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Abstract

In this work we present a statistical approach to distinguish and interpret the complex
relationship between several predictors and a response variable at the small area level, in the
presence of i) high correlation between the predictors and ii) spatial correlation for the response.

Covariates which are highly correlated create collinearity problems when used in a standard
multiple regression model. Many methods have been proposed in the literature to address this
issue. A very common approach is to create an index which aggregates all the highly correlated
variables of interest. For example, it is well known that there is a relationship between social
deprivation measured through the Multiple Deprivation Index (IMD) and air pollution; this
index is then used as a confounder in assessing the effect of air pollution on health outcomes
(e.g. respiratory hospital admissions or mortality). However it would be more informative to
look specifically at each domain of the IMD and at its relationship with air pollution to better
understand its role as a confounder in the epidemiological analyses.

In this paper we illustrate how the complex relationships between the domains of IMD and air
pollution can be deconstructed and analysed using profile regression, a Bayesian non-parametric
model for clustering responses and covariates simultaneously. Moreover, we include an intrinsic
spatial conditional autoregressive (ICAR) term to account for the spatial correlation of the
response variable.

Keywords: profile regression, Bayesian clustering, spatial modelling, collinearity, index of
multiple deprivation, pollution.

1 Introduction

In many statistical applications a common challenge arises when trying to assess meaningful re-
lationships between explanatory variables and outcomes through regression models, due to the
potential collinearity of the explanatory variables. This issue is well known in epidemiological or
social studies, for instance where questionnaires or surveys collect information on a large number
of potential risk factors for particular end points; in this context a simplistic approach consists in
examining each variable in turn to avoid the instability in the estimates due to the collinearity,
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making it impossible to judge the more realistic complex relationship involving several risk factors
at the same time. A different approach combines all the relevant variables into summary scores or
indexes and assesses the relationship of these with the outcome of interest, which is free from the
collinearity issue, but loses information on the single variables included in the summary.

Recently, Dirichlet process mixture models have been used as an alternative to regression mod-
els (Dunson et al., 2008; Bigelow and Dunson, 2009). In this paper we focus on the model known
as profile regression and proposed by Molitor et al. (2010). Profile regression is a Bayesian non–
parametric method which assesses the link between potentially collinear variables and a response
through cluster membership. This allows to formally take into account the correlation between
the variables without the need to create a summary score, giving more flexibility to the inferential
process. Profile regression has been used on several applications in environmental and social epi-
demiology and the R package PReMiuM (Liverani et al., 2015) makes it readily available to any
applied researcher. For instance Molitor et al. (2010) considered the National Survey of Children’s
Health and in particular investigated a large number of health and social related variables on men-
tal health of children age 6–17, while Papathomas et al. (2011) focussed on profiles of exposure
to environmental carcinogens and lung cancer in the EPIC European cohort. Profile regression
has also been used in environmental epidemiology (Pirani et al., 2015), for studying risk functions
associated with multi-dimensional exposure profiles (Hastie et al., 2013; Molitor et al., 2014) as
well as for looking for gene-gene interactions (Papathomas et al., 2012).

In its present formulation, profile regression has only been used for studies based on cohorts or
surveys where information on the predictors/outcomes is available on each individual; in this paper
we extend the method to fit small area studies, commonly used in epidemiological surveillance
(see for instance Elliott and Wartenberg 2004) or in studies where the interest lies on the spatial
variability of an outcome (Barcelo et al., 2009) or on cluster detection (Abellan et al., 2008; Li
et al., 2012). In this types of studies information is available at the area level rather than at the
individual level and space is used as a proxy for any unmeasured variable; the common assumption
is that areas which are close to each other are more similar than those further apart, suggesting that
an additional source of correlation, namely spatial correlation needs to be accommodated in the
models. We incorporate it in the model through a conditional autoregressive structure (Besag et al.,
1991) based on a neighborhood definition, thus assuming that conditional on the neighborhood
structure, two areas are independent from each other if they do not share boundaries. We apply
the spatial profile regression to the problem of environmental and social inequalities in London,
jointly modelling social deprivation and air pollution to highlight the presence of environmental
justice.

