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Abstract

We present an extension of the computational homogenisation theory to cases where different

structural models are used at different scales and no energy potential can be defined at the

small scale. We observe that volumetric averaging, that is not applicable in such cases

unless similarities exist in the macro- and micro-scale models, is not a necessary prerequisite

to carry out computational homogenisation. At each material point of the macro-model

we replace the conventional representative volume element with a representative domain

element (RDE). To link the large- and small-scale problems we then introduce a linear

operator, mapping the smooth part of the small-scale displacement field of each RDE to the

large-scale strain field, and a trace operator to impose boundary conditions in the RDE. The

latter is defined based on engineering judgement, analogously to the conventional theory.

A generalised Hill’s condition, rather than being invoked, is derived from duality principles

and is used to recover the stress measures at the large scale. For the implementation in

a nonlinear finite-element analysis ‘control nodes’ and constraint equations are used. The

effectiveness of the procedure is demonstrated for three beam-to-truss example problems,

for which multi-scale convergence is numerically analysed.
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1 Introduction

Multi-scale methods are an increasingly used approach in a wide range of applications in com-

putational mechanics thanks to the continuous increase in computer memory, speed and power,

the impressive advances of hardware, software and algorithms for parallel computing and the

further developments of the underlying multi-scale homogenisation theories of the last decade,

particularly for nonlinear problems.

Many basic multi-scale methods have found their earliest expression in composites modelling

and associated statistical averaging techniques (for a survey of such techniques, see e.g. Hashin

[1]). Representative Volume Element (RVE) -based methods, first proposed by Hill [2], involve

the creation of a single representative model of a portion of a complex material or structure,

chosen and/or constructed such that its analysis yields accurate estimates of the large-scale

stress-strain behavioural parameters in the vicinity of any given point in the large-scale model.

RVEs are required to be large enough that they incorporate the heterogeneities (inclusions, voids,

etc.) on the scale at which they occur, but small enough that the ‘coarse-graining’ of the material

response does not lead to significant inaccuracies in the predicted behaviour of the large-scale

model.

A widely used development from RVE techniques leads to computational homogenisation

methods. In a finite-element-based parallel or concurrent computational homogenisation proce-

dure, strains resulting from an attempted displacement increment are calculated at each integra-

tion point in the large-scale model. Each set of strains at each integration point is imposed on

a separate RVE model and the resulting stresses are averaged over the RVE and returned to the

integration point in the large-scale model for residual calculation. Such methods are conceptu-

ally straightforward and can be applied to nonlinear problems [3, 4], though their efficiency in

localisation is variable and the computational expense of the nested solution procedure can be

considerable.

The displacement field in the RVE is typically decomposed into a smooth part and a locally

fluctuating part. A key aspect of the formulation is that the smooth part is directly linked to the

macro-strain, while boundary conditions are applied to the fluctuating part. Common boundary
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conditions choices include the so-called Taylor assumption of zero fluctuations, uniform dis-

placement, periodic displacement, uniform traction and mixed traction-displacement boundary

conditions [5, 6]. For typical applications, it has been shown that periodic boundary conditions

are more accurate for predicting bulk material behaviour than the uniform types [6, 7, 8, 9].

A concurrent computational homogenisation is a computationally expensive procedure, a

feature that is often aggravated by lack of convergence of the iterative procedure used at the

small-scale model, especially if the small-scale model incorporates nonlinear behaviour. For this

reason, a sub-stepping approach has been suggested by Perić et al. [10] to provide better estimates

of the RVE configuration.

Applications of computational homogenisation in the literature mostly involve transfer of

field quantities between scales where continuum models are used. In the so-called first-order

framework, Cauchy models are used at all scales and averaging principles are used to transfer

field quantities from one scale to the other. In particular, the macro-strain and macro-stresses

are assumed to be the average on the RVE of the corresponding micro-strain and micro-stresses.

A limitation of the first-order computational homogenisation method lies in the enforcement

of a uniform macro-strain across the RVE which may not be an adequate representation in

situations where strain localisation or fracture occurs. To remedy this, non-local continuum

models such as Cosserat or strain-gradient models may be used. Examples of such procedures are

given in the papers by Kouznetsova et al. [11] and Kaczmarczyk et al. [12], who use second-order

macro-continua and first-order micro-continua to investigate the effect of the micro-structure

size, and by Addessi et al. [13] and by Adessi and Sacco [14] who analyse masonry walls in the

framework of transformation field analysis using two-dimensional Cosserat continuum models for

large-scale modelling, while the small-scale model of masonry incorporates a nonlinear damage

contact-friction model for the mortar joint.

In these cases, the models used at either scale are not the same. Hence, to relate the defor-

mation at the micro-scale to the first and second order strain measure at the large scale, suitable

extensions of the averaging principle are formulated by Kouznetsova et al. [11] and Kaczmarczyk

et al. [12] whereas Adessi and Sacco used a least-square optimisation procedure to minimise the

3



difference between macro-displacement and the smooth field at the small scale. To recover the

stress measures at the large scale the Hill-Mandel condition, which states that the corresponding

micro- and macro- virtual works should be the same, is invoked. Since the models at both scales

are different but still both continuum, they are able to ultimately compute the stress tensors

at the macro-scale through integral expressions of the micro-stress field, either over the RVE

volume or on its boundary.

