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1. Introduction

The comparison and analysis of geometric shapes plays a central role in many applications.
A particularly important class of shapes is the space of curves, which is used to model
applied problems in medical imaging [43, 44], object tracking [40, 41], computer animation
[8, 17], speech recognition [39], biology [23, 38], and many other fields [6, 22].

In this article we consider the space Imm(S1,Rd) of closed, regular (or immersed) curves
in Rd as well as some quotients of this space by reparametrizations and Euclidean motions.
These spaces of shapes are inherently nonlinear. To make standard methods of statistical
analysis applicable, one can linearize the space locally around each shape. This can be
achieved by introducing a Riemannian structure, which describes both the global nonlin-
earity of the space as well as its local linearity. Over the past decade Riemannian shape
analysis has become an active area of research in pure and applied mathematics. Driven by
applications, a variety of different Riemannian metrics has been used.

An important class of metrics are Sobolev metrics. These metrics can be defined initially
on the space Imm(S1,Rd) and then induced on quotients of this space by requiring the
projections to be Riemannian submersions (see Def. 2.1 and Thm. 2.7). Recently Sobolev
metrics of order two were shown to possess much nicer properties than metrics of lower order:
the geodesic distance is non-degenerate, the geodesic equation is globally well-posed, any
two curves in the same connected component can be connected by a minimizing geodesic,
the metric completion consists of all H2-immersions, and the metric extends to a strong
Riemannian metric on the metric completion [14, 15].

Numerical methods for the statistical analysis of shapes under second order metrics are,
however, still largely missing. This is in contrast to first order metrics, where isometries to
simpler spaces led to explicit formulas for geodesics under many parameter configurations
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of the metric [5, 19, 37, 45]. For certain H2-metrics an analogous approach was developed
in [7]. Moreover, the geodesic boundary value problem under second order Finsler metrics
on the space of BV 2-curves was implemented numerically in [27]. For general second order
Sobolev metrics on spaces of unparametrized curves a numerical framework is, however, still
lacking. This is the topic of this paper.

We present a numerical implementation of the initial and boundary value problems for
geodesics under second order Sobolev metrics.1 Our implementation is based on a discretiza-
tion of the Riemannian energy functional using B-splines. The boundary value problem for
geodesics is solved by a standard minimization procedure on the set of discretized paths and
the initial value problem by discrete geodesic calculus [33]. Our approach is general in that
it allows to factor out reparametrizations and rigid transformations. Moreover, it involves
no restriction on the parameters of the metric and could be applied to other, higher-order
metrics, as well.

In future work our framework could be applied to other spaces of mappings like manifold-
valued curves, embedded surfaces, or more general spaces of immersions (see [1, 10] for
details and [6] for a general overview).

2. Sobolev metrics on spaces of curves

2.1. Notation

The space of smooth, regular curves with values in Rd is

Imm(S1,Rd) =
{
c ∈ C∞(S1,Rd) : ∀θ ∈ S1, c′(θ) 6= 0

}
, (1)

where Imm stands for immersions. We call such curves parametrized to distinguish them
from unparametrized curves defined in Sect. 2.3. The space Imm(S1,Rd) is an open subset
of the Fréchet space C∞(S1,Rd) and therefore can be considered as a Fréchet manifold. Its
tangent space Tc Imm(S1,Rd) at any curve c is the vector space C∞(S1,Rd) itself. We denote
the Euclidean inner product on Rd by 〈·, ·〉. Differentiation is sometimes denoted using
subscripts as in cθ = ∂θc = c′. Moreover, for any fixed curve c, we denote differentiation
and integration with respect to arc length by Ds = ∂θ/|cθ| and ds = |cθ|dθ, respectively. A
path of curves is a mapping c : [0, 1]→ Imm(S1,Rd); its velocity is denoted by ct = ∂tc = ċ.

2.2. Parametrized curves

In this article we study the following class of weak Riemannian metrics on Imm(S1,Rd).

Definition 2.1. A second order Sobolev metric with constant coefficients on Imm(S1,Rd)
is a weak Riemannian metric of the form

Gc(h, k) =

∫
S1

a0〈h, k〉+ a1〈Dsh,Dsk〉+ a2〈D2
sh,D

2
sk〉ds , (2)

where h, k ∈ Tc Imm(S1,Rd), and aj ∈ R are constants with a0, a2 > 0 and a1 ≥ 0. If a2 = 0
and a1 > 0 it is a first order metric and if a1 = a2 = 0 it is a zero order or L2-metric.

1Our code can be downloaded from https://github.com/h2metrics/h2metrics.git.
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Note that the symbols Ds and ds hide the dependency of the Riemannian metric on the
base point c. Expressing derivatives in terms of θ instead of arc length, one has

Gc(h, k) =

∫ 2π

0

a0|c′|〈h, k〉+
a1

|c′|
〈h′, k′〉+

a2

|c′|7
〈c′, c′′〉2〈h′, k′〉

− a2

|c′|5
〈c′, c′′〉

(
〈h′, k′′〉+ 〈h′′, k′〉

)
+

a2

|c′|3
〈h′′, k′′〉dθ .

(3)

In the Riemannian setting the length of a path c : [0, 1]→ Imm(S1,Rd) is defined as

L(c) =

∫ 1

0

√
Gc(t)(ct(t), ct(t)) dt , (4)

and the geodesic distance between two curves c0, c1 ∈ Imm(S1,Rd) is the infimum of the
lengths of all paths connecting these curves, i.e.,

dist(c0, c1) = inf
c
{L(c) : c(0) = c0, c(1) = c1} .

On finite-dimensional manifolds the topology induced by the geodesic distance coincides
with the manifold topology by the Hopf–Rinow theorem. On infinite-dimensional manifolds
with weak Riemannian metrics this is not true anymore. For example, the geodesic distance
induced by the L2-metric on curves vanishes identically [2, 25]. On the other hand, first and
second order metrics overcome this degeneracy, as the following result of [25, 26] shows.

Theorem 2.2. The geodesic distance of first and second order metrics on Imm(S1,Rd)
separates points, i.e., dist(c0, c1) > 0 holds for all c0 6= c1.

Geodesics are locally distance-minimizing paths. They can be described by a partial
differential equation, called the geodesic equation. It is the first order condition for minima
of the energy functional

E(c) =
1

2

∫ 1

0

Gc(t)(ct(t), ct(t)) dt . (5)

Recently some local and global existence results for geodesics of Sobolev metrics were shown
in [15, 14, 26]. We summarize them here since they provide the theoretical underpinnings
for the numerical methods presented in this paper.