The paper is structured as follows. In Section 2 we present the motivating example for our
methodological development of the spatial profile regression, introducing the context of social and
environmental inequalities and how they are related; we also describe the available data. In Section
3 we provide a brief summary of the profile regression and present how to extend it to include
spatial correlation. In Section 4 we illustrate how the model works on evaluating the relationship
between social deprivation and air pollution. Section 5 presents some discussion points and ideas
for future work.
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2 Example: social deprivation and air pollution in London

The scientific literature reports mixed evidence on the link between socio-economic status and air
pollution. Recent studies indicated that air pollution tends to influence most deprived groups,
suggesting that people with lower socio-economic status are more likely to live in a more hazardous
and polluted living environment, accidentally or deliberately (Brown, 1995; O’Neill et al., 2003;
Blowers and Leroy, 1994; Morello-Frosch et al., 2002). In particular, ecological studies using small
areas such as neighbourhoods, census tracts and post codes, report this association, while studies
carried out at a lower spatial resolution (e.g. region, country), thus characterised by more aggregate
measurements of socio-economic characteristics, showed either non-existent or negative associations
(Davidson and Anderton, 2000; Laurent et al., 2007), presumably due to the large within-area
variability not taken into account, or even an inverse association, with higher exposures in less
deprived groups (Perlin et al., 1995). In the UK several studies reported positive or non-linear
correlation between environmental pollution and the deprivation index at both small area level and
country level. However the results varied depending on the selection of environmental hazards and
scale of analysis (Briggs et al., 2008), calling for some more research on the topic.

Understanding environmental and social inequalities is a key issue as growing health disparities
appear between people with socially disadvantaged and privileged social classes, which can translate
into increased mortality or morbidity for the low socio-economic groups across a wide range of
diseases (Brulle and Pellow, 2006; Benach et al., 2001), including lung cancer (Pope et al., 2011),
cardiovascular events (Tonne et al., 2007; Peters et al., 2004), and childhood respiratory diseases
(Morgenstern et al., 2007).

In addition, the exposure of air pollution can lead to negative health outcomes acutely or
chronically (Chen et al., 2008). Previous studies reported possible mechanisms to explain how
environmental exposures result in greater health impact among socially disadvantaged groups, who
may have increased susceptibility to the effect of these exposures because of limited access to health
care and psychosocial stress; underlying health conditions such as cardiovascular diseases and res-
piratory diseases that increase susceptibility to the effect of these exposure may also vary between
deprived and privileged populations (O’Neill et al., 2003; Morello-Frosch and Jesdale, 2006). These
environmental exposure inequalities are increasingly considered as a potential determinant of health
disparities (Morello-Frosch and Jesdale, 2006). In addition, it has been suggested that the dispari-
ties grow in more deprived areas as health improves faster in high socio-economic groups (Leyland
et al., 2007; Higgs et al., 1998).

Although individual determinants (such as smoking) or individual risk responses (such as clos-
ing windows to avoid exposure) may frequently contribute to these health inequities, only a fraction
of the overall disparities are attributed to individual factors (Lantz et al., 2001). In fact, human
health is not only influenced by individual health behaviours but also by contextual and ecological
factors (Marmot, 2007). Furthermore, socio-economic status plays a potential role of confounding
or effect modification in epidemiological studies investigating the relationship between environmen-
tal variables and health outcomes, especially at aggregated level (Blakely and Woodward, 2000;
Blakely et al., 2004). The further effect of confounding and effect modification will potentially
lead to bias of the results, whose level depends on the relationship between environmental pollu-
tions and socio-economic status. Hence it is extremely important to study this association, which,
at the moment still remains uncertain and subjected to the fundamental methodological issue of
correlation between variables.

To study this relationship in the present work we consider the following data:
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• nitrogen oxides (NOx), which is generated mainly through combustion, thus is a good proxy
for traffic related air pollution. The data were obtained from the environmental research
group at Kings College as annual mean for the period 2003-2010 at the Lower Super Output
Area geographical level in Greater London (LSOA, 4,767 in Greater London) as part of
the TRAFFIC project (http://www.kcl.ac.uk/lsm/research/divisions/aes/research/
ERG/research-projects/traffic/index.aspx).

