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ABSTRACT
Context : It is unclear that current approaches to
evaluating or comparing competing software cost or effort
models give a realistic picture of how they would perform
in actual use. Specifically, we’re concerned that the usual
practice of using all data with some holdout strategy is at
variance with the reality of a data set growing as projects
complete.
Objective: This study investigates the impact of using
unrealistic, though possibly convenient to the researchers,
ways to compare models on commercial data sets. Our
questions are does this lead to different conclusions in
terms of the comparisons and if so,are the results biased
e.g., more optimistic than those that might realistically be
achieved in practice.
Method : We compare a traditional approach based on
leave one out cross-validation with growing the data set
chronologically using the Finnish and Desharnais data sets.
Results: Our realistic, time-based approach to validation
is significantly more conservative than leave-one-out
cross-validation (LOOCV) for both data sets.
Conclusion : If we want our research to lead to actionable
findings it’s incumbent upon the researchers to evaluate
their models in realistic ways. This means a departure
from LOOCV techniques, while further investigation is
needed for other validation techniques, such as k-fold
validation.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Cost
estimation

Keywords
Software engineering experimentation, Software effort
estimation, Cross-validation approaches
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Given the substantial commercial and societal benefits that
might derive from accurate and timely software project
cost prediction the topic has been the subject of much
research over more than 40 years. Typically the main focus
is on effort since this is where the greatest costs and
uncertainty reside. For a review see [4] or for a more recent
review that focuses on the application of machine learning
techniques [21]. The upshot of this sustained research
effort is a plethora of competing predictive models that
range from traditional off-the-shelf models such as
COCOMO, through statistically derived models based on
regression modelling to sophisticated machine learners
based on ensembles of regressors.

The challenge for the research community — and for
practitioners — is to determine which models are ‘best’,
acknowledging that this may require a context sensitive
answer and some sense of how well such models might
perform in action. The latter question is particularly
important if we expect our research to have much real
world impact. We need also to be aware that the real
world is somewhat different from the research laboratory.
In particular, the popular approach to evaluating
competing predictive models is based on historical data
sets. These are then used to predict the unknown by
artificially dividing the data set into training cases and
‘unseen’ test cases. There are two common approaches to
model validation [8, 14].

First is k-fold cross-validation where the data are
randomly divided into k folds and each fold is successively
held out for testing and then entered back into the training
set. Typically for cross-validation k � n where n is the
number of cases in the data set. The allocation to folds is
random. A side effect of this random allocation is variance
in the results. For this reason it is common repeat the
validation j times yielding a j × k-fold cross-validation
procedure.

Second, is leave one out cross-validation (LOOCV)
sometimes referred to as jackknifing. This is a special case
of k-fold where the fold size is k = n i.e., one fold per case.
Thus, each case is successively removed from the training
set and used as the test case and then returned to training
set as the next case is used as the test case. This approach
to validation has the pragmatic advantage over generalised
k-fold in that it is deterministic.

It is self-evident that neither approach is a particularly
good approximation of the real world situation where the
size of training set grows over time as software projects are
completed and added as cases to the training set [10]. The
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next project to be initiated becomes the new target or test
case. One might refer to this as grow-one-at-a-time (GOAT)
validation.

The remainder of the paper is organised as follows. The
next section reviews our understanding of these validation
techniques together with their usage in software effort
modelling. We then present a comparison of these
approaches compared with the more realistic GOAT
validation. The final section considers the significance of
our findings in terms of research practice and in terms of
practitioners being able to accept our research findings as
actionable.

2. RELATED WORK ON SOFTWARE
EFFORT MODELLING VALIDATION

It is normal practice to validate predictive models using
historical data where the outcomes are known so that it is
possible to test the model’s prediction against actual
outcome. In order to simulate a model predicting cases for
which the outcome is unknown various cross-validation
procedures are used. Two widely used methods are k-fold
cross-validation and LOOCV.