Theorem 2.3. The geodesic equation of second order metrics, written in terms of the
momentum p = |c′|(a0ct − a1D

2
sct + a2D

4
sct), is given by

∂tp =− a0

2
|cθ|Ds(〈ct, ct〉Dsc) +

a1

2
|cθ|Ds(〈Dsct, Dsct〉Dsc)

− a2

2
|cθ|Ds(〈D3

sct, Dsct〉Dsc) +
a2

2
|cθ|Ds(〈D2

sct, D
2
sct〉Dsc) . (6)

For any initial condition (c0, u0) ∈ T Imm(S1,Rd) the geodesic equation has a unique so-
lution, which exists for all time. In contrast, the geodesic equation of first order Sobolev
metrics is locally, but not globally, well-posed.

Remark 2.4. The choice of parameters a0, a1, and a2 of the Riemannian metric can have a
large influence on the resulting optimal deformations. We illustrate this in Fig. 1, where we
show the geodesic between a fish-like and a tool-like curve for various choices of parameters.
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Figure 1: Influence of the constants in the metric on geodesics between a fish and a tool
in the space of unparametrized curves. The metric parameter a1 is set to zero,
whereas the parameter a2 is increased by a factor 10 in the second, a factor 100
in the third, and a factor 1000 in the fourth column. The corresponding geodesic
distances are 135.65, 162.35, 229.26 and 451.9. Note that since we also optimize
over translations and rotations of the target curve, the position in space varies.

For second order metrics it is possible to compute the metric completion of the space of
smooth immersions. We introduce the Banach manifold of Sobolev immersions

I2(S1,Rd) =
{
c ∈ H2(S1,Rd) : ∀θ ∈ S1, c′(θ) 6= 0

}
. (7)

By the Sobolev embedding theorem this space is well-defined and an open subset of the
space of all C1-immersions. It has been shown in [9, 14] that I2(S1,Rd) coincides with the
metric completion of the space of smooth immersions:

Theorem 2.5. The metric completion of the space Imm(S1,Rd) endowed with a second
order Sobolev metric is I2(S1,Rd).

2.3. Unparametrized curves

In many applications curves are considered equal if they differ only by their parametrization,
i.e., we identify the curves c and c ◦ ϕ, where ϕ ∈ Diff(S1) is a reparametrization. The
reparametrization group Diff(S1) is the diffeomorphism group of the circle,

Diff(S1) =
{
ϕ ∈ C∞(S1, S1) : ϕ′ > 0

}
,

which is an infinite-dimensional regular Fréchet Lie group [21]. Reparametrizations act on
curves by composition from the right, i.e., c ◦ ϕ is a reparametrization of c. The space

Bi(S
1,Rd) = Imm(S1,Rd)/Diff(S1) ,

of unparametrized curves is the orbit space of this group action. This space is not a manifold;
it has singularities at any curve c with nontrivial isotropy subgroup [16]. We therefore restrict
ourselves to the dense open subset Immf (S1,Rd) of curves upon which Diff(S1) acts freely
and define

Bi,f (S1,Rd) = Immf (S1,Rd)/Diff(S1) .

This restriction, albeit important for theoretical reasons, has no influence on the practical
applications of Sobolev metrics, since Bi,f (S1,Rd) is open and dense in Bi(S

1,Rd). We have
the following result concerning the manifold structure of the orbit space and the descending
properties of Sobolev metrics [10, 16, 26].
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Theorem 2.6. The space Bi,f (S1,Rd) is a Fréchet manifold and the base space of the
principal fibre bundle

π : Immf (S1,Rd)→ Bi,f (S1,Rd) , c 7→ c ◦Diff(S1) ,

with structure group Diff(S1). A Sobolev metric G on Immf (S1,Rd) induces a metric on
Bi,f (S1,Rd) such that the projection π is a Riemannian submersion.

The induced Riemannian metric on Bi,f (S1,Rd) defines a geodesic distance, which can
also be calculated using paths in Immf (S1,Rd) connecting c0 to the orbit c1 ◦Diff(S1), i.e.,
for π(c0), π(c1) ∈ Bi,f (S1,Rd) we have,

dist
(
π(c0), π(c1)

)
= inf

{
L(c) : c(0) = c0, c(1) ∈ c1 ◦Diff(S1)

}
.

To relate the geometries of Imm(S1,Rd) and Bi,f (S1,Rd), one defines the vertical and
horizontal subspaces of Tc Immf (S1,Rd),

Verc = ker(Tcπ) , Horc = (Verc)
⊥,Gc .

As shown in [26] they form a decomposition of Tc Immf (S1,Rd),

Tc Immf (S1,Rd) = Verc⊕Horc ,

as a direct sum. More explicitly,

Verc =
{
g.vc ∈ Tc Immf (S1,Rd) : g ∈ C∞(S1)

}
Horc =

{
k ∈ Tc Immf (S1,Rd) : 〈a0k − a1D

2
sk + a2D

4
sk, vc〉 = 0

}
,

with vc = Dsc the unit tangent vector to c.
Geodesics on Bi,f (S1,Rd) can be lifted to horizontal geodesics on Immf (S1,Rd) and,

conversely, horizontal geodesics on Imm(S1,Rd) project down to geodesics on Bi,f (S1,Rd).
The space Bi(S

1,Rd) inherits some of the completeness properties of Imm(S1,Rd). To
formulate these properties we introduce the group D2(S1) of H2-diffeomorphisms and the
corresponding shape space of Sobolev immersions,

B2(S1,Rd) = I2(S1,Rd)/D2(S1) .

The structure of this space is explained in detail in the article [14], where the following
completeness result is proven.

Theorem 2.7. Let G be a second order Sobolev metric with constant coefficients. Then the
space

(
B2(S1,Rd),dist

)
, where dist is the quotient distance induced by

(
I2(S1,Rd),dist

)
, is

a complete metric space, and it is the metric completion of
(
Bi,f (S1,Rd),dist

)
.

2.4. Euclidean motions

Curves modulo Euclidean motions are a natural object of consideration in many applica-
tions. The Euclidean motion group SE(d) = SO(d) n Rd is the semi-direct product of the
translation group Rd and the rotation group SO(d). These groups act on Imm(S1,Rd) by
composition from the left. The metric (3) is invariant under these group actions,

GR.c+a(R.h,R.k) = Gc(h, k) ∀(R, a) ∈ SE(d) .
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As in the previous section we obtain an induced Riemannian metric on the quotient space

S(S1,Rd) = Immf (S1,Rd)/Diff(S1)× SE(d) = Bi,f (S1,Rd)/SE(d) ,

such that the projection π : Immf (S1,Rd)→ S(S1,Rd) is a Riemannian submersion. Note
that the left action of SE(d) commutes with the right action of Diff(S1) and hence the order
of the quotient operations does not matter. The induced geodesic distance is given by the
infimum

dist
(
π(c0), π(c1)

)
= inf

{
L(c) : c(0) = c0, c(1) ∈ π(c1) = SE(d).c1 ◦Diff(S1)

}
,

with the infimum being taken over paths c : [0, 1]→ Imm(S1,Rd).