• Index of Multiple Deprivation (IMD), publicly available from the Department for Communi-
ties and Local Government (data.gov.uk). It is commonly used at the small area level to
synthesize multiple aspects of deprivation. It is originally built at LSOA level and is formed
by 38 indicators collapsed into seven domains: Income, Employment, Health, Education,
Crime, Access to Services (Housing) and Living Environment. As we want to evaluate the
relationship between the domains of the IMD and air pollution (NOx) we have not considered
the living environment domain, which includes air quality. IMD is available for 2004, 2007
and 2010 and we have considered the most recent one in this work (correlation between Index
at different years ranges from 0.94 and 0.97).

(a) NOx concentration for 2003-2010 (b) IMD score, 2010

Figure 1: Quintilesof the NOx concentration (average 2003-2010) and of IMD score (2010) at LSOA
level in Greater London.

Figure 1 shows the map for NOx (left) and IMD score (right) and a clear spatial pattern is
visible in both: air pollution concentration increases steadily going from outer to inner London,
while IMD shows the highest deprived areas in the northeastern part of London and most of the
central southern part. However looking at the maps of each of the six domains highlights a different
picture (Figure 2): Crime shows the absence of a clear pattern, with scattered areas of high crime
(dark grey) next to areas of low crime (light grey); on the other hand income, employment and
health/disability are in agreement with the total IMD score, while barriers to housing and services
are more pronounced in central London and education shows more deprivation in East London.
This suggests how simplistic is the approach that considers the total IMD score and highlights the
importance of including all the domains to disclose the relationship between social characteristics
and environmental pollution at a small area level.

If we want to investigate the relationship between each domain and air pollution we cannot
include all the domains in a regression model due to their collinearity issues: the pairwise Pearson
correlation between domains (Table 1) shows high values for income and employment (0.91), income

4

http://www.kcl.ac.uk/lsm/research/divisions/aes/research/ERG/research-projects/traffic/index.aspx
http://www.kcl.ac.uk/lsm/research/divisions/aes/research/ERG/research-projects/traffic/index.aspx


and health (0.77), income and education (0.68), employment and health (0.81) and employment
and education (0.64).

Table 1: Correlation between IMD domains. In bold correlation higher than 0.6.
Income Employ. Health Educ. Hous. Crime

Income 1.0 0.91 0.77 0.68 0.48 0.52
Employ. 0.91 1.0 0.81 0.64 0.42 0.53
Health 0.77 0.81 1.0 0.55 0.41 0.59
Educ. 0.68 0.64 0.55 1.0 0.16 0.36
Hous. 0.48 0.42 0.41 0.16 1.0 0.29
Crime 0.52 0.53 0.59 0.37 0.29 1.0
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(a) Income (b) Employment

(c) Crime (d) Barriers to Housing and Services

(e) Education (f) Health and Disability

Figure 2: Maps of the six IMD domains considered: quintiles of the scores (note that higher positive
values means higher deprivation.
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3 Modelling highly correlated covariates with profile regression

To include all the domains into the same statistical model we use the profile regression, a model
that non-parametrically links a response vector Y to covariate dataX through cluster membership.
It was proposed by Molitor et al. (2010) and it has been implemented in the R package PReMiuM
(Liverani et al., 2015).

Profile regression implements a Bayesian clustering model through a Dirichlet process mixture
model. The data D = (Y ,X,W ) contain the response Y , covariate X and fixed effects W if they
are available. The fixed effects are potentially confounding variables. In our running example the
response is the nitrogen oxides, the covariates are the selected six domains of IMD and we do not
include fixed effects.

For each individual i, for i = 1, . . . , n, the response is given by yi, the covariate vector xi and
the fixed effect vector wi. The data are then jointly modelled as the product of a response model
and a covariate model, leading to the following likelihood:

f(xi, yi|ΘZi ,Λ,Wi, ψ) =
∑
c

ψcf(xi|zi = c, φc)f(yi|zi = c, θc,Λ,wi)

where zi = c, the allocation variable, indicates that individual i belongs to cluster c. The parameters
Λ = (θ,φ) are cluster specific and represent the contribution of the response and the covariates
to the mixture model. There is also the possibility to include additional fixed effects wi for each
individual, which are constrained to only have a global (i.e., non-cluster specific) effect on the
response yi. The parameters ψ are the mixture weights.

Multicollinearity arises when regression models of the response with respect to highly correlated
covariates are implemented, due to identifiability issues. However, as here the response is condi-
tionally independent from the covariates, we do not encounter such issues, but we can explore in
depth the potentially complex relationship between response and covariates.