Examples of nonlinear computational homogenisation in which a continuum model is used at

the small scale while a structural model is used at the large scale is contributed by Geers et al. [15]

and Coenen et al. [16] who develop a formulation for heterogeneous thin sheets using continuum

shell elements at the macro-level and continuum elements at the micro-level. In this approach,

a second order approximation to the nonlinear deformation map is used, with components of

the deformation gradient and second deformation gradient identified as shell generalised strain

measures. Stress resultants are recovered from the detailed model by integration of the continuum

strains over the RVE transverse faces, equivalent to a form of volumetric averaging.

Multi-scale techniques have been developed to bridge atomic- and microscopic- scale repre-

sentations of materials. This requires linking continuum and atomistic models and therefore

also represents an example in which different types of model are used at different length scales.

Computational homogenisation principles can also be applied here. An example of this is demon-

strated by Samadikhah et al. [17] in the modelling of graphene membranes. In this article, com-

putational homogenisation relations were used to express atomic displacements as a function of

the macro-scale displacement field and deformation gradient. A total potential energy functional

is calculated by summing interatomic potentials calculated using the local displacement fluctu-

ation field. The sum of energy-conjugated atomic forces is used to calculate the microscopic

stress, via the principle of equivalence of micro- and atomic-scale internal work. This approach

clearly can only be used for problems where an energy functional exists.

An alternative approach to computational homogenisation, described by da Cruz et al. [18],

Hassani and Hinton [19], Guedes and Kikuchi [20] and others, is the asymptotic expansion

method. The two-scale asymptotic method expresses the displacement field as a power se-
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ries expansion with coefficients that are increasing powers of the scaling parameter (a constant

representing the ratio between characteristic length scales of the microscopic and macroscopic

problems), multiplying component displacement functions that are periodic with a period equal

to the RVE length. This converts the original boundary value problem into a pair of closed-form

boundary value problems to be solved sequentially for the first-order solution. Higher order peri-

odic components of the displacement may be calculated up to an arbitrary level of accuracy using

higher order equation sets resulting from the original boundary value problem (BVP) expansion.

For linear problems (used by, for example, Guedes and Kikuchi [20]), only one boundary value

problem needs to be solved at each scale (for a first order approximation): a small-scale simula-

tion to determine the homogenised elastic operator which completely characterises its behaviour,

and a large-scale simulation to address the problem of interest. RVE geometries, as for other

homogenisation methods, are usually parallelepipeds, though Ghosh et al. [21] adapts the tech-

nique to the Voronoi cell finite element method, which uses an irregular polygonal tessellation of

the plane, such that each macro-scale contains at most a single secondary-phase inclusion.

The asymptotic expansion method has also been extended to solve nonlinear problems. This

requires a nested solution scheme. Fish and Shek [22] present a three-scale nonlinear asymptotic

method solved using a specialised multi-scale Newton-Raphson solution algorithm, along with a

derivation of the associated error estimators.

Most of the work done on asymptotic expansion techniques expand the governing (contin-

uum) partial differential equations (PDE) and express the resulting equation sets in continuum

form. In this way, as in the case of computational homogenisation, homogenisation between the

same continuum models, rather than different continuum or structural models, is dominant. An

extension using a large-scale structural model includes the development for general linear peri-

odic beams in bending by Buannic and Cartraud [23]. Multi-scale algorithms for general (linear

and nonlinear) RVEs may also be developed using variational formulations by using the concept

of two-scale convergence. This approach has been explored by Terada and Kikuchi [24].

In this paper, we present a general extension of the conventional multi-scale homogenisation

theory, developed for the case when the same, typically continuum, models are used at either
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scale, to the general case when different and arbitrary structural models are used at each scale.

The necessity of such extended theory, which does not require the existence of an energy potential

at the small scale, emerged during the development of multi-scale models for flexible risers

[25, 26, 27]. The proposed formulation provides a general framework which can be applied to

a wide range of cases, including, among others, the cases of 2D or 3D truss structures that at

a very large scale can be modelled as beams or shells, but also problems where higher-order

continua are used at the macro-scale and a Cauchy continuum model is used at the micro-scale,

such as for the second-order computational homogenisation. In all these cases, the conventional

theory based on strain and stress averaging is not applicable, at least, not directly, because its

implicit requirement is that the same formal model is used at both length scales, or, at least,

that it is possible to compute some local value that represents the macro-generalised-strain or

the macro-stress resultants on the RVE, that can be integrated over the remaining dimensions

of the RVE.

An original and more general theoretical justification of how the micro-scale BVP is defined

starting from the macro-strain is provided. Since our theory is not restricted to solid continua

we introduce at each point of the macro-domain a representative domain element (RDE) in-

stead of a RVE. We show that averaging principles are neither sufficient nor necessary to define

boundary conditions on the RDE and construct our extended theory by reformulating the donw-

scaling procedure, to obtain the micro-scale displacement field from the macro-strain, in terms

of general operators not dependent on the specific continuum or structural models used. The

up-scaling procedure to recover macro-stresses from the micro-stress field in each RDE is based

on a generalised Hill’s condition obtained from general duality principles of structural mechanics.