Remark 2.8. The Sobolev metric (3) is not invariant with respect to scalings. However,
this lack of invariance can be addressed by introducing weights depending on the length `c
of the curve c. The modified metric

G̃c(h, k) =

∫
S1

a0

`3c
〈h, k〉+

a1

`c
〈Dsh,Dsk〉+ a2`c〈D2

sh,D
2
sk〉ds

is invariant with respect to scalings. It induces a metric on the quotient space S(S1,Rd)/R+,
where R+ is the scaling group acting by multiplication (λ, c) 7→ λ.c on curves.

3. Discretization

In order to numerically compute geodesics, the infinite-dimensional space of curves must
be discretized. The method we choose is standard: we construct an appropriate finite-
dimensional function space and perform optimization therein. We choose B-splines among
the many possible options because B-splines and their derivatives have piecewise polynomial
representations and can be evaluated efficiently. This permits fast and simple computation
of the energy functional and its derivatives. Furthermore, in contrast to standard finite-
element discretization, it is possible to control the global regularity of the functions. For
details regarding B-splines, their definition, efficient computations, etc., we refer to [35] and
the vast literature on the subject.

For simplicity, we shall work only with simple B-splines, i.e., splines where all interior
knots have multiplicity one. Hence the splines have maximal regularity at the knots. We
will define splines of degrees nt and nθ in the variables t ∈ [0, 1] and θ ∈ [0, 2π], respectively.
The corresponding numbers of control points are denoted by Nt and Nθ. For t we use a
uniform knot sequence on the interval [0, 1] with full multiplicity at the boundary knots:

∆t = {ti}2nt+Nti=0 , ti =


0 0 ≤ i < nt
i− nt
Nt

nt ≤ i < nt +Nt

1 nt +Nt ≤ i ≤ 2nt +Nt .

For θ we want the splines to be periodic on the interval [0, 2π]. Therefore we choose knots

∆θ = {θj}2nθ+Nθ
j=0 , θj =

j − nθ
2πNθ

, 0 ≤ j ≤ 2nθ +Nθ .
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The corresponding normalized B-spline basis functions are denoted by Bi(t) and Cj(θ). Note
that all interior knots have multiplicity one, i.e., the splines are simple. Therefore, they have
maximal regularity at the knots,

Bi ∈ Cnt−1([0, 1]) , Cj ∈ Cnθ−1(S1) , i = 1, . . . , Nt , j = 1, . . . , Nθ .

Let SntNt denote the orthogonal projection fromHnt([0, 1]) onto the span of the basis functions

Bi. Similarly, let SnθNθ denote the orthogonal projection from Hnθ (S1) onto the span of the
basis functions Cj . Then

lim
Nt→∞

‖SntNtf − f‖Hnt ([0,1]) = 0 , lim
Nθ→∞

‖SnθNθg − g‖Hnθ (S1) = 0 ,

holds for each f ∈ Hnt([0, 1]) and each g ∈ Hnθ (S1). This is a well-known result on the
approximation power of one-dimensional splines (c.f. Lem. A.4); a detailed analysis can be
found in [35].

The generalization of this statement to multiple dimensions involves tensor product splines
and mixed-order Sobolev spaces. Tensor product splines are linear combinations of Bi⊗Cj ,
where the basis functions Bi are interpreted as functions of t and Cj as functions of θ. To
be explicit, a path of curves is represented as a tensor product B-spline with control points
ci,j ∈ Rd as follows:

c(t, θ) =

Nt∑
i=1

Nθ∑
j=1

ci,jBi(t)Cj(θ) . (8)

Sobolev spaces of mixed order are Hilbert spaces defined for each k, ` ∈ N as

Hk,`([0, 1]× S1) =
{
f ∈ L2([0, 1]× S1) : ∃f (k,0), f (0,`), f (k,`) ∈ L2([0, 1]× S1)

}
,

〈f, g〉Hk,` = 〈f, g〉L2 + 〈f (k,0), g(k,0)〉L2 + 〈f (0,`), g(0,`)〉L2 + 〈f (k,`), g(k,`)〉L2 .
(9)

Function spaces of this type were first defined in [28, 29]. We refer to [42] and [34] for
detailed expositions and further references. As before we define for each number of control
points Nt, Nθ the spline approximation operator Snt,nθNt,Nθ

to be the orthogonal projection from

Hnt,nθ ([0, 1] × S1) onto the span of the tensor product splines Bi ⊗ Cj . It can be shown
that Snt,nθNt,Nθ

= SntNt ⊗ S
nθ
Nθ

.

Lemma 3.1. For each nt ≥ k, nθ ≥ ` and each c ∈ Hk,`([0, 1]× S1),

lim
Nt,Nθ→∞

‖c− Snt,nθNt,Nθ
c‖Hk,`([0,1]×S1) = 0 .

The theorem is proven in App. A by showing that Hnt,nθ ([0, 1] × S1) is isometrically
isomorphic to the Hilbert space tensor product of Hnt([0, 1]) and Hnθ (S1).

3.1. The energy functional

The energy of a path of curves c : [0, 1]× S1 → Rd is given by

E(c) =

∫ 1

0

Gc(ċ, ċ) dt =

∫ 1

0

∫ 2π

0

a0|c′|〈ċ, ċ〉+
a1

|c′|
〈ċ′, ċ′〉+

a2

|c′|7
〈c′, c′′〉2〈ċ′, ċ′〉

− 2a2

|c′|5
〈c′, c′′〉〈ċ′, ċ′′〉+

a2

|c′|3
〈ċ′′, ċ′′〉dθ dt ,

(10)
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as can be seen by combining (3) and (5). The energy functional can be extended to non-
smooth curves as follows. Let U denote the set of all curves c ∈ C0,1([0, 1]×S1) with nowhere
vanishing spatial derivative, i.e., c′(t, θ) = ∂θc(t, θ) 6= 0 holds for all (t, θ) ∈ [0, 1]× S1. The
space H1,2([0, 1] × S1) embeds continuously into C0,1([0, 1] × S1) by Lem. A.3. It follows
that U is an open subset of H1,2([0, 1]× S1), and the energy functional (10) is well-defined
for all c ∈ U . The following lemma shows that the energy of a spline tends to the energy of
the approximated curve as the number of control points tends to infinity.