The prior model for the mixture weights is given by the stick-breaking priors (constructive
definition of the Dirichlet process), that is,

ψc = Vc
∏
l<c

(1− Vl) for all c,

ψ1 = V1,

Vc ∼ Beta(1, α) i.i.d.

The parameter α can be fixed or can have a Gamma(sα, rα) distribution with sα and rα as shape
and rate parameters respectively. Other prior models for the mixture weights are possible, and, for
example, the Pitman-Yor construction is also available in the R package PReMiuM.

The covariate model f(xi|zi = c, φc) can be defined as continuous or discrete. In the continuous
case X assumes a mixture of Gaussian distributions. In the discrete case for each individual i,
xi is a vector of J locally independent discrete categorical random variables, where the number of
categories for covariate j = 1, 2, . . . , J is Kj . Then we can write Φc = (Φc,1,Φc,2 . . . ,Φc,J) with
Φc,j = (φc,j,1, φc,j,2, . . . , φc,j,Kj ) and

f(xi|zi = c, φc) =
J∏
j=1

φZi,j,Xi,j . (1)
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We let a = (a1, a2, . . . , aJ), where for j = 1, 2, . . . , J , aj = (aj,1, aj,2, . . . , aj,Kj ) and Φc,j ∼
Dirichlet(aj). The covariate model can also be defined as a mixture of continuous and discrete
covariates.

The response model f(yi|zi = c, θc,Λ,wi) can be defined as binary, categorical, count (modelled
as Binomial or Poisson) or Gaussian. For example, for Gaussian response the mixture model is
extended to contain θc for each c and the global parameters Λ = (β, σ2

Y ). These parameters allow
us to write the response model as:

f(yi|zi = c, θc,Λ,Wi) = f(yi|zi = c, θc,β, σ
2
Y ,Wi) =

1√
2πσ2

Y

exp

{
− 1

2σ2
Y

(Yi − λi)2

}
,

where λi = θZi+β
>Wi and β represent the effect of the counfounding variables, the fixed effects, on

the response. For each cluster c, we adopt a t location-scale distribution on θc, with hyperparameters
µθ and σθ with 7 degrees of freedom. Similarly, we adopt the same prior for the fixed effect βk, but
with hyperparameters µβ and σβ. We set τY = 1/σ2

Y to Gamma(sτY , rτY ), where sτY and rτY are
the shape and rate hyperparameters.

More details on the Markov chain Monte Carlo (MCMC) algorithm for this model are provided
in Liverani et al. (2015). When the signal in the data is strong the MCMC results for different
runs, with different initial values and chain lengths, give stable results. However, this is not the
case when the signal is not strong. Hastie et al. (2015) discuss strategies to identify convergence
issues. They recommend starting the MCMC with a large number of clusters as the algorithm
can struggle to explore the partition space when starting with a small number of clusters if the
signal is not strong. When many clusters are identified it is more challenging to characterise each
cluster meaningfully and interpretation of the results can be facilitated by the posterior predictive
distrbution. Moreover, they suggest the use of the posterior distribution of predictive profiles
for the assessment of convergence instead of the posterior distribution of the parameters. This
is because the posterior distribution of the parameters can appear to have converged when the
model as a whole has not (often the case for β), or cannot be used for this scope because they are
cluster-specific and the number of clusters changes at each iteration (such as θc).

It is often useful to characterise the partition which is most supported by the data. However,
as at each iteration of the sampler individual profiles are assigned to clusters, the MCMC output
is very rich. Molitor et al. (2010) developed methods to process this output to make useful and
interpretable inference. Several methods for this are available in the R package PReMiuM but we
find the most robust method is to process the similarity matrix using partitioning around medoids
(PAM), which is available in the R package cluster. First of all, a score matrix is constructed, where
each element of the matrix is set equal to 1 if individuals i and j belong to the same cluster and 0
otherwise. Then a similarity matrix S is computed by dividing each element of the score matrix by
the number of iterations, so that Sij denotes the probability that individuals i and j are assigned
to the same cluster. PAM then assigns individuals to clusters in a way consistent with matrix S.