An application of this extended theory is presented for the fully nested (FE2) multi-scale

nonlinear analysis of a truss for which each member is treated as elasto-plastic. The relative

simplicity of this problem allows the fundamental theoretical contributions of the paper to be

highlighted and makes it possible to assess the effectiveness of the proposed approach by com-

parison of the results of the multi-scale method with those of direct numerical simulations. A

similar problem has previously been studied by Tollenaere and Caillerie [28]. An application of
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such a model could be in modelling auxetic foams, where analytical calculations are often used

to determine unit cell behaviour (see e.g. Smith et al. [29]), but a multi-scale approach could

bring benefits.

An outline of the paper is as follows: firstly, the theory of the first-order computational

homogenisation method is extended to a more general structural-structural procedure in a general

form (Section 2). This is followed in Section 3 by descriptions of the form of the large-scale

(Section 3.1) and small-scale (Section 3.2) models chosen for our specific application, the latter

including details of the implementation of the homogenisation procedure derived from theoretical

considerations. Numerical results and the validation of the multi-scale model predictions against

the results of direct numerical simulations are reported and discussed in Section 4. Finally,

summarising remarks on the method and its application are made, with a view to future further

developments.

2 Structural-structural homogenisation

2.1 Conventional computational homogenisation procedure

In this section we review the conventional two-scale computational homogenisation procedure

developed for the case where the same continuum-based model is used at both scales, using

the same continuum stress and strain measures. We conclude the section by explaining why the

formulation cannot be directly applied to the more general case when different models are used at

different scales, and by making a number of remarks which suggest and justify the generalisation

proposed in Section 2.2.

For simplicity, this review is limited to the case of the first-order homogenisation and small

strains and displacements. Higher-order and/or geometrically nonlinear formulations can be

obtained using similar arguments.

The starting point is the assumption of ‘separation of scales’, whereby at each point xM of

the macro-domain Ω under consideration a representative volume element (RVE) is postulated

to exist and to occupy a domain ΩRV E typically (but not necessarily) centred on xM , such that
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the RVEs associated with two points with arbitrary separation are treated as independent (even

if they overlap). The microscopic displacement um in the RVE is expressed as the sum of a

smooth component vm and a fluctuating component wm:

um(xm, xM ) = vm(xm, xM ) + wm(xm, xM ) (1)

where xm ∈ ΩRV E . The smooth component describes a displacement field in the RVE which is

linear in xm so that its associated strain is constant within ΩRV E and is equal to the macroscopic

strain εM (xM ):

εM (xM ) = ∇svm(xM ) (2)

where ∇s is the symmetric part of the gradient. Therefore, the microscopic strain εm can also

be decomposed as follows:

εm(xm, xM ) = ∇svm(xM ) +∇swm(xm, xM )

= εM (xM ) +∇swm(xm, xM ) (3)

The constitutive law and the equilibrium differential equations are then imposed on the RVE:
σm(xm, xM ) = σm[εm(xm, xM )]

divσm(xm, xM ) = 0

(4)

where for simplicity (and without loss of generality) we assume that inside the RVE there is no

significant fluctuation of the body forces, which therefore can be neglected.

The following assumption is then made:

εM (xM ) = εm(xM ) (5)

where the bar indicates the average over the RVE:

(•)m(xM ) =
1

ΩRV E

∫
ΩRV E

(•)m(xm, xM ) dΩRV E (6)

8



Integrating the microscopic strain εm over the RVE and using Equations (3) and (6) and the

Green theorem, the following relation is obtained:

∮
∂ΩRV E

wm(xm, xM )⊗N(xm) d∂ΩRV E = 0 ∀xM ∈ Ω (7)

N denoting the normal to the boundary of the RVE.

The above equations provide a method to determine a micro-displacement field on the RVE

starting from a known deformation at the macro-scale (so-called ‘down-scaling’ procedure [12]):

given a macro-strain field εM , a micro-displacement field um can be determined by solving, in each

RVE, the boundary value problem (BVP) represented by Equations (1)-(4) and a suitable set of

boundary conditions respecting Equation (7). It has been shown that boundary conditions which

comply with Equation (7) include zero fluctuations over the whole RVE (Taylor assumption),

uniform displacement, uniform traction and periodic boundary conditions (see, for example,

Larsson et al. [30] and Peric et al. [5]). The latter have been found to be the most effective for

most cases involving a periodic microstructure or when the microstructure is not periodic but

the RVE is sufficiently statistically representative [7, 31].

