, Z. Wang and H. Gao, “Observer-basedH∞ control of networked systems with stochastic communication protocol: the finite-

horizon case”,Automatica, Vol. 63, Jan. 2016, pp. 366-373.