3.1 The Spatial Conditional Autoregressive Model

When clustering data from small area studies, we need to modify the model to account for spatial
correlation. In this paper we propose to extend the response model described above to include
an intrinsic spatial conditional autoregressive (ICAR) term (Besag et al., 1991) as follows. The
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likelihood component for the Gaussian response becomes

f(yi|zi = c, θc,Λ,Wi) = f(yi|zi = c, θc,β, σ
2
Y , ui,Wi) =

1√
2πσ2

Y

exp(− 1

2σ2
Y

(Yi − λi)2)

where λi = θZi + Wiβ + ui and u = (u1, · · · , un) ∼ N(0, τP) with P = {Pij} a precision matrix
such that

Pij =

{
ni if i = j

−I{i ∼ j} if i 6= j

where ni is the number of neighbours of subject i, I is the indicator function and i ∼ j indicates
that regions i and j are neighbours. The prior of τ is given by

τ ∼ Gamma(aτ , bτ )

such that
E(τ) =

aτ
bτ

and Var(τ) =
aτ
b2τ
.

Details of the sampling strategy for the ICAR parameters are given in Appendix A. We have
implemented this model in the R package PReMiuM for Gaussian and Poisson responses.

4 Results

We have fit profile regression to the data using the R package PReMiuM (Liverani et al., 2015).
The pollution data are modelled with a Gaussian distribution including a spatial ICAR term. The
covariate profiles, given by the selected IMD domains, are modelled with a discrete distribution, as
we have transformed each IMD domain into quintiles. We have not included any additional fixed
effects. The results were very robust on several MCMC runs using a range of initial values and
different chain lengths. We present here the results obtained with 5,000 iterations after a burn in
of 5,000 with the following hyperparameter settings.

sα = 2, rα = 1,

a1 = . . . = a6 = 1,

µθ = 0, σθ = 2.5,

µβ = 0, σβ = 2.5,

sτ−Y = 2.5, rτ−Y = 2.5.

In this section we aim to illustrate how profile regression can help shed light on complex patterns
between highly covariates covariates and response. We propose several ways to explore the results.

The main output of profile regression are the clusters, given by regions with similar covariate
and response characteristics. We have used different types of plots, which highlight specific features,
at different level of details. In Figure 3 we represent the clusters geographically. The eleven clusters
identified are plotted using colours that reflect their observed pollution levels. As expected, the
most central areas have higher pollution levels. In particular we see that areas that belong to
clusters with higher observed pollution levels are mostly located in North-East London, where
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Figure 3: Geographical representation of the eleven clusters of the areas in Greater London identified
by profile regression. The colours reflect the mean of the observed pollution levels, with dark grey
identifying the most polluted clusters and light grey the least polluted clusters.

areas with higher levels of deprivation are found. In contrast, the less deprived areas in South-West
London are clustered together and have lower mean for the observed pollution levels.

The cluster data are high-dimensional and complex. Figure 4 provides a visual representation of
the parameters Φc. Through the boxplots of the MCMC samples of the parameters Φc, this figure
provides also a representation of the uncertainty around these parameters. Each column j in the
figure represents Φc,j,k, for c = 1, . . . , 11 and k = 0, 1, . . . , 4 (the five quintiles of each covariate).
Within a column j, each row k is a visualisation of the boxplots for φc,j,k for each cluster c. This
visual representation provides a further insight into the eleven clusters. We can identify patterns
in the relationships between pollution and IMD domains at a glance. For example, Housing and
Crime appear to generally increase as pollution levels increase, while the other domains show less
linear patterns. We can also see here the details of the distributions of the levels of covariates that
define the different clusters. Cluster 2 has the lowest levels of deprivation, although not the lowest
levels of mean pollution. In contrast, cluster 9 has the highest levels of deprivation, and high levels
of pollution, although not the highest among all clusters. The mean IMD per cluster highlights the
complex relationship between IMD, pollution and deprivation. For example, for cluster 6, which
has a high mean IMD, there is strong deprivation for the first four domains. However, the domains
of Crime and Housing are rather evenly spread among all levels of the covariates, suggesting that
they do not contribute to the deprivation that characterises these areas. This is an example of a
complex pattern that cannot be identified when the domains are simply collapsed into the IMD.

