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A New Genetic Algorithm Approach to Smooth
Path Planning for Mobile Robots
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Abstract

In this paper, the smooth path planning problem is consitifenea mobile robot based on the genetic algorithm
and the Bezier curve. The workspace of a mobile robot is destiby a new grid-based representation & 2"
grids) that facilitates the operations of the adopted geradgorithm. The chromosome of the genetic algorithm
is composed of a sequence of binary numbered grids (i.etraigmints of the Bezier curve). Ordinary genetic
operators including crossover and mutation are used ta@lsdhe optimum chromosome where the optimization
criterion is the length of a piecewise collision-free Bezarve path determined by the control points. A numerical
experiment is given to demonstrate the effectiveness optbposed smooth path planning approach for a mobile
robot.

Index Terms

Smooth path planning; mobile robot; genetic algorithm;iBezurve.

I. INTRODUCTION

With the rapid development of modern industry, mobile reldzdve been widely used in a wide range of
applications such as manufacturing, assembly, logistidsteansportation [14], [25]. The path planning is
one of the most important topics in mobile robotics whoseadiye is to find a feasible and optimal path
from a start position to a target position. A path is said tdfeasible” and “optimal” if the mobile robot
moving along it could avoid collisions with obstacles andoasatisfy certain optimal criteria. In other
words, the path planning can be considered as an optimizati@blem on certain indices (e.g. shortest
distance) under certain constraints (e.g. collision-foege). As shown in [20], the path planning problem
of a mobile robot is a NP-hard optimization one that can omysblved by heuristic algorithms such as
evolutionary computation techniques. Among various atgors capable of handling NP-hard problems,
the genetic algorithm (GA) has proven to be the simple yetc#ife one that has been frequently used
in industry especially in mobile robotics [20].
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Recently, a variety of GA-based approaches have been gmeelior the mobile robot path planning
problems [24]. A problem-specific GA for the path planningaimobile robot has been proposed in
[13] that incorporates the domain knowledge into its sgizeid operators. A new mutation operator has
been presented in [31] for the GA and applied to the path phgnproblem of mobile robots in dynamic
environments. In addition to the ordinary crossover, agotiew mutation operator has been developed in
[21] as a subset of mutation in order to manipulate an indi&idA vibrational GA has been put forward
in [23] to reduce the possibility of premature convergenod therefore help the candidate solution to
reach the global optimum. A parallel elite GA has been predas [30] along with a migration operator
to maintain better population diversity, avoid prematusevergence and keep parallelism in comparison
with the conventional GA.

In almost all aforementioned literature, the genetic-atgm-based path planning approaches have
been concerned with the issue of planning a feasible path egttain simple optimal criterion (e.g. the
minimum length of the path). Actually, a collision-free stest path is often not sufficient for the planed
movement of a mobile robot. For example, it is quite commat thtraditional path planning algorithm
gives rise to a path that contains some polygonal lines on earp turns. When moving along the
polygonal lines, a mobile robot would have to switch betwelkdferent modes (e.g. stop, rotate and
restart) frequently, and such a switching process is batle-tiand energy-consuming. Such undesirable
switches are even impermissible when the smoothness of dhemrent is a requirement for some service
tasks [35]. Therefore, in addition to the distances, sonmerobptimization criteria should be included
such as the path smoothness, energy evaluation, time cptisunand robot speed, see [19], [32], [34]
for more details. Note that, apart from the length of the ptitl path smoothness has been considered to
be another important criterion because the smoothness lissaly related to other optimization criteria
[2].

In recent years, the Bezier curve has been increasinglyeabipl the smooth path planning problems [1],
[22], [29]. For example, a Bezier-curve-based approactbbeas proposed in [15] for the path planning of a
mobile robot in a multi-agent robot soccer system which imgatible with the velocity and acceleration
limits. A collision-free curvature-bounded smooth patlarpling technique has been presented in [11]
whose idea is to divide the nodes on the piecewise linear p@hcontrol point subsequences so as
to generate a collision-free composite Bezier curve underdurvature constraint. A new cooperative
collision-avoidance method has been developed in [27] faltiple and nonholonomic robots based on
the Bernstein-Bezier curves, and a model-predictive ¢tajg tracking algorithm has been used to drive
the robots on the obtained reference paths. In order to fosmaoth path based on the path points,
the Bezier curve and other parameter curves are usuallyupeadby the Voronoi diagram, the Dijkstra
algorithm, theAx algorithm and theDx algorithm, etc.