In a classic paper Kohavi [8] compares k-fold, with a
bootstrap and LOOCV. A key observation is concerned
with both bias and variance since essentially any technique
acts as an estimator of the true, but unknown, population
statistic. Subsequently, Isaksson et al. [3] have pointed out
the negative impact of using small samples in genera,l and
problems with LOOCV in particular, since the large degree
of overlap between the training and test sets leads to some
loss of independence which results in “a complicated
variance contribution that is difficult to analyse in detail
mathematically”. Nevertheless, LOOCV can be a practical
choice due to its deterministic behaviour.

The conclusion of researchers such as Isaksson et al. [3] is
that for single data sets it is difficult to determine how
reliable a performance estimate is. Furthermore, simulation
based analysis suggests that either approach are often
unreliable for small sample sizes as commonly encountered
in real world applications. Finally, constructing a
confidence interval based on the holdout test set remains
the only rigorous yet practical useful alternative for
assessing and reporting predictive performance.

It should be noted that both Kohavi and Isaksson et
al. were concerned with classifiers whereas our particular
problem domain is for real-valued prediction. In addition,
software projects commence and terminate at distinct
points in time hence we might better think of the data as a
pseudo-time series.

In the field of software cost modelling a number of
researchers have commented on the temporal aspect of the
data and the restrictions this ought to impose on validation
schemes. An early example is Lefley and Shepperd [9] who
when evaluating the ability of genetic programming
algorithms to form effort prediction models ordered the
training data chronologically, however, the study did not
examine the question as to whether this, more realistic,
form of validation led to different results. Sentas et al. [15]
adopted a similar approach to validate their models based
on ordinal regression. Again they did not directly study
the impact of using data ordered by time.

More recently Lokan and Mendes [11] posed the question

of how realistic are the traditional k-fold and LOOCV
approaches and does this matter? They identified that
having sorted the data into chronological order there are
the choices of merely using a training set that grows over
time and the possibility of employing a moving window so
that older, and perhaps obsolete, data are discarded.
These questions were explored in the setting of comparing
within company and cross company estimation based on
the ISBSG data set. Their conclusions were that it made
no difference, however, this is in the context of a much
larger and more complex study so it would seem worth
revisiting this question.

MacDonell and Shepperd also addressed this question
both within and between projects [12]. They reported
significant differences between LOOCV and GOAT
validation schemas, and even when using a moving window
method — even though the latter being less relevant for
our purposes. However, the analysis was conducted on a
very small data set of only 16 projects.

To summarise, k-fold and LOOCV remain the dominant
approaches to empirical validation of predictive models
(both classifiers and regressors) by researchers throughout
the field of machine learning. Software engineering is no
exception. Neither of these approaches view the data as
emerging over time which for many applications is perfectly
reasonable but for software project effort prediction is not.

3. AN EXPERIMENTAL COMPARISON
OF VALIDATION METHODS

We outline the experimental method we used by detailing
the (1) validation schemes (2) feature weighting approaches
(estimation techniques), (3) performance metrics and (4)
data sets we used. Throughout this study an Intel
CORETM i5 vProTM PC was used to run R [13] and the
ArchANGEL tool1. The results obtained by our
experiments are analysed using the Blind Analysis protocol
detailed in [20] in order to limit the analysis bias and
improve their reliability. Note the experiments were run by
BS, the raw results blinded by TT and analysed by MS.

3.1 Choice of cross-validation scheme
We compare two validation schemes, namely LOOCV and
the more realistic time-based approach we term GOAT
which is described at the end of this section. We choose
LOOCV as an example of k-fold cross validation since it
has the useful property of being deterministic although
computationally quite demanding for larger data sets such
as the Finnish data set.

3.2 Choice of feature weighting approach
Three feature weighting techniques for analogy-based
estimation are used, the first two in their default
archANGEL implementation:

1. CBR - It might be thought of as the baseline well-
established technique and has been applied since the
mid 1990s [17]. All features are equally weighted to
predict the effort.

1archANGEL is the most recent version of the ANGEL soft-
ware tool for project prediction. It may be downloaded from
http://tiny.cc/5t4fdx



2. FSS - While CBR uses all features equally weighted,
FSS’ feature weights are either 0 ∨ 1. FSS excludes
features that do not contribute (irrelevant features) to
the predicted value. It has generally been found to be
an improvement over CBR [19].