Lemma 3.2. If nt ≥ 1 and nθ ≥ 2, then

lim
Nt,Nθ→∞

E(Snt,nθNt,Nθ
c) = E(c)

holds for each c ∈ U .

Proof. By Lem. 3.1 the spline approximations Snt,nθNt,Nθ
c converge to c in H1,2([0, 1] × S1).

As U is open, E(Snt,nθNt,Nθ
c) is well-defined for Nt, Nθ sufficiently large. The convergence

E(Snt,nθNt,Nθ
c)→ E(c) follows from the H1,2-continuity of the energy functional.

To discretize the integrals in the definition of the energy functional we use Gaussian
quadrature with mt and mθ quadrature points on each interval between consecutive knots.
The total number of quadrature points is therefore Mt = mtNt in time and Mθ = mθNθ in
space, and the discrete approximations of the Lebesgue measures on [0, 1] and S1 are

µmtNt =

Mt∑
i=1

wiδt̄i , νmθNθ =

Mθ∑
j=1

ωjδθ̄j ,

where wi, ωj are the Gaussian quadrature weights and t̄i, θ̄j the Gaussian quadrature points.
We define the discretized energy Emt,mθNt,Nθ

(c) of a curve c ∈ C1,2([0, 1]×S1)∩U to be given by
the right-hand side of (10) with dtdθ replaced by µmtNt (dt)ν

mθ
Nθ

(dθ). The following theorem
shows that the convergence result of Lem. 3.2 also applies to the discretized energy functional
provided that the curve is smooth enough.

Theorem 3.3. If nt ≥ 2, nθ ≥ 3, and mt,mθ ≥ 1, then

lim
Nt,Nθ→∞

Emt,mθNt,Nθ
(Snt,nθNt,Nθ

c) = E(c)

holds for each c ∈ U ∩H2,3([0, 1]× S1).

Proof. The total error can be decomposed into a spline approximation error and a quadrature
error:

|Emt,mθNt,Nθ
(Snt,nθNt,Nθ

c)− E(c)| ≤ |Emt,mθNt,Nθ
(Snt,nθNt,Nθ

c)− Emt,mθNt,Nθ
(c)|+ |Emt,mθNt,Nθ

(c)− E(c)| . (11)

To show that the first summand on the right-hand side tends to zero, note that the spline
approximations Snt,nθNt,Nθ

c converge to c in H2,3([0, 1]× S1) by Lem. 3.1. They also converge

in C1,2([0, 1] × S1) by Lem. A.3. Let F (c) denote the integrand in (10). Then F is locally
Lipschitz continuous when seen as a mapping from U ∩ C1,2([0, 1] × S1) to C([0, 1] × S1).
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Figure 2: Curves that are used in the remainder of the section to test convergence of the
proposed algorithms: circle, wrap, 3- and 4-bladed propellers without and with
noise, and two corpus callosum shapes.2

Let L denote the Lipschitz constant of F near c. Then the first summand in (11) can be
estimated for sufficiently large Nt, Nθ via

|Emt,mθNt,Nθ
(Snt,nθNt,Nθ

c)− Emt,mθNt,Nθ
(c)| ≤

∫∫
|F (Snt,nθNt,Nθ

c)− F (c)|µmtNt ν
mθ
Nθ

≤ L‖Snt,nθNt,Nθ
c− c‖C1,2([0,1]×S1) → 0 .

It remains to show that the second summand in (11) tends to zero. As the Gaussian
quadrature rules µmtNt and νmθNθ are of order mt,mθ ≥ 1, there is K > 0 such that the

following estimates hold for all f ∈ C1([0, 1]) and g ∈ C1(S1):∫
[0,1]

f(t)
(
µmtNt (dt)− dt

)
≤ KN−1

t ‖f ′‖C([0,1]) ,

∫
S1

g(θ)
(
νmθNθ (dθ)− dθ

)
≤ KN−1

θ ‖g
′‖C(S1) .

See e.g. [13, Thm. 4.3.1] for this well-known result. Therefore, the second summand in (11)
satisfies

|Emt,mθNt,Nθ
(c)− E(c)| =

∣∣∣∣∫∫ F (c)(t, θ)(µmtNt (dt)ν
mθ
Nθ

(dθ)− dtdθ)

∣∣∣∣
≤
∣∣∣∣∫∫ F (c)(t, θ)

(
µmtNt (dt)− dt

)
νmθNθ (dθ)

∣∣∣∣+

∣∣∣∣∫∫ F (c)(t, θ) dt
(
νmθNθ (dθ)− dθ

)∣∣∣∣
≤ KN−1

t ‖∂tF (c)‖C([0,1]×S1) +KN−1
θ ‖∂θF (c)‖C([0,1]×S1) → 0 .

(12)

This shows that the total error (11) tends to zero as Nt, Nθ tend to infinity.

To confirm this theoretical result, we run a series of numerical experiments to test the
convergence of the discrete energy, whose results are displayed in Fig. 3. The set of basic
curves that we will use throughout the whole section in all numerical experiments is displayed
in Fig. 2.

3.2. Boundary value problem for parameterized curves

Solving the geodesic boundary problem means, for given boundary curves c0 and c1, to find
a path c which is a (local) minimum of the energy functional (5) among all paths with the
given boundary curves. We will assume that the curves c0, c1 are discretized, i.e., given as
linear combinations of the basis functions Cj . Should the curves be given in some other
form, one would first approximate them by splines using a suitable approximation method.

2The acquisition of the corpus callosum shapes is described in [18].
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Figure 3: Convergence of the discrete energy: relative energy differences for increasing
number of control points of the non-linear path c(t, θ) = c0(θ) sin(1 − tπ/2)) +
c1(θ) sin(tπ/2) connecting the circle c0 to the wrap c1. Left: varying Nt with fixed
nθ = 4, Nθ = 60. Right: varying Nθ and fixed nt = 3, Nt = 20.

The choice of full multiplicity for the boundary knots (in t) implies that for t ∈ {0, 1} and
a spline path c the identity (8) becomes

c(0, θ) =

Nθ∑
j=1

c1,jCj(θ) , c(1, θ) =

Nθ∑
j=1

cNt,jCj(θ) .