Up to now, some scattered results have been available ratlite on the smooth path planning problem
of mobile robots or multi-agent systems by combining theriséig intelligent optimization algorithm
(e.g. GA) with the path smoothing approach (e.g. Bezier @urizor example, in [33], the path planning
algorithm has been developed for obstacle avoidance prsbtd mobile robots by adopting the Bezier
curve based on the GA, but the general mathematical desceript the optimal path planning problems
as well as the representation issue of the workspace havieerot thoroughly discussed and this makes
it inconvenient to implement the GA in practice. In [26], tBezier curve-based flyable trajectories
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have been generated for multi-UAV systems with parallelegienalgorithm where the Bezier curve has
been used for smoothing the obtained path and, as such, iffiuldl to guarantee the optimality of
the eventually planned patfihe purpose of this paper is to improve the existing results by making the
following three distinctive contributions: 1) a rigorous mathematical formulation of the path planning
optimization problem is formulated; 2) a general grid-based representation (2" x 2™ grids) is proposed

to describe the workspace of the mobile robots in order to facilitate the implementation of the GA where

n 1S chosen according to the trade-off between the accuracy and the computational burden; and 3) the
control points of the Bezier curve are directly linked to the optimization criteria so that the generated
paths are guaranteed to be optimal without any need for smoothing afterwards.

In this paper, a new approach is proposed to solve the smadihptanning problem of a mobile robot
based on the genetic algorithm and the Bezier curve. A netivlzased representation of the workspace is
presented in this paper which simplifies the populationah#ation, chromosome encoding and the genetic
operators in existing literature (e.g. [31]). The workspat a mobile robot is divided into several orderly
numbered square grids and the center of a grid is defined asdidete control point of a Bezier curve.
A sequence of binary number represented control points.eharthe genes, represent a chromosome
of genetic algorithm, and ordinary genetic operators aedus search the optimal chromosome. The
optimization criterion of the genetic algorithm is the I&émgf all piecewise collision-free Bezier curves
determined by the control points. The numerical experimesilts verify the effectiveness of the proposed
smooth path planning approach.

The remainder of this paper is organized as follows. In $acli, the Bezier curve is introduced and
some preliminaries are briefly outlined. In Section I, #ey stages of the smooth path planning approach
are presented based on the genetic algorithm. In SectiothB/effectiveness of the obtained results is
illustrated by a simulation example and the expected pedioce is evaluated as well. Concluding remarks
and future work are given in Section V.

[l. PRELIMINARY OF BEZIER CURVE

The Bezier curve is contained within the convex hull of a ssme of control points. In this case, the
Bezier curve is different from the traditional interpotattbased curves such as polynomials and cubic
splines. The control points, which define the Bezier curve,reot on the curve except the start and end
points. The high-order derivative continuity of the Bezteirve can guarantee the smooth variation of the
curve between the start point and the end point.

Given a set of control point vectoi®,, P, - - , P, the corresponding Bezier curve is defined as
P(t) =Y B/ )P;, 0<t <1, (1)
=0

wheret is the normalized time variablé3 () is a Bernstein polynomial an®; = (z;,y;)? stands for the
coordinate vector of théth control point withx; andy; being the components corresponding to ftie
andY coordinate, respectively. The Bernstein polynomial isliaee function in the expression of Bezier
curve, which is defined as

]

B t) = ( " ) t1—t)"" i=0,1,...,n. (2)
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The derivatives of a Bezier curve can also be determined &ycdimtrol points. The first derivative of
a Bezier curve is expressed as
dP(t)

P(t)=——F=n) B ()P —Py) (3
=0

and the higher order derivative of a Bezier curve can be nbthby repeatedly using (3). For example,
the second derivative of a Bezier curve is expressed as

n—2
P(t) =n(n — 1)23?_2(75)(Pi+2 — 2Py + Py). (4)
=0
Accordingly, in the two-dimensional plane, the curvatufeaoBezier curve with respect tb can be

represented as . . ) .
L _P,0)P,(t) - P,()P.()

"SRG T B s By ©

whereR(t) is the radius of curvaturd®,(t), P,(t), P,(t) andP,(t) are X andY coordinate components
of the first and second derivatives of the Bezier cuR(g), respectively.