Once the above BVP is solved for each RVE, the macro-stress field is recovered by averaging

the micro-stress field over the RVE (so-called ‘up-scaling’ procedure [12]):

σM (xM ) = σm(xM ) (8)

This stress-averaging procedure is related to Hill’s condition, which, in one of its forms, states

that the local macroscopic virtual work done by the macroscopic stress for any macroscopic strain

variation must be equal to the average over the RVE of the microscopic virtual work done by

the microscopic stress for the corresponding microscopic strain variation [11, 32]:

σM · δεM = σm · δεm(δεM ) ∀δεM (9)

where dependence on the local and global position will henceforth be omitted in the notation for

simplicity. The notation δεm(δεM ) highlights that the microscopic strain variation δεm is the
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variation of the solution to the BVP (given in terms of the microscopic strain) corresponding to

a variation δεM of the macroscopic strain εM . From Equations (2) and (3):

δεm(δεM ) = δεmv + δεmw = δεM + δεmw (10)

where δεmv = δ∇svm and δεmw = δ∇swm(δεM ). In the absence of body forces the self-

equilibrated microscopic stress field on the RVE is orthogonal to the field δεmw, i.e. it results

that

∫
ΩRV E

σm · δεmw dΩ = 0 (11)

which leads to:

σm · δεm(δεM ) =
1

ΩRV E

∫
ΩRV E

σm dΩ · δεM =

= σm · δεM ∀δεM (12)

Hence, assuming that Relation (8) holds true, then from Equation (12), Hill’s condition, i.e.

Equation (9), is obtained. Vice versa, if it is assumed that Hill’s condition holds true, the

stress-averaging formula (8) is obtained.

The following remarks can be made:

1. Equations (5) and (8), i.e. the equality between macroscopic strain or stress and the average

on the RVE of the microscopic strain or stress do not make sense when different models

are used because the strain and stress measures typically have different meaning and often

even different dimensions at the macroscale and the microscale.

2. Equation (2) is meaningless, too, in the general case of two different models used at the

two scales. This implies that the definition of the smooth displacement field on the RVE

is not necessarily a straightforward issue.
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3. Relation (5) certainly applies when uniform boundary conditions are prescribed, see Michel

et al. [32]. Otherwise it simply becomes an a priori assumption which results in restriction

(7) for the boundary conditions to be applied on the fluctuating field w. To the authors’

knowledge no specific physical or mathematical justification has ever been provided for

such assumption in a case different from uniform boundary conditions. However, such an

assumption is still not sufficient to fully define the BVP as it is still necessary to make a

choice among all possible boundary conditions which satisfy Equation (7), which is typically

done on the basis of experience and engineering judgment. Hence, the question arises

whether assumption (5) is really necessary to develop a computational homogenisation

theory or it is possible to use experience and engineering judgment directly to determine

an effective set of boundary conditions for the BVP on the RVE.

4. Unlike Equations (5) and (8), Equation (9) is also meaningful for the general case in which

two different models are used at the two scales. This equation can be seen as a scale-bridging

variational condition and, if the equations governing the problem at the small scale are the

stationary conditions for an energy potential, it becomes a condition of energy equivalence

between the micro- and macro-models. On the other hand, Equation (3) can be written

also when a potential energy cannot be defined at the small scale, and is therefore more

general.

5. Hill’s condition (i.e. Equation (9)) was originally derived in the case of uniform displace-

ment or uniform traction boundary conditions [2, 33] (see also Michel et al. [32]) and later

in the case of periodic boundary conditions by Suquet [34]. However, this equation is

normally invoked as an a priori assumption of energy equivalence.

These five remarks form a point of departure from which a more general theory in the next

section is developed.
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2.2 A general framework for homogenisation

In this section we develop a theory to provide and justify the extension of the multi-scale proce-

dure to the case where two different models are used at either scale and no potential energy can

be introduced at the small scale. We are particularly interested in the analysis of unbonded flex-

ible risers using the approach described in Ref. [27], in which a co-rotational beam model is used

at the macro-scale, while at the small-scale a geometrically linear multi-layered model is used in

which each layer is modelled with shell elements and adjacent layers are in potential frictional

contact. Therefore, here we consider a two-scale formulation in which a geometrically nonlinear

model is used at the macro-scale and a geometrically linear model is adopted at the micro-scale.

The extension to the case where geometric nonlinear models are used at both scales is possible

within the proposed generalised framework, but it also requires addressing some nontrivial issues

regarding the micro-scale formulation, including how to apply and update the boundary condi-

tions, which we prefer to leave for future developments. We also make the hypothesis that body

forces are absent.

Apart from the above assumptions, we also wish to make the treatment general enough to be

applicable to any other case of computational two-scale homogenisation, when the models used

at the two scales are not necessarily continuum models and are generally different from each

other. To this end, we use the abstract notation of operators, vector spaces and bilinear forms.

In particular, we will indicate the argument of a linear operator without parenthesis, while the

argument of a nonlinear operator will be included in parentheses. For example, b = A(a) will be

used if operator A is nonlinear, while b = Aa will be used if A is linear. For a nonlinear operator

A, the symbol dA will indicate its derivative, which is always assumed to be properly defined.

Furthermore, the adjoint of an operator A will be denoted by A∗.