In Figure 5 we provide a summary of the posterior means for each cluster. Each row represents
a cluster. The columns represents, respectively, the mean observed pollution and each domain
of IMD. The colour of each column of the matrix corresponds to a quintile of the distribution of
that variable. As before, the clusters are ordered by their observed pollution level. Note that the
colours in the matrix do not become darker (or lighter) in a smooth manner. Together, Figure
5 and Figure 3 suggest that the areas of low pollution and low deprivation are in outer London.
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Figure 4: Summary plot of the posterior distribution of the parameters Φc, for c = 1, . . . 11. Each
column j in the figure represents Φc,j,k, for c = 1, . . . , 11 and k = 0, 1, . . . , 4. Within a column j,
each row k is a visualisation of the boxplots for φc,j,k for each cluster c.
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Figure 5: Summary table of the clusters. The quintiles for pollution and each domain of the IMD
are shown for each cluster.
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As we get closer to the centre, pollution increases and many of the deprivation variables increase
levels. However, there are many notable exceptions to this. For example, cluster 11 has the highest
levels of pollution, but among the lowest levels of deprivation. On the contrary, cluster 1 has the
lowest level of pollution, but rather high levels of deprivation on all domains except Housing.

Figure 6: Posterior mean of the spatial conditional autoregressive term.

Figure 6 shows the posterior mean of the spatial term exp(ui) for each area, which accounts for
the residual spatial variation in NOx after having adjusted for the cluster assignment. The map
presents a clear pattern going from central London (darker) to outer London (lighter) with values
ranging from -30 to 48 µg/m3, thus suggesting that the model picks up the spatial dependence in
air pollution concentration which is not explained by deprivation.

We can explore the relationships between covariates and response further by looking at the
posterior predictive distributions. The profile regression model allows us to predict the pollution
level for specific combinations of the IMD domains. If we wish to understand the role of a particular
covariate or group of covariates, we can specify a number of predictive scenarios (pseudo-profiles),
that capture the range of possibilities for the covariates that we are interested in (Hastie et al.,
2013). For each of these pseudo-profiles we can see how these would have been allocated in our
mixture model to understand the level of pollution associated with them once we have accounted
for the spatial residuals.

In Figure 7 we show beanplots of four pseudo-profiles: (0, 0, 0, 0, 0, 0), (0,NA,NA,NA,NA,NA),
(4, 4, 4, 4, 4, 4), (4, 4, 4, 4, 4, 0). The elements of each vector represent the IMD domains in the
following order: Income, Employment, Health, Education, Housing, Crime. Each of these beanplots
shows the pseudo-profile corresponding to particular values of the IMD domain of interest for an
average area (ie. including the mean spatial residual, which is 0). When ‘NA’ is set, this allows
that domain to vary, de facto marginalising for it, i.e. capturing all possible values it can take.
For example, the beanplot for the first pseudo-profile on the left presents the posterior predictive
distribution of NOx for areas with the lowest levels of deprivation and shows values between 68
and 75µg/m3. Using this as benchmark we can make some comparisons: areas characterised by
low Income and marginalising for the remaining domains (second beanplot from the left) have a
much wider posterior predictive distribution, with values going from 67 to 78µg/m3 while areas
with in the highest quintile of deprivation for all the domains (third beanplot from the left) present
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68
70

72
74

76
78

0, 0, 0, 0, 0, 0 0, NA, NA, NA, NA, NA 4, 4, 4, 4, 4, 4 4, 4, 4, 4, 4, 0

Figure 7: Beanplots of the posterior predictive distributions for these four pseudo profiles:
(0, 0, 0, 0, 0, 0), (0,NA,NA,NA,NA,NA), (4, 4, 4, 4, 4, 4), (4, 4, 4, 4, 4, 0) where the elements of each
vector represent respectively the IMD domains (Income, Employment, Health, Education, Hous-
ing, Crime).

consistently highest level of pollution (ranging between 71 to 77µg/m3). The last beanplot shows
the posterior predictive distribution of NOx in an area where crime has decreased to the first
quintile (for instance through the implementation of a policy) while the other domains remains in
the last quintile. Comparing it with the previous one it an be seen a similar distribution, but with
a lower tail which could be a consequence of the policy implementation.

All predictive profiles can be computed and we provide here only these examples to show how
these can be interpreted, if there was an interest in the posterior predictive distribution of specific
combinations of deprivation levels, these could be explored in depth. Moreover, if there was interest
in a specific area, the pseudo-profiles could be adjusted by adding the spatial residual.