In this paper, piecewise Bezier curves are connected to foroomplete path in the smooth path
planning of a mobile robot, where second and lower orderigoities are considered for the smoothness
of the path. The zero-order continuity (i.e., continuousitian) is held by coincident end and start points
of the connected Bezier curves. The first-order continwtyemsured by equivalent tangent vectors at
the connection of two curves, and the second-order comjinsiiensured by equivalent curvatures. For
simplicity, the curvature at the connection of two connddBezier curves is usually set to zero, i.e., a
few adjacent points of the connected Bezier curves are oisdahee line. Therefore, it is easy to satisfy
the continuity requirements in most cases.

[1l. SMOOTH PATH PLANNING BASED ON GENETIC ALGORITHM

In this paper, the genetic algorithm is combined with thei&egurve for the smooth path planning of
a mobile robot. The genetic algorithm is applied to sear@éhdptimal control points which are used to
define the smooth Bezier curve. The feasible and shorteseBearve path is the optimum solution for
the smooth path planning problem of a mobile robot. Sevesgldtages of the approach are presented in
this section as follows.

A. Problem description

In this paper, the working environment of a mobile robot isgased to be a two-dimensional workspace.
The proposed genetic algorithm based smooth path plansingad to find a feasible and optimal Bezier
curve path for a mobile robot, which include three condgiare., firstly the path should be collision-free,
secondly the smooth movement of a mobile robot should beideresl by satisfying the second-order
continuity of the path, and thirdly the path should be therssb distance from a start point to a target
point under the above two constraints. The formal expressad above conditions are as follows:

min ||P(¢)]|, 0<t <1,
s.t. P(t) e C?, (6)
P(t) € Pfree;
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Fig. 1. (a) The workspace with 1616 grids; (b) The workspace with ¥36 grids

wheret is normalized time variablg|P(t)|| represents the length of the Bezier curve péth,is a set

of second-order differentiable function ai®},.. indicates a set of collision-free path. Since the Bezier
curve is defined by its control points, the above optimizatwoblem is to find a sequence of control
points which determine the Bezier curve path under comgtainditions.

B. Representation of workspace

The workspace is an environment where the mobile robot arstlaoles both exist. The grid-based
model is usually utilized to represent the workspace in tat planning of a mobile robot, since it is
easy to calculate distances and represent obstacles. Timeldry of obstacles is formed by their actual
boundary plus minimum safety distance considering theaizemobile robot, so that a mobile robot could
be treated as a point in the workspace [13]. The whole wodesp@ represented by orderly numbered
grids, and the size of the grids determines how many numbers is. For each grid, it is defined to be
either empty (i.e., the white square grid in the workspace)azupied (i.e., the black square grid in the
workspace), which depends on whether the boundary of dbst&cin the grid.

The whole workspace is divided intd/ x N grids in this paper, where both/ and N are positive
integer power of number 21/ could be equal taV or not in practice, because a workspace with< NV
grids could be treated as a workspace withx M/ grids and some of the grids are occupied. Fig. 1(a)
and Fig. 1(b) show a workspace with x M grids (M = 16, N = 16) and M x N grids (M = 15,

N =16) respectively. This representation approach simplifiesdchromosome encoding and population
initialization of genetic algorithm. For example, if the tkepace is divided into 1010 grids, then the
numbers of the grids are from 0 to 99. Binary encoding is useccifiromosome in this paper, and this
means a 7 bit binary number is necessary to represent oneHpidever, some of the numbers (e.g.,
from 100 to 127) exceed all of the grid numbers in the workepao that additional process has to be
added to check whether the randomly generated chromosalagsegd in next section) are reasonable.
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Fig. 2. The workspace of a mobile robot in this paper

C. Chromosome encoding and population initialization

A sequence of grid numbers is used to represent the chronessomthe genetic algorithm in this
paper and chromosomes are encoded by binary numbers fer dgisoperations of genetic operators.
Take the 166160 units workspace with 2616 grids (i.e., each grid is a ¥10 units square) in Fig. 2
for example hereinafter, each grid is assigned a numberdegt® and 255, which could be represented
by a 8 bit binary number. All of the binary numbers are coneéctrderly to form a chromosome. This
kind of chromosome encoding is suitable for bdthx M/ and M x N grids. Moreover, genetic operators
will not bring unreasonable chromosome by using this apgrdaecause both crossover and mutation
operators will keep a grid number in the chromosome betweand)255. This is another advantage of
the workspace representation approach mentioned above.