3. FSW - It employs continuous, non-negative weights
to predict a new effort using a more efficient
algorithm to search for individual feature weights.
FSW is an extension by [18] to the default
ArchANGEL implementation.

These methods present a range of possible strategies for
ABE. A trivial or näıve approach is included in order to
determine the extent to which the more sophisticated
techniques offer any value. Note, however, that the choices
are made primarily to provide some modern predictive
approaches in order to contrast our two validation schemes.
It is not the purpose of this study to evaluate which of
these choices is ‘best’ so in a sense the choices are
arbitrary. We merely need vehicles to determine the
impact of different validation schemes.

3.3 Choice of performance metrics
In order to assess the accuracy of cost estimation
techniques, various performance metrics have been
considered. Typically statistics such as MMRE, MdMRE,
PRED(n) and Standardised Accuracy have been used as
the accuracy statistics for prediction systems. MMRE is
one of the most widely used evaluation criteria for
measuring the performance of competing software
prediction models nevertheless it is highly problematic in
part due to the asymmetric behaviour of any z-score [7].
Consequently we use absolute residuals as a simple
unbiased metric [16].

3.4 Choice of data sets
For our analysis we use two software project effort data sets
(see Table 1) namely Desharnais [1] and so-called ‘Finnish
dataset’ used in [5]. These data sets were chosen because
they are:

• Widely used : Desharnais is one of the most widely
used data set in order to estimate the software
development effort. A review by Sigweni [19] on ABE
models employing feature weighting, found that 15
out of the 19 selected studies used the Desharnais
data set. The Finnish data set is also widely used in
effort estimation studies such as [6, 5, 2].

• Representative: In order for the data sets to be
representative it is helpful if they are of different
sizes. Therefore, one of the data set should be small
i.e., have a small number of cases and features while
the other should be large — therefore having a large
number of cases and features. The Finnish data set
would be representative of larger software engineering
data sets (408 cases and 44 features), since software
project effort data sets usually contain relatively few
cases, typically less than 50 features and almost
invariably under 500 cases [6]. Therefore, the Finnish
data set used in this study is at the large end of this
spectrum whilst the Desharnais data set, with only 9
features and 77 cases, would represent small to
medium data sets. Although these data sets are quite
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Figure 1: Validation data sets

old, they are still widely used in the Software
Engineering community [19].

The next two subsections provide detailed descriptions and
explanation on how these data sets were processed.

3.4.1 Desharnais data set
The original Desharnais data set consists of 81 software
projects obtained from Canadian software houses over 3
different development environments, published by
Desharnais [1]. Unfortunately, 4 projects contained missing
values therefore are excluded resulting in 77 projects used
in this study. This data set is described by 9 attributes or
features. These comprise one dependent attribute which is
development effort measured in ‘person-hours’ (the feature
to be predicted), and 8 independent attributes of which
one the features (Language) is categorical while the rest
are numeric. Outliers were not removed

3.4.2 Finnish data set
The Finnish data set is made up of project data collected
by the software project management consultancy
organisation STTF Ltd. The original Finnish data set had
90 features. The data set used in this study is the same
data set used by [6], which removed some features due to
missing values. The features are a mixture of categorical,
continuous and discrete. The actual project effort is the
dependent variable. As per the Desharnais data set we did
not remove any outliers.

Out of 408 projects in the Finnish data set two cases had
the actual effort attribute being equal to zero, therefore we
removed these two questionable projects leaving 406 cases.
This represents less than 1% of the total number of projects.

3.5 Methods for Accuracy Estimation
As mentioned in the introduction, the majority of software
effort estimation studies use historical datasets to build
and validate models for estimating software development
effort. Almost all of them assign projects to training and
testing sets without any consideration of the date in which
the projects were completed [10]. Therefore, it is likely
that the training set used to build a model to estimate the
effort for a given target case includes cases that have not
even started at the point the prediction of the target case
is required [10]. However, in a real life setting, only
completed projects can be considered when coming up with
an estimate, i.e., one cannot consider future projects.
Thus, there is an evident mismatch between normal
industrial and research practice [10].