We consider a macro-scale structural model defined by a vector space VM of admissible macro-

displacements, a vector space DM of admissible macro-strains, and a macro-scale nonlinear strain

operator BM : VM → DM . We then define a micro-scale structural model defined by vector spaces

Vm and Dm of admissible micro-displacements and micro-strains, respectively, and a linear strain
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operator Bm : Vm → Dm. For the purposes of this work, there is no need to specify the functional

nature of VM , DM , Vm and Dm, because the determination of mathematical conditions for the

existence and uniqueness of the solution, as well as for finite-element convergence and multi-scale

convergence, are left for future developments. It is therefore sufficient to assume the elements of

VM and DM are displacement and strain fields (uM , εM ) defined in the macro-structural domain

Ω, while elements of Vm and Dm are displacement and strain fields (um, εm) defined in Ω×ΩRDE ,

where ΩRDE is the ‘representative domain element’ independently associated with each point

of the macro domain due to the assumption of scale separation, that is carried over into the

generalised formulation. The change in notation from RVE to RDE emphasizes that the domain

is not necessarily a physical volume. We also assume that the elements of VM , DM , Vm and Dm

and all the required derivatives are sufficiently regular.

Spaces VM ,Vm are associated with the dual spaces FM , Fm, whose elements are external

macro- and micro-forces, respectively. These pairs of spaces are related by non-degenerate bilin-

ear forms that have the physical meaning of macroscopic and microscopic external virtual work.

Analogously, spaces DM and Dm are associated with dual spaces SM and Sm, whose elements

represent the macro- and micro- generalised stresses (or stress resultants), respectively. To sim-

plify the notation, the same symbol ((•, •)) will be used to denote the bilinear forms in FM ×VM ,

Fm × Vm, SM ×DM and Sm ×Dm, as the difference in meaning will be clear from the context.

A generally nonlinear constitutive law, σm = σm(εm), is defined for the micro-scale structural

model. In this context, for simplicity, we assume only that the law is one-to-one and both itself

and its derivative are sufficiently regular.

To link the two scales we assume that a displacement-based formulation is used at both

scales. An appropriate operator P : DM → Vm is defined to map microscopic displacements to

macroscopic strains. The following restrictions apply to the operator:

1. If um ∈ Ker(Bm) and um = P (εM ) then εM = 0.

2. The compound operator BmP must map one (and only one) micro-strain εm to each macro-

strain εM .
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The operator P , i.e. the down-scaling procedure, is defined by the solution to the following

problem:

Given εM ∈ DM , find um ∈ Vm such that:

um = P (εM ) = vm + wm

vm = P εM

Qbc wm = 0

((σm(Bm um), Bm δwm)) = 0 ∀δwm : Qbc δwm = 0

(13)

Once um has been found, um = P (εM ). In this system of equations P defines a linear operator

(normally, but not necessarily, in closed form) which ‘translates’ the macro-scale strain εM into

a corresponding, ‘smooth’ micro-displacement field vm. Qbc is a suitably defined trace operator,

such that Equation (13)3 represents a suitably chosen set of linear boundary conditions for the

fluctuating displacement field wm.

Combining operators Bm, P and BM the compound ‘multi-scale’ strain operator BMS =

Bm P BM is obtained, as described schematically in Figure 1. BMS is generally nonlinear,

because the constitutive law and operator BM are generally nonlinear.

VM DM Vm Dm
BM BmP

Figure 1: Schematic description of the compound ‘multi-scale’ strain operator BMS .

BMS and the constitutive law at the small scale fully define a multi-scale structural model, in

which VM is the vector space of displacements, Dm is the vector space of strains and Sm and FM

are the spaces of generalised stresses and external forces associated with Dm and VM through the

appropriate bilinear forms. In theory, the details of the up-scaling procedure could be ignored

because what matters are the ‘multi-scale’ operator BMS , the bilinear forms defined in FM ×VM

and Sm×Dm and the micro-scale constitutive law. Defined in this form, the multi-scale structural

model is schematised in Figure 2, where dB∗
MS is the adjoint operator to dBMS .

In practice, in many cases it is useful or necessary to consider the spaces DM and SM explicitly

and use an up-scaling procedure to determine the macro-stress field σM of SM associated with
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VM Dm

SmFM

BMS

dB∗
MS

Figure 2: Multi-scale model.

the micro-stress field σm.

The up-scaling procedure can be formally obtained from the adjoint operators to Bm and dP

as follows:

σM = [dP (εM )]∗B∗
m σm (14)

This is equivalent to the following variational definition of σM :

((σM , δεM )) = ((σm, Bm dP (εM ) δεM )) ∀δεM ∈ DM (15)

which represents a generalised Hill’s condition (GHC). The up-scaling procedure is schematised

below in Figure 3.

VM DM

FM SM

Vm

Fm

Dm

Sm

BM

dB∗
M

Bm

B∗
mdP ∗

P

GHC

Figure 3: Schematic description of the up-scaling procedure.