All of the control points are defined at the center of the giiilshe workspace. The transformation
from grid numbers to coordinate values is expressed as

P.(t) = (Numbef’16) x 10 + 5,

P,(t) = [Numbey16] x 10 4 5, (7)

where % indicates the complementation,| denotes the rounding dow®,(¢) and P,(¢) are X and
Y coordinate components of the center of the grid respeygtivah the other hand, the transformation
from coordinate components of any point on the path to thebmumof a grid that contains the point is
expressed as

Number= |P,(¢)/10] + |P,(¢)/10] x 16. (8)

Considering the representation of the workspace and chsome encoding approaches, it is very easy
to implement the population initialization of the generlgaithm. For example, if a chromosome has
grid numbers, then the initialized population is a set &f8bit binary numbers.
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D. Fitness function and selection method

The purpose of the genetic algorithm based smooth path iplgnn this paper is to find an optimal
path under constraint conditions (6). The fitness funct®ddfined as

3

—, for feasible paths
) 1P ()]l

f = ' 1 (9)

" , for infeasible paths
_;1 |P; (t)||+penalty

whereP;(t) is theith segment of the piecewise Bezier curves witkegments angenalty is added when
the Bezier curve passes through an occupied grid. A shoatdr \pill has a larger fitness value and the
optimal path is a shortest feasible Bezier curve path.

The proportional selection strategy is used in the seleati@thod of the genetic algorithm, i.e., the
probability that the selected chromosome is proportioodhe fitness value. Suppose the fitness value of
the ith chromosome ig; and the population size iS,, the selection probability of théh chromosome
can be expressed as

fi
Sp
> fi
i=1

where p; is the selection probability and the roulette wheel meth®dused for selection operation
afterwards.

Di = ) (20)

E. Genetic operators

Crossover and mutation are two heart genetic operatoreigehetic algorithm. The crossover operator
is to combine the features of two parent chromosomes to pedwo offspring chromosomes. The
crossover probability is randomly generated to determihether the crossover operator is implemented
on two parent chromosomes. The single point crossover tipesaused in this paper, i.e., the genes of
two chromosomes after a randomly generated crossover aangwapped.

The mutation operator is implemented after the crossoveratpr on randomly selected chromosomes
in the population. The binary complement operation is impated on a randomly generated mutation
point of the chromosomes. Above genetic operators will motpce genes (i.e., grid numbers) out of the
workspace by using the proposed approaches in SectiosdHe 111-C.

Remark 1. The grid-based representation of the workspace is commathanliterature of mobile
robot path planning. However, a general grid-based reptasen is proposed in this paper. The whole
workspace is divided int@" x 2" grids in spite of whether the workspace is a square (the \pades
could be treated as a square with some occupied grids if ibisarsquare). This approach facilitates the
implementation of the GA in the processes of initializafiorossover and mutation.

Remark 2: In this paper, the control points of the Bezier curve aredtliyelinked to the optimization
criteria, which is different from most Bezier-curve-bageath planning approaches where Bezier curve
is used to smooth the path produced by some path planningod®e{26]. Although the path planning
adopting the Bezier curve based on the GA has been develod88]i the details of the implementation
have not been thoroughly discussed.
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(@) (b)

Fig. 3. (a) Smooth path planning from grid 0 to grid 255; (b)d@th path planning from grid 15 to grid 240

IV. NUMERICAL EXPERIMENTS AND PERFORMANCE EVALUATION

In this section, the smooth path planning based on the gealgiorithm will be applied to the workspace
in Fig. 2 to demonstrate the effectiveness of the proposprbaph. The parameters of the genetic algorithm
are as follows: the population size is taken as 200, the maxigeneration is taken as 100, the crossover
probability is taken as 0.5, the mutation probability isamakas 0.1 and theenalty is taken as 10 for each
infeasible point of the Bezier curve path.