In contrast, GOAT validation consists of adding new
projects to the data set as time passes; this approach
better reflects real life settings, where completed projects
can be used only once they’re completed to predict a new



Table 1: Summary of the ‘cleaned’ data sets

Data set No. of cases No. of features Min effort Max effort Mean effort Median effort

Desharnais 77 9 546 23940 5046.31 3542

Finnish 406 44 55 63694 5031.00 2500

one. The data set looks like a growing window to the
predictive mode (see Figure 1) and successively increases
the size of the training set. This shows the projects in the
case base ordered by their completion date. Therefore, case
1, denotes the earliest project (i.e., completed first). In
terms of ABE, for example starting with 3 cases, window 1
would be used to predict the effort for case 4, and when
case 4 is completed and its effort now established it is then
added to the case base (window 2) and available to be used
to predict the effort for case 5.

A number of researchers have considered using moving
windows so the window is of fixed size m and as new cases are
added, the most obsolete are dropped. A rationale for this
approach is only the most current data is able to influence
the predictive model [10, 12]. However, we view this as a
particular type of modelling technique that chooses not to
use all available data hence we don’t explore this possibility
further within the confines of this study. In other words, we
view moving windows to be a particular prediction approach
rather than a validation method.

First, both datasets were chronologically sorted by
project completion date: whilst the Desharnais data set
already provides this information directly as a feature (i.e.,
YearFin), the Finnish data set required us to add the
duration of each project in the case base (i.e., duration

expressed in months) to its start data (i.e., DATESTART) in
order to compute a new feature we called EndDate, used
only for the purpose of sorting and not to be included in
the feature space used for prediction. Cases with the same
end dates were then randomly sorted between each other
to invalidate their original order.

We then constructed a new set of case bases using a
growing window technique: (i) we selected the first 4 cases
starting from the oldest one in both datasets (recall that
this window has size 3, but we need an extra case to be the
target); (ii) we then added the remaining cases one by one,
drawing from the chronological order described before.
Each sequence constructed by adding a new case is
exploited as one single case base with the oldest cases as
the knowledge base and the additional one as the target
case, whose effort needs to be predicted.

This way we obtain 74 case bases for Desharnais and 403
for Finnish, each with a single target case to be predicted,
requiring a total of 477 predictions to be validated.

4. RESULTS
Recall that this study uses blind analysis. Therefore, all
statistical analysis of the results is based on blinded
absolute residuals, that is they are provided with
anonymised treatment labels to the analyst. However, to
render the following discussion meaningful we remove the
blinding.

A couple of factors complicate the analysis. First, the
distributions of the residuals are extremely skewed and not
amenable to simple transformations (see the boxplots of the

absolute residuals for the validation techniques GOAT and
LOOCV in Figure 2). Second, the Finnish data set has many
ties. For this reason we use robust techniques.
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Figure 2: Boxplots showing residual distributions for two
the validation techniques
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Figure 3: Boxplots showing residual distributions for two
the validation techniques



Table 2: Comparing absolute residuals by validation tech-
nique using the Desharnais Data Set

Validation Mean abs Standard Median abs

technique residual deviation residual

GOAT 2455.8 2912.3 1576.4

LOOCV 2159.7 2547.8 1357.2

Table 3: Comparing absolute residuals by validation tech-
nique using the Finnish Data Set

Validation Mean abs Standard Median abs

technique residual deviation residual

GOAT 3919.9 6388.2 1923.3

LOOCV 2646.1 4174.8 1359.4

From Table 2 we observe that GOAT validation has a
higher median absolute residual than LOOCV. This
implies that for the same project and predictive model
GOAT will give a more pessimistic view of likely
performance. In addition, although both distributions are
highly skewed (see Figure 2) we observe higher variance for
the more realistic GOAT validation. This suggests that the
performance of the predictive models may be less stable in
a real world setting than implied by the artificial procedure
of LOOCV.