If the controls c1,j and cNt,j are fixed, then (8) defines a family of paths between between

the boundary curves c0(θ) =
∑Nθ
j=1 c1,jCj(θ) and c1(θ) =

∑Nθ
j=1 cNt,jCj(θ). The family is

indexed by the remaining control points c2,j , . . . , cNt−1,j . Discretizing the energy functional
as described in Sect. 3.1 transforms the geodesic boundary value problem to the finite-
dimensional optimization problem

argmin Ediscr(c2,1, . . . , cNt−1,Nθ ) .

where Ediscr denotes the discretized energy functional Emt,mθNt,Nθ
applied to the spline defined

by the control points ci,j . This finite dimensional minimization problem can be solved by
conventional black-box methods. To speed up the optimization we analytically calculated
the gradient and Hessian of the energy functional E. We notice that

∂Ediscr

∂ci,j
= dEc(Bi(t)Cj(θ)) .

The formulas for the derivative and the Hessian are provided in App. B.

Remark 3.4. For gradient-based optimization methods to work one must provide an initial
path. An obvious choice for a path between two curves c0, c1 is the linear path (1− t)c0 +
tc1. This path can always be constructed, but it is not always a valid initial path for the
optimization procedure. For plane curves the space Imm(S1,R2) is disconnected with the
winding number of a curve determining the connected component [20]. The metric (2) is
defined only for immersions and a path leaving the space of immersion – for example as it

11



10
2

10
3

10
4

10
-8

10
-6

10
-4

10
-2

10
0

nt = 1 nθ = 3

nt = 1 nθ = 4

nt = 1 nθ = 5

nt = 2 nθ = 3

nt = 2 nθ = 4

nt = 2 nθ = 5

10
2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

nt = 1 nθ = 3

nt = 1 nθ = 4

nt = 1 nθ = 5

nt = 2 nθ = 3

nt = 2 nθ = 4

nt = 2 nθ = 5

Figure 4: Left/Right: Relative energy difference |Ei−Ei−1|
Ei−1

and L2-distance
‖ci−ci−1‖L2

‖ci−1‖L2
, for

the propeller shapes, as a function of increasing number of control points. The
values of (Nt, Nθ) are (10, 10), (15, 20), . . . , (60, 110).

passes from one connected component to another – will lead to a blow up of the energy (5).
Hence an initial path connecting two curves must not leave Imm(S1,Rd). For most examples
considered in this paper the linear path is a valid initial guess; for more complicated cases
a different strategy might need to be adopted.

In Fig. 4 we show the convergence of the solution of the boundary value problem for varying
number of control points. It is shown that we have convergence for both the optimal energy
and the L2-norm of the minimizing paths. In Fig. 5 we show that the geodesic distance
function is continuous: by adding a sinusoidal displacement in the normal direction to the
curves, the geodesic distance converges to 0 as the noise becomes smaller.

3.3. Boundary value problem for unparameterized curves

To numerically solve the boundary value problem on shape space, we first have to discretize
the diffeomorphism group. Using the identification of S1 with R/[0, 2π], diffeomorphisms
ϕ : S1 → S1 can be written as ϕ = Id +f , where f is a periodic function. Periodic functions
can be discretized as before using simple knot sequences with periodic boundary conditions.
This leads to the spline representation

ϕ(θ) =

Nϕ∑
i=1

ϕiDi(θ) =

Nϕ∑
i=1

(ξi + fi)Di(θ) .

Here Di are B-splines of degree nϕ, defined on a uniform periodic knot sequence, fi are the

control points of f , i.e., f(θ) =
∑Nϕ
i=1 fiDi(θ), and ξi are the Greville abscissas, i.e., control

points of the identity represented in a B-spline basis, Id =
∑Nϕ
i=1 ξiDi.

Due to the positivity of B-splines the condition ϕ′ > 0, which ensures that ϕ is a diffeo-
morphism, takes the form

fi−1 − fi < ξi − ξi−1 . (13)
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propeller shapes, perturbed by a sinusoidal displacement in the normal direction of
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This is a linear inequality constraint. For practical purposes we replace it by fi−1 − fi ≤
ξi − ξi−1 + ε with ε small. To speed up convergence, we introduce an additional variable
α ∈ R representing constant shifts of the reparametrization. The resulting redundancy is
eliminated by the constraint

Nϕ∑
i=1

fi = 0 , (14)

which ensures that the average shift of ϕ is 0.
To simplify the presentation we will assume in the following that d = 2, so that we can

parametrize rotations by the one-dimensional parameter β. We have to minimize the energy
functional (5) over all paths c : [0, 1] × [0, 2π] → R2, diffeomorphisms ϕ, rotations Rβ and
translations a, subject to the constraints

c(0, ·) = c0 , c(1, ·) = Rβ(c1 ◦ ϕ+ a) .

It is important to note that the reparametrization (c, ϕ) 7→ c ◦ ϕ does not preserve splines:
if c1 and ϕ are represented by splines, then the function c1 ◦ ϕ is in general not. To
overcome this difficulty we approximate the reparameterized curve c1 ◦ ϕ by a new spline
in each optimization step. This then leads to a finite-dimensional constrained minimization
problem

argminEdiscr(c2,1, . . . , cNt−1,Nθ , f1, . . . , fNϕ , α, β, a) , (15)

where f1, . . . , fNϕ are the controls used to construct the diffeomorphism ϕ, α is the constant
shift in the parametrization, β the rotation angle and a the translation vector.

From a mathematical point of view we would expect the geodesic distance between two
shapes to be symmetric, i.e., interchanging the curves c0 and c1 should have no effect on
the resulting geodesic distance. This is, however, only approximately true numerically. A
comparison of the geodesic distance for the forward and backward geodesics is depicted in
Fig. 6, and an example of a forward and backward geodesic is plotted in Fig. 7.

3.4. Initial value problem

To solve the geodesic initial value problem we use the variational discrete geodesic calculus
developed in [33]. For a discrete path (c0, . . . , cK), K ∈ N, one defines the discrete energy

EK(c0, . . . , cK) = K

K∑
k=1

W (ck−1, ck) ,

where W (c, c̃) is an approximation of dist(c, c̃)2. Since our Riemannian metric G is smooth,
it approximates the squared distance sufficiently well in the sense that Gc(c − c̃, c − c̃) −
dist(c, c̃)2 = O(dist(c, c̃)3), and we can take the approximation to be

W (c, c̃) =
1

2
Gc(c− c̃, c− c̃) .

We call (c0, . . . , cK) a discrete geodesic if it is a minimizer of the discrete energy with
fixed endpoints c0, cK . To define the discrete exponential map we consider discrete paths
(c0, c1, c2) consisting of three points. The discrete energy of such a path is

E2(c0, c1, c2) = Gc0(c1 − c0, c1 − c0) +Gc1(c2 − c1, c2 − c1) .
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Figure 7: Symmetry of the geodesic boundary value problem. For the circle and the wrap
the geodesic boundary value problem is solved forwards and backwards. To better
compare the results the geodesic is plotted backwards in time. The plot marker
visualize the optimal parametrization of the curves.