Fig. 3(a) and Fig. 3(b) show the numerical experiment reswlith different start positions and target
positions in the workspace, where blue circles indicatecitr@rol points of the Bezier curve path, blue
solid lines compose the convex hull and red solid lines isaipggmum smooth path. Eight control points
(i.e., eight grid numbers for each chromosome) are usech®mBezier curve path in this paper. In spite
of the difficulty in the two cases, the proposed approach caoraplish the smooth path planning task
successfully. Define the objective function as the recigrof the fithess functiorf in (9). The objective
function value of the optimum chromosome in each generasotepicted in Fig. 4, which shows the
fast convergence of the genetic algorithm in this problem.

Fig. 5 shows the curvature of each point on the Bezier curtie, @and it is obvious that the maximal
curvature is lower than 0.1 according to the coordinateb®ftorkspace. The low curvature values reflect
the smoothness of the obtained path. Table | presents sompatsons on smooth path planning and
non-smooth path planning both based on the genetic algoriiine experiment results with different start
positions and target positions indicate that, by using tftepg@sed smooth path planning approach, we
can derive an optimal path with the similar length as in the-smooth path planning. Moreover, there is
little difference on the minimal convergence generatiotwleen smooth and non-smooth path planning.

Remark 3: It is very important to choose the control point vectors iaqtical applications. Generally
speaking, more control point vectors are required if thekspace is more complicated (e.g., with more
obstacles). The GA could be implemented with different namlof control points in practice. It is worth
mentioning that the redundant control point, which is cameacwith the other, will be rejected in the
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optimum control point sequence at the end of the procedugg, (@ght control points are used for the
GA and seven control points are remained in Fig. 3(a)).

Remark 4: Compared with other smooth path planning methods [1], [E4], one of the advantages
of the proposed approach is the general grid-based repati®enof the workspace, which facilitates the
implementation of the GA. The other but more meaningful anéhat this approach is a “real” smooth
path planning approach combining a heuristic intelligeptimization algorithm (e.g., the GA in this
paper) with a path smoothing approach (e.g., Bezier cunthignpaper). In this paper, the control points
of the Bezier curve are directly linked to the optimizatiottaria of the GA, so that the generated paths
are guaranteed to be optimal instead of smoothing the péifrssmame path planning processes.

Remark 5: In (9), thepenalty is added when the Bezier curve passes through an occuptdrggome
special cases, a path will has larger fitness value, everatirol points lie in the occupied grids and



FINAL VERSION 10

TABLE |
COMPARISON OF GENETIC ALGORITHM BASED SMOOTH PATH PLANNING ND NON-SMOOTH PATH PLANNING

Minimal generation| Objective value | Minimal generation| Objective value
non smooth path | non smooth path smooth path smooth path
Grid 0 to 15 26 225.4982 49 221.0383
Grid 15 to 255 88 211.2393 67 218.5059
Grid 240 to 255 76 178.3131 47 195.3404
Grid 0 to 240 69 244.9847 73 247.8467

the penalty is added in the fitness function. For example, it can be foumad dptimum control points
can be in theoccupied grids as shown in Fig. 3(b). Moreover, how to select pleralty to improve the
performance of the algorithm is still an open problem fottHer discussion.

V. CONCLUSIONS AND FUTURE WORK

This paper has proposed a new smooth path planning for a enoiblot by resorting to the genetic
algorithm and the Bezier curve. A new grid-based representaf the workspace has been presented,
which makes it convenient to perform operations in the geragorithm. The genetic algorithm has
been used to search the optimum control points that deteritia Bezier curve based smooth path.
The effectiveness of the proposed approach has been vebfieal numerical experiment, and some
performances of the obtained method have also been analjaeck still remain many interesting topics,
for example, 1) how to solve the specific smooth path planpnedplem by using the genetic algorithm; 2)
how to promote the computational efficiency in the more gcalse; 3) how to select the number of control
points and value of thepénalty’; and 4) how to apply the developed algorithms to more cooapéd
situations (e.g. mobile navigations in networked envirents [3]-[10], [12], [16]-[18], [28], [36]. These
issues deserve further research.
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