Likewise, for the Finnish dataset (see Table 3) we
observe a similar pattern. Again the LOOCV validation
procedure yields seemingly better predictions and the
evidence is somewhat stronger that the traditional
cross-validation of LOOCV is optimistic. We also note
higher variance (and standard deviation) for the realistic
validation approach.

So the question is how significant is the factor of validation
scheme compared with the second factor of feature weighting
technique and do the two interact? To examine this we use
a two-way robust ANOVA procedure based on 0.2 trimming
of the means and bootstrapping. Since the design is within-
within2, we use Wilcox’s wwtrimbt which is available in the
R package WRS [22].

Table 4: Wilcox’s Robust 2-way ANOVA with 0.2 trimming

Factor Data set p-value

Validation scheme Desharnais 0.047

Feature Weighting technique Desharnais ∼ 0

Interaction Desharnais 0.666

Validation scheme Finnish ∼ 0

Feature Weighting technique Finnish ∼ 0

Interaction Finnish 0.046

Table 4 summarises the significance of each term in
contributing to the variance of the response variable
(absolute residuals) in a 2-way linear model with

2The design is within-within because each technique and
validation scheme is applied to all the projects. This is also
known as repeated measures.

interactions. Although the choice of feature weighting
technique dominates (p ∼ 0) we see validation scheme also
has significance (p = 0.047). This suggests that the results
are impacted by how we validate.

In addition, for our set of three predictors, there is
mixed evidence about whether the impact from the choice
of validation scheme is influenced by the choice of feature
weighting technique. For the Finnish dataset feature
weighting technique has a highly significant association
with validation scheme p = 0.0460. Interestingly, there
doesn’t appear to be any such interaction between the two
factors for the Desharnais dataset. Therefore the results
show that some prediction techniques (in terms of feature
selection) may be influenced by the validation scheme but
this doesn’t always happen.

5. DISCUSSION AND CONCLUSIONS
In this study we have compared the behaviour of a
traditional leave one out cross-validation (LOOCV) scheme
with a time-based grow one at a time (GOAT) scheme.
The motivation for this is the latter is far closer to what a
practitioner would experience if they were to use a
particular predictive model in reality. Recall, our questions
are (i) does this lead to different conclusions in terms of
the comparisons and (ii) does this lead to biased results
e.g., more optimistic results than those that might
realistically be achieved in practice?

Based on the three predictive models and two data sets
in our experiment, the results strongly suggest that yes the
choice of validation scheme can impact comparisons between
models and that the differences between schemes are not
symmetric. This means a LOOCV approach is biased with
respect to the more realistic GOAT validation and distorts
the results to make predictors appear more effective in the
lab than they would perform if deployed in the field.

Our findings are in line with MacDonell and Shepperd [12]
who reported that there were differences between LOOCV
and a realistic validation scheme that accounted for data
availability. However, this contrasts with Lokan and Mendes
[11] who reported it did not make a difference. Even if the
answer is it matters sometimes, this should be a concern for
the research community since one can’t tell a priori when
it will be pertinent. In other words, if at least sometimes
traditional validation schemes are optimistic but on other
occasions there is no difference then the response must be
to use a time based approach.

It is easy for researchers to neglect the needs of
practitioners. In order for our research to be actionable it
needs to be realistic and convincing. Even if one could
make a case that in judging the likely performance of our
predictive models it makes no difference whether the data
are treated as a time series with a GOAT-like validation
regime employed or a more traditional k-fold scheme one
still might as well use the more realistic approach. Indeed
we put it more strongly. If our goal is to conduct research
that has impact upon professional practice then researchers
need compelling reasons not to view data as a time series.

Given the significance of the research questions there is
clearly a need for further work. It would be helpful to
extend the study to also consider k-fold cross validation
and to replicate it with other data sets and also different
predictive models. An additional sophistication would be
to ensure that a target project can only use data that are



available, i.e., projects that have completed at the target
project’s commencement.
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