The differential dP (εM )dεM of P can be expressed with the aid of Equations (13)1−3 as:

dP (εM )dεM = P δεM + δwm (16)
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where Qbc δwm = 0. Substituting into Equation (15) and noting that Equation (13)4 holds for

the variation of the displacement fluctuation field, the following relation is obtained:

((σM , δεM )) =
((
σm, Bm P δεM

))
∀δεM ∈ DM (17)

Both Equations (15) and (17) define σM , but applying them in practice is different: Equation

(15) requires the linearisation of the operator P , i.e. of the solution of the micro-problem in the

RDE. When such solution is obtained numerically, its linearisation can only be obtained through

perturbations, which can be computationally very expensive. Conversely, applying Equation

(17) requires only the operators Bm and P which are predefined and therefore leads to a direct

computation of σM .

Furthermore, if problem (13) is practically solved for each RDE using the finite-element

method and by introducing εM in the micro-problem in the form of degrees of freedom of a

dummy control node (see, for example, Michel et al. [32]), then Equation (17) is equivalent to

recovering σM as the reaction of the constraint imposed on this dummy control node.

It is worth noting that the generalised Hill’s condition (15) and its simplified form (17), which

fully define σM and therefore the up-scaling procedure, are not invoked as an a priori assumption

of the theory. Instead, they are simply derived from the definition of σM in terms of duality.

2.2.1 Solution of the micro-problem in terms of um

In the above formulation, the total micro-displacement field is found from the sum of vm = P εM

and the fluctuating field wm. From the practical point of view this implies assuming wm as the

field variable to be solved for. In a finite-element implementation this implies assuming that the

nodal degrees of freedom in the micro-problem represent the nodal values of wm.

It may be practically convenient, for example when using commercial software packages, to

solve the problem directly in terms of um, so that in a finite-element implementation the nodal

degrees of freedom correspond to the nodal values of um. To this end, substituting the relation

wm = um − P εM into Equations (13), and noting that, for a given εM , δwm = δum, the

micro-problem can be rewritten as follows:
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Given εM ∈ DM , find um ∈ Vm such that


Qbc um = Qbc P εM

((σm(Bm um), Bm δum)) = 0

∀δum : Qbc δum = 0

(18)

As mentioned above, in practice dummy control nodes C can be introduced whose degrees

of freedom are the components of εM for each RDE. This is effectively equivalent to having

the micro-problem defined in the product space Vm × DM . Let us denote by ηMC ∈ DM a

vector containing the new degrees of freedom associated with these control nodes, which may be

unknown or prescribed. The problem can then be restated as follows:

Given εM ∈ DM , find (um, ηMC) ∈ Vm ×DM such that:



Qbc um −Qbc P ηMC = 0

ηMC = εM

((σm(Bm um), Bm δum)) = 0

∀δum : Qbc δum = 0

(19)

The fact that the macro-scale stress σM is the reaction of the constraint on the control node

can be expressed in a variational way as follows:

((σM , δηMC)) = ((σm, Bm δum)) ∀δηMC ∈ DM

∀δum : Qbc δum = Qbc P δηMC

(20)

The choice of variation δum in the above equation is immaterial because, if δum1 and δum2 are

two variations such that Qbc δum1 = Qbc P δηMC and Qbc δum2 = Qbc P δηMC , then it results

that Qbc δ(um2−um1) = 0. From Equation (18) this yields ((σm(Bm um), Bm δ(um2 − um1))) = 0,

which finally leads to

((σm(Bm um), Bm δum1)) = ((σm(Bm um), Bm δum2)) (21)

In a finite-element implementation these considerations are purely theoretical, because from the

practical point of view σM is provided simply by the reactions at the control nodes C, which is
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Figure 4: Beam-truss multi-scale model

typically given by the program as part of the standard output.

3 Specialisation to a multi-scale analysis of a truss struc-

ture

In this section, an application of the extended multi-scale theory is demonstrated and can be

regarded as a template for the application of the extended theory to a wider range of problems.

A two-scale model of a slender periodic two-dimensional truss structure is created, using one

repeating truss unit as the RDE and employing an Euler-Bernoulli beam model as the large-

scale model.

This problem has been chosen to emphasize the generality of the derivation of the extended

multi-scale homogenisation theory provided above in Section 2.2. In particular, our formulation

is not restricted to structural models obtainable from a continuum model with some kinematic

hypotheses. Although each member of a truss structure is a rod and can be derived from a

continuum model using some kinematic assumptions, the truss unit forming the RDE used in

numerical demonstrations in the following section, shown in Figure 4, is an assembly of rods and

therefore cannot be derived in any of the usual ways from a continuum model.
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3.1 Large-scale model and definition of VM , DM and BM

Since, the large-scale model is a slender structure, its kinematic response is modelled using the

Euler-Bernoulli beam model. Thus the large-scale domain is

Ω := {x ∈ R : 0 ≤ x ≤ L}

where L is the model length. The structure is discretised with two-node beam elements with

two planar displacements and one rotation as degrees of freedom of each node. To describe how

the extended theory of Section 2 specialises to this specific example we prefer to refer directly

to the discretised problem. Hence, the space of displacements is defined as VM := R3NM , where