Given c0, c1, we define c2 = Expc0 c1 if (c0, c1, c2) is a discrete geodesic, in other words, if
c1 = argminE2(c0, ·, c2). Given an initial curve c0, an initial velocity v0, and a number K of
time steps, our solution of the geodesic initial value problem is cK = ExpcK−2

cK−1, where
the intermediate points c1, . . . , cK−1 are defined iteratively via

c1 = c0 +
1

K
v0 , c2 = Expc0 c1 , c3 = Expc1 c2 , . . . , cK−1 = ExpcK−3

cK−2 .

To compute a discrete geodesic we need to find minima of the function E2(c0, ·, c2). Dif-
ferentiating E2 with respect to c1 leads to the following system of nonlinear equations

2Gc0(c1 − c0, ·)− 2Gc1(c2 − c1, ·) +Dc1G·(c2 − c1, c2 − c1) = 0 .

This system has to be solved for c1, with the argument replaced by all basis functions
Cj defining the spline space. We use the solver fsolve in Matlab to solve this system of
equations. Some examples of discrete geodesics are depicted in Fig. 12. The discretizations
of the geodesic initial and boundary value problems are compatible as demonstrated in
Fig. 8.

3.5. Karcher mean

The Karcher mean c of a set {c1, . . . , cn} of curves is the minimizer of

F (c) =
1

n

n∑
j=1

dist(c, cj)
2 . (16)

It can be calculated by a gradient descent on (Imm(S1,Rd), G). Letting Logc cj denote the
Riemannian logarithm, the gradient of F with respect to G is [31]

gradG F (c) =
1

n

n∑
j=1

Logc cj . (17)
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Figure 8: Compatibility of the geodesic IVP and BVP with increasing Nt. On the left
one computes c1 = Expc0(v) for given c0, v and then solves the BVP for ṽ =
Logc0(c1). The plot shows the relative distance ‖v− ṽ‖c0/‖v‖c0 agains Nt. On the
right one computes v = Logc0(c1) for given c0, c1 and plots the relative difference
‖v − ṽ‖c0/ dist(c0, c1) between two consecutive (w.r.t. Nt) initial velocities v, ṽ
against Nt.

Fig. 9 illustrates the computation of the Karcher mean of 8 propeller shapes, which have all
been modified by adding a 10% uniform noise to their control points.

4. Shape analysis of HeLa cells

We used second order metrics to characterize the nuclear shape variation in HeLa cells. The
data consists of fluorescence microscope images of HeLa cell nuclei3 (87 images in total).
The acquisition of the images is described in [11].

3The dataset was downloaded from http://murphylab.web.cmu.edu/data.

Figure 9: Eight propellers with 10% uniform noise added to their control points, along with
their Karcher mean.
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Figure 10: Examples of HeLa cell nuclei and the spline representation of the boundary.

Figure 11: Geodesic between two cells (solid lines); the dashed line shows the exact endpoint
before reparametrization. The geodesic is computed between parametrized curves
with Nθ = 12 (left), unparametrized curves with Nθ = 12 (middle) and Nθ = 40
(right).

To extract the boundary of the nucleus we apply a thresholding method [30] to obtain a
binary image, and then we fit – using least squares – a spline with Nθ = 12 and nθ = 4 to
the longest 4-connected component of the thresholded image. This provides a good balance
between capturing shape details and not overfitting the image noise; see Fig. 10. Then we
rescale all curves by the same factor to arrive at an average length ¯̀

c = 2π. The choice
¯̀
c = 2π has the following nice property: if a curve c has `c = 2π and c has a constant speed

parametrization, then |c′| = 1, and the arc length derivative Dsh coincides with the regular
derivative h′. The scaling matters because the metric we work with is not scale invariant.
Had we decided to work with curves of a different average length we would have to change
the constants aj of the metric in order to arrive at the same results.

For the subsequent analysis we use splines with Nθ = 40 and nθ = 3. The increased
number of control points compared to the data acquisition allows us to preserve shape
information even after reparametrizing the curves. To parametrize the diffeomorphism group
we use splines with Nϕ = 20 and nϕ = 3. This leaves us with roughly 2 ·40−20−2−1 = 57
degrees of freedom to represent the population of 87 given shapes of cell nuclei. The influence
of the number of control points on the geodesic BVP can be seen in Fig. 11. All analysis is
performed modulo translations, rotations, and reparametrizations.

The choice of constants a0, a1, and a2 of the Riemannian metric has a significant impact
on the results; see Fig 14. One constant may be chosen freely, so we set a0 = 1. To simplify
the interpretation of the results, we set a1 = 0; our metric shall have no H1-part. This leaves
us with one more parameter, which we choose by looking at the L2- and H2-contributions to
the energy of geodesics between shapes in the dataset. For a geodesic c between two curves
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Figure 12: Geodesics from the mean in the first five principal directions. The curves show
geodesics at times −3,−2, . . . , 2, 3; the mean is shown in bold. One can see
characteristic deformations of the curve: expansion, stretching, compressing and
bending. The first row shows principal components calculated for curves modulo
reparametrizations; the second row for parametrized curves.

c0 and c1 these contributions are

dist(c0, c1)2 = EL2(c) + EH2(c) =

∫ 1

0

∫
S1

|ct|2 dsdt+ a2

∫
0

∫
S1

∣∣D2
sct
∣∣2 dsdt .

The relative contribution of the H2-term to the total energy is %H2 = EH2/(EL2 + EH2).
We denote the population mean and standard deviation of the variable %H2 by %̄H2 and
σ, respectively. The following table shows that the choices a2 = 2−12 ≈ 0.00024 and
a2 = 2−8 ≈ 0.0039 both lead to balanced energy contributions of the zero and second order
terms:

a2 = 2−12 , %̄H2 = 0.032 , σ = 0.027 ,

a2 = 2−8 , %̄H2 = 0.203 , σ = 0.119 .

We will use these parameter choices in our subsequent analysis. Note that from a physical
point of view the parameter a2 has units [m4], m being meters.