5 Discussion

In this paper we have considered a spatially-correlated response variable and a set of highly cor-
related covariates. We have extended the profile regression model, a Bayesian clustering method
used to deal with collinearity in the predictors, to account for spatial correlation adding a spatial
conditionally autoregressive term.

We have applied our method to explain the relationship between air pollution and social de-
privation in Greater London. The Index of Multiple Deprivation is commonly used as a proxy
for deprivation, as its domains usually cannot be analysed individually due to the high correlation
between them. We have illustrated how profile regression can produce meaningful and useful re-
sults which shed light on the complex non linear relationship between pollution and the different
domains.
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We want to stress that we are not framed in a standard regression approach, where the interest
is to estimate the effect of each predictor on the outcome, as we do not attempt to explain the
level of air pollution through the IMD domains. On the other hand through cluster assignment the
profile regression is able to disentangle the complex relationship between IMD and air pollution;
this method has the added benefit of providing readily available prediction estimates which can be
used to evaluate how the response could change for specific combinations of the predictors, and
which could be used to evaluate the effect of policies.

A limitation of our model is that in its present formulation the spatial structure is not included
on the cluster allocation, thus it accounts for local spatial dependency in the response, but not in
the covariates, which is an extension we are going to work on in the future.
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A Sampling for the spatial ICAR parameters

We include details of the sampling algorithm for the spatial ICAR parameters for Gaussian and
Poisson distributed response. We have implemented both in the R package PReMiuM.

A.1 Gaussian response

The conditional distribution for ui is given by

log(p(ui|u−i,β,θ, σ2
Y , Zi, τ, Yi,Wi, Ti)) ∝ log p(Yi|ui,β, θ, Zi, σ2

Y ,Wi, Ti) + log p(ui|u−i, τ)

∝ − 1

2σ2
Y

(Yi − (θZi +Wiβ + ui))
2 − 1

2
τni(ui − ūi)2

∝ − 1

2σ2
i

(ui −mi)
2

with 
mi =

1

σ2
Y

(Yi−θZi−Wiβ)−τniūi
1

σ2
Y

+τni

σ2
i = 1

1

σ2
Y

+τni

with , ūi = 1
ni

∑
j∈ρi uj ρi is the set of neighbours of i. Thus, for Normal response the prior is

conjugated, the conjugated complete conditional distribution is Normal with mean mi and variance
σ2
i . The conditional distribution for τ is given by

log(p(τ |u)) = (aτ +
n− 1

2
− 1) log(τ)− τ(bτ +

1

2
uTPu)

Thus τ ∼ Gamma(aτ + n−1
2 , bτ + 1

2u
TPu).
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A.2 Poisson response

For Poisson response, suitable for count data, the likelihood is given by

fY (yi|zi = c, θc,Λ,Wi) = p(Yi|zi = c, θc,β, ui,Wi) =
µYii
Yi!

exp{−µi},

where each individual i is associated with an expected offset Ei,

µi = Ei exp{λi}, for λi = θZi + β>Wi.

As for the Gaussian response, the parameters u = (u1, · · · , un) ∼ N(0, τP) with P = {Pij} a
precision matrix such that

Pij =

{
ni if i = j

−I{i ∼ j} if i 6= j

where ni is the number of neighbours of subject i, I is the indicator function and i ∼ j indicates
that regions i and j are neighbours. The prior of τ is given by

τ ∼ Gamma(aτ , bτ )

such that
E(τ) =

aτ
bτ

and Var(τ) =
aτ
b2τ
.

The conditional distribution for ui is given by

log(p(ui|u−i,β, θ, Z, τ, Y )) = Yiui − Ei exp(Xiβ + θZi + ui)−
1

2
τni(ui − ūi)2

with ūi = 1
ni

∑
j∈ρi uj and ρi is the set of neighbours of i. We implemented an adaptive rejection

sampler for ui. The conditional distribution for τ is given by

log(p(τ |u)) = (aτ +
n− 1

2
− 1) log(τ)− τ(bτ +

1

2
uTPu).

Thus τ ∼ Gamma(aτ + n−1
2 , bτ + 1

2u
TPu).
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