NM is the number of (macroscopic) nodes. Given a displacement uM ∈ VM , uiMj will denote the

jth component of the ith node. Axial strain and curvature are defined for each element, whereby

the strain space is defined as DM := R2NgEM , where EM is the number of macroscopic elements

and Ng is the number of integration points per element. Given a strain εM ∈ DM , εipMj will

indicate the jth component of the pth integration point of the ith element. Indicating with ξ

the non-dimensional coordinate within a reference unit-length beam element, with end nodes at

ξ = 0 and ξ = 1, the macroscopic strain-displacement operator BM : VM → DM is the nonlinear

mapping

εipMq = (B̂iM )qh(ξp)v̂
i
h(Λiknvn) i = 1, 2, . . . EM n = 1, 2, . . . 3NM

h, k = 1, 2, . . . 6 0 ≤ ξp ≤ 1

p = 1, 2, . . . Ng q = 1, 2

(22)

where vn is the vector of assembled global displacements such that, when n = 3(i − 1) + j,

vn = uiMj (j = 1, 2, 3), ξp is the non-dimensional coordinate of the pth integraton point, Λikn

is the incidence matrix and v̂ih is the hth component of the local displacements for element i,

which is a nonlinear function of the global element displacement components vik = Λiknvn. The
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Figure 5: Geometry of the RDE (dimensions in m)

nonlinear mapping v̂ih = v̂ih(vik) is defined in the corotational formulation developed by Urthaler

and Reddy [35] that is adopted here. Furthermore, B̂iM is the strain-displacement matrix

B̂iM (ξ) =
1

l2i

−li 0 0 li 0 0

0 12ξ − 6 (6ξ − 4)li 0 −12ξ + 6 (6ξ − 2)li


where li is the length of beam element i. The incidence matrix is defined as

Λikn =


1 if global DOF n corresponds to element DOF k of element i

0 otherwise

noting that element DOFs represent the planar translational displacements and rotation of the

nodes of the element using the ordering (u1
1, u1

2, u1
3, u2

1, u2
2, u2

3), as does the global displacement

vector vn.

3.2 Small-scale model and definition of Vm, Dm and Bm

The small-scale model consists of 2-noded planar truss elements. Elastoplastic material behaviour

with linear kinematic hardening is chosen for the constitutive relation of the members.
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No finite-element approximation is required because the small-scale model is already finite-

dimensional in nature and consists of Nm nodes and Em elements. The space of displacements

is defined as Vm := R2NgEM2Nm . Focusing on a single integration point, given a displacement

um, uimj will denote the jth component of the ith node. The space of strains is defined as

Dm := R2NgEMEm . Focusing on a single integration point, given a strain εm ∈ Dm, εim is the

axial strain of the ith element.

Bm : Vm → Dm is the linear mapping that, for each RDE, is defined as follows:

εim = B̂imhT
i
hkΛ

i
knvn i = 1, 2, . . . Em n = 1, 2, . . . 2Nm

h, k = 1, 2, . . . 4 (23)

where vn is the vector of assembled global displacements such that, when n = 2(i − 1) + j,

vn = uij (j = 1, 2), Λikn is the incidence matrix, li is the length of truss element i and T ihk is the

2D coordinate transformation matrix for element i.

The strain-displacement matrix is:

B̂im =
1

li

[
−1 0 1 0

]

The incidence matrix is as defined in Section 3.1, noting that element DOFs represent the

planar translational displacements of the nodes of the element using the ordering (u1
1, u1

2, u2
1,

u2
2), as does the assembled displacement vector.

3.3 Scale bridging and definition of P̄ and Qbc

For these models, the operator P̄ : R2NgEM → R2NgEM2Nm is defined in accordance with the

Euler-Bernoulli kinematic assumptions as follows.

Given a node n of the small-scale truss model, the two components of the displacement of

node n in the local directions x̄ and ȳ (see Figure 5) are given by:
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vnx̄ = αipM x̄n + χipM x̄nȳn

vnȳ = 0.5χipM x̄
2
n (24)

where x̄n and ȳn are the local coordinates of n, while αipM and χipM are the axial strain and

curvature at the corresponding integration point p of element i.

Denoting by Nb the number of nodes on the small-scale model’s left boundary, which is equal

to the number of nodes on the right boundary, the restriction Q∗
bc : R2Nm → R2Nb of operator

Qbc in Equations (18), (19), (20) and (21) to a single RDE is defined as follows:

(Q∗
bc)ij =



1 if degree of freedom j corresponds to degree of freedom i

on right boundary

−1 if degree of freedom j corresponds to degree of freedom i

on left boundary

0 otherwise

i = 1, 2, . . . 2Nb j = 1, 2, . . . 2Nm

We choose to apply the macroscopic strains to the microscopic model by means of a dummy

control node, as described in Equation (19).

3.4 Multi-scale implementation

The large-scale model was implemented in the finite-element package Abaqus using user-defined

elements to calculate the response of the small-scale model. The small-scale model and the scale

bridging procedure were implemented as the material model used within the UEL subroutine.