The average shape of the nucleus can be captured by the Karcher mean c̄. To solve
the minimization problem (16) for the Karcher mean of the 87 nuclei we use a conjugate
gradient method on the Riemannian manifold of curves as implemented in the Manopt
library [12]. For each choice of parameters the optimization is performed until the gradient
of the objective function F (c̄) satisfies ‖ gradG F (c̄)‖c̄ < 10−3.

Having computed the mean c̄, we represent each nuclear shape cj by the initial velocity
vj = Logc̄(cj) of the minimal geodesic from c̄ to cj . We perform principal component analysis
with respect to the inner product Gc̄ on the set of initial velocities {vj : j = 1, . . . , 87}.
Geodesics from the mean in the first five directions can be seen in Fig. 12. A projection of
the dataset onto the subspace spanned by the first two principal components is depicted in
Fig. 13.

For unparametrized curves and for the parameter choice a2 = 2−12 the first five principal
components explain 57.6%, 78.3%, 90.0%, 94.2% and 98.0% of the total variance; see Fig. 14.
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Figure 13: Cell nuclei projected to the plane in the tangent plane, spanned by the first two
principal components. The mean (in blue) is situated at the origin. The units on
the coordinate axes are standard deviations.

Under the choice a2 = 2−8 the first five principal components explain only 93.3% of the
variance as compared to 98.0% in the previous case. This demonstrates that approximation
power of the principal components depends on the choice of the metric. Fig. 14 also shows
that fewer principal components are needed to explain the same amount of variance when
the reparametrization group is factored out.

The results we obtain are comparable to those of [32], where diffeomorphic matching was
used to compare cells. It turns out that the mean shape with respect to our metrics is
symmetric, while the mean shape obtained in [32] is bent towards one side; see Fig. 14.
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A. Convergence of spline approximations

The Hilbert space tensor product Hk([0, 1])⊗̂H`(S1) is the completion of the algebraic tensor
product Hk([0, 1])⊗H`(S1) with respect to the uniform cross norm

β

(∑
i

fi ⊗ gi
)2

=
∑
i,j

〈fi, fj〉Hk([0,1])〈gi, gj〉H`(S1) . (18)

The following result connects the mixed order Sobolev space (9) to a Hilbert space tensor
product.
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Lemma A.1. Hk,`([0, 1]× S1) is isometrically isomorphic to Hk([0, 1])⊗̂H`(S1).

A similar result for Hk,`(R×R) is shown in [36, Thm. 2.1]. Our proof follows the lines of
[24, Thm. 1.39], where the result is shown for the case k = ` = 0.

Proof. Each tensor c =
∑
i fi⊗gi ∈ Hk([0, 1])⊗H`(S1) defines a function Jc ∈ Hk,`([0, 1]×

S1), via Jc(t1, t2) =
∑
i fi(t1)gi(t2). It is not hard to verify that J is an isometric embedding

of Hk([0, 1]) ⊗ H`(S1) in Hk,`([0, 1] × S1), i.e., β(c) = ‖c‖Hk,`([0,1]×S1). To complete the
proof, we show that J is onto. Being an isometry, the range of J is closed and so it suffices to
show that its orthogonal complement is trivial in Hk,`([0, 1]× S1). Let c ∈ Hk,`([0, 1]× S1)
and suppose that 〈c, f ⊗ g〉Hk,`([0,1]×S1) = 0 for all f ∈ Hk([0, 1]) and g ∈ H`(S1). Let

〈c, g〉H`(S1) denote the function t1 7→
∫
S1 c(t1, t2)g(t2)dt2. Then 〈c, g〉H`(S1) ∈ Hk(S1) with

∂kt1〈c, g〉H`(S1) = 〈∂kt1c, g〉H`(S1). It follows that

〈c, f ⊗ g〉Hk,`([0,1]×S1) = 〈f, 〈c, g〉H`(S1)〉Hk([0,1]) = 0 .

As f is arbitrary, it follows that 〈c, g〉H`(S1) vanishes at almost every t1. Similarly, since g

is arbitrary, c vanishes at almost every t1, t2. Therefore, c = 0 in Hk,`([0, 1]× S1).

Corollary A.2. The multiplicatively decomposable functions (t, θ) 7→ f(t)g(θ) = (f⊗g)(t, θ)
with f ∈ Hk([0, 1]), g ∈ H`(S1), span a dense subspace of Hk,`([0, 1]× S1).

Proof. This follows from the denseness of Hk([0, 1]) ⊗ H`(S1) in Hk([0, 1]) ⊗̂H`(S1) and
Lem. A.1.

The following lemma shows that the Sobolev embedding theorem in one dimension extends
to higher dimensions via tensor products.

Lemma A.3. For each k, ` ≥ 0, the space Hk+1,`+1([0, 1] × S1) is continuously embedded
in the space Ck,`([0, 1]× S1).

20



Proof. Let {fi} be an orthonormal basis of Hk+1([0, 1]) and {gj} an orthonormal basis of
H`+1(S1). Then {fi ⊗ gj} is an orthonormal basis of Hk+1([0, 1])⊗̂H`+1(S1). By Lem. A.1
this space is equal to Hk+1,`+1([0, 1] × S1). Therefore, any element in this space can be
expressed as c =

∑
i,j ci,jfi ⊗ gj for some ci,j ∈ R. By the Sobolev embedding theorem in

one dimension there exists C > 0 such that

‖∂kt ∂lθc‖2∞ =

∥∥∥∥∥∥
∑
ij

cij(∂
k
t fi)⊗ (∂lθgj)

∥∥∥∥∥∥
2

∞

≤
∑
ij

c2ij‖∂kθ fi‖2∞‖∂ltgj‖2∞

≤ C
∑
ij

c2ij‖fi‖2Hk+1([0,1])‖gj‖
2
H`+1(S1) = C‖c‖2Hk+1,`+1([0,1]×S1) .

Similar estimates hold for lower derivatives of c. This shows that the Ck,`-norm is bounded
by the Hk+1,`+1-norm.

To prove Lem. 3.1 we need a result on the approximation power of one-dimensional splines.

Lemma A.4. Let I = [0, 1] or I = S1, n, k ∈ N with n ≥ k, and f ∈ Hk(I). Then

lim
N→∞

‖f − SnNf‖Hk(I) = 0 .

Proof. The set of smooth functions in dense in Hk(I). Therefore, there is for each ε > 0
a function g ∈ C∞(I) such that ‖f − g‖Hk(I) < ε/2. If N is sufficiently large, there is a
spline h of order n defined on the uniform grid with N points such that ‖g−h‖Hk(I) < ε/2.
This follows from [35, Cor. 6.26]. By the best approximation property of the orthogonal
projection SnN ,

‖f − SnNf‖Hk(I) ≤ ‖f − h‖Hk(I) ≤ ‖f − g‖Hk(I) + ‖g − h‖Hk(I) < ε .

Since ε was arbitrary, this shows that SnNf → f in Hn(I) as N →∞.

Collecting these results we are able to prove Lem. 3.1.

Proof of Lem. 3.1. Let c ∈ Hk,`([0, 1] × S1) and ε > 0. By Cor. A.2 there exist functions
fi ∈ Hk([0, 1]) and gi ∈ H`(S1), i = 1, . . . , n, such that∥∥∥∥∥c−

n∑
i=1

fi ⊗ gi

∥∥∥∥∥
Hk,`([0,1]×S1)

< ε/2 .

By Lem. A.4 and by the fact that the tensor norm is a reasonable cross norm (i.e., ‖fi ⊗
gi‖Hk,`([0,1]×S1) ≤ ‖fi‖Hk([0,1])‖gi‖H`(S1)) it is possible to choose Nt and Nθ large enough
such that ∥∥∥∥∥

n∑
i=1

fi ⊗ gi −
n∑
i=1

SntNtfi ⊗ S
nθ
Nθ
gi

∥∥∥∥∥
Hk,`([0,1]×S1)

< ε/2 .

These two estimates and the best approximation property of the orthogonal projection
Snt,nθNt,Nθ

yield

∥∥∥c− Snt,nθNt,Nθ
c
∥∥∥
Hk,`([0,1]×S1)

≤

∥∥∥∥∥c−
n∑
i=1

SntNtfi ⊗ S
nθ
Nθ
gi

∥∥∥∥∥
Hk,`([0,1]×S1)

< ε .
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B. Derivatives of the energy functional

In this appendix we list the derivatives of the energy functional (5). The first derivative is

dEc(k) =

∫ 1

0

∫ 2π

0

t1〈c′, k′〉+ t2 (〈c′′, k′〉+ 〈c′, k′′〉) + t3〈ċ, k̇〉+ t4〈ċ′, k̇′〉

+ t5(〈ċ′′, k̇′〉+ 〈ċ′, k̇′′〉) + t6〈ċ′′, k̇′′〉dθ dt ,

with

t1 =
a0

|c′|
〈ċ, ċ〉 − a1

|c′|3
〈ċ′, ċ′〉 − 7

a2

|c′|9
〈c′, c′′〉2〈ċ′, ċ′〉+ 10

a2

|c′|7
〈c′, c′′〉〈ċ′, ċ′′〉 − 3

a2

|c′|5
〈ċ′′, ċ′′〉 ,

t2 = 2
a2

|c′|7
〈c′, c′′〉〈ċ′, ċ′〉 − 2

a2

|c′|5
〈ċ′, ċ′′〉 , t3 = 2a0|c′| , t4 = 2

a1

|c′|
+ 2

a2

|c′|7
〈c′, c′′〉 ,

t5 = −2
a2

|c′|5
〈c′, c′′〉 , t6 = 2

a2

|c′|3
.

The Hessian is

d2Ec(h, k) =

∫ 1

0

∫ 2π

0

w1〈c′, h′〉〈c′, k′〉

+ w2 (〈c′′, h′〉〈c′, k′〉+ 〈c′, h′〉〈c′′, k′〉+ 〈c′, h′′〉〈c′, k′〉+ 〈c′, k′′〉〈c′, h′〉)
+ w3(〈c′′, h′〉〈c′′, k′〉+ 〈c′, h′′〉〈c′, k′′〉+ 〈c′, h′′〉〈c′′, k′〉+ 〈c′, k′′〉〈c′′, h′〉)
+ w4(〈ċ, ḣ〉〈c′, k′〉+ 〈ċ, k̇〉〈c′, h′〉) + w5(〈ċ′, ḣ′〉〈c′, k′〉+ 〈ċ′, k̇′〉〈c′, h′〉)
+ w6(〈ċ′′, ḣ′〉〈c′, k′〉+ 〈ċ′′, k̇′〉〈c′, h′〉+ 〈ċ′, ḣ′′〉〈c′, k′〉+ 〈ċ′, k̇′′〉〈c′, h′〉)
+ w7(〈ċ′, ḣ′〉〈c′′, k′〉+ 〈ċ′, k̇′〉〈c′′, h′〉+ 〈ċ′, ḣ′〉〈c′, k′′〉+ 〈ċ′, k̇′〉〈c′, h′′〉)

+ w8

(
〈ċ′′, ḣ′〉〈c′′, k′〉+ 〈ċ′′, k̇′〉〈c′′, h′〉+ 〈ċ′, ḣ′′〉〈c′′, k′〉+ 〈ċ′, k̇′′〉〈c′′, h′〉

+ 〈ċ′′, ḣ′〉〈c′, k′′〉+ 〈ċ′′, k̇′〉〈c′, h′′〉+ 〈ċ′, ḣ′′〉〈c′, k′′〉+ 〈ċ′, k̇′′〉〈c′, h′′〉
)

+ w9(〈ċ′′, ḣ′′〉〈c′, k′〉+ 〈ċ′′, k̇′′〉〈c′, h′〉)
+ t1〈h′, k′〉+ t2 (〈h′′, k′〉+ 〈h′, k′′〉) + t3〈ḣ, k̇〉+ t4〈ḣ′, k̇′〉

+ t5

(
〈ḣ′′, k̇′〉+ 〈ḣ′, k̇′′〉

)
+ t6〈ḣ′′, k̇′′〉dθ dt ,

with

w1 = −a0
1

|c′|
〈ċ, ċ〉+ a1

3

|c′|5
〈ċ′, ċ′〉+ a2

63

|c′|11
〈c′, c′′〉2〈ċ′, ċ′〉

− a2
70

|c′|9
〈c′, c′′〉〈ċ′, ċ′′〉+ a2

15

|c′|7
〈ċ′′, ċ′′〉 ,

w2 = −a2
14

|c′|9
〈c′, c′′〉〈ċ′, ċ′〉+ a2

10

|c′|7
〈ċ′, ċ′′〉 , w3 = a2

2

|c′|7
〈ċ′, ċ′〉 , w4 = a0

2

|c′|
,

w5 = −a1
2

|c′|3
− a2

14

|c′|9
〈c′, c′′〉2 , w6 = a2

10

|c′|7
〈c′, c′′〉 , w7 = a2

4

|c′|7
〈c′, c′′〉 ,

w8 = −a2
2

|c′|5
, w9 = −a2

6

|c′|5
.
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