Three integration points were used for each large-scale element. For each integration point

three simulations were carried out for each iteration of each increment of a full Newton-Raphson

solution procedure. The macro-strain was passed for the first simulation to compute the macro-

stress and perturbations of each of the two macro-strain components were passed in the remaining
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two simulations to compute the associated macro-stress variation and establish the consistent

material tangent.

4 Numerical results

4.1 Test case

In this section we numerically test convergence of the multi-scale procedure, or, in short, multi-

scale convergence. By multi-scale convergence, we mean that the difference between the multi-

scale solution and direct numerical simulation (DNS) results tends to zero as the ratio ε between

the characteristic lengths of the unit cell and the large-scale model tends to zero. This is inves-

tigated for the case of a truss structure created using a periodic array (Figure 4) of the unit cell

truss structure shown in Figure 5. For the small-scale model the characteristic length is 1m. For

the large-scale model it is the total length of the structure L.

To separate multi-scale convergence from FE convergence, for each case analysed we present

results for increasing numbers of elements of the large-scale model. For the small-scale model

this is not necessary because it is already discrete in nature.

Model parameters (with reference to Section 3) are presented in Table 1.

Three cases were studied for this type of structure. For case 1, a cantilever truss with an axial

point load at the end of the structure was considered (Figure 6). For case 2, a transverse point

load was applied to the same cantilever truss (Figure 7). For case 3, a point load was applied to

the left-hand span of a truss beam with three simple supports (Figure 8).

Figures 6-8 show geometry and loading for the three cases, referring to the multi-scale analysis,

whereby the structure is modelled as a beam.

Each of these cases was modelled by both DNS, which account for large displacements and

rotations of the truss members, and the fully nested (FE2) multi-scale procedure. For the latter,

the multi-scale procedure described in Section 3 was used. For each case, four values of the

length L have been considered: 20, 60, 100 and 400m. Since the length of the RDE is 1m (Figure

5), the four different lengths correspond to four values of the scaling parameter ε = l/L, equal
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Model parameters

Load magnitude (for axial loading) 2 × 107 N

Load magnitude (for transverse loading) 4 × 105 ×
(
L
20

)
N

Load magnitude for statically indeterminate load case 4.3788 × 106 ×
(
L
20

)
N

Young’s modulus 200 × 109 Nm-2

Yield limit 400 × 106 Nm-2

Kinematic hardening constant 100 × 109 Nm-2

Member cross-sectional area 0.01 m2

Table 1: Material parameters

F

δ

L

CP

Figure 6: Case 1: Macro-geometry and loading. Comparison point (CP) located at distance 0.5L

from support.

to 0.05, 0.016667, 0.01 and 0.0025.

For each study, multi-scale convergence was evaluated by comparing the DNS results with

those of the multi-scale analysis for each value of ε. For each value of ε, finite-element convergence

of the multi-scale model with increasing number of elements was also examined.

4.2 Results

Convergence results for case 1 are shown in Figures 9 and 10. Results for case 2 are shown in

Figures 11 and 12. Results for the case 3 are shown in Figures 13 and 14.

Displacement results were evaluated at the node corresponding to the comparison point

(shown in Figures 6-8). For the DNS, stress results were obtained by averaging stresses in

the two horizontal members on either side of the comparison point on the underside of the truss.

For the multi-scale simulations, the comparison point is a node, and stress results are the average
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F

δ

CP

Figure 7: Case 2: Macro-geometry and loading. Comparison point (CP) located at distance 0.5L

from support.

F1 = 5 MN

L/2 L/2

CP

Figure 8: Case 3: Macro-geometry and loading. Comparison point (CP) located at distance 0.2L

from pin joint; applied load located at distance 0.25L from pin joint.

of the two integration points in the large-scale model on either side of the comparison point. For

each integration point, the stresses in the horizontal truss members on the lower side of the RDE

were evaluated. Due to the symmetry of the RDE problem, both lower horizontal members show

the same stress.

Tolerances of 10-8, 10-5 and 10-5 for the relative residual norm error were used for the DNS

solver, the large-scale solver and the small-scale solver, respectively. The minimum error that

can be achieved in these simulations is closely linked with the maximum tolerance used of 10-5.

For case 1, Figures 9 and 10 show that both displacement and stress in the multi-scale model

do not depend on the number of elements, whereby FE convergence is not an issue. Displacement

results become increasingly accurate as the scaling parameter ε increases, showing multi-scale

convergence. Stress results do not change as the error is already as low as the numerical tolerance

will allow.

For case 2 (Figures 11 and 12) displacement results from the multi-scale analysis are not
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Figure 9: Multi-scale and FE displacement convergence at the comparison point for the axially

loaded cantilever (case 1)

significantly affected by number of elements. FE convergence appears to be achieved for L=60m

and L=100m, which are more important to assess multi-scale convergence. With decreasing ε

multi-scale convergence can be observed for displacement results. For stresses the error for the

multi-scale analysis is already below 0.2% for L=20m and only slightly reduces from L=60m to

L=100m because the numerical tolerance has been reached. Increasing the number of elements

does not significantly reduce error if more than 40 elements are used, showing that finite element

convergence has occurred. For L=400, the Newton-Raphson procedure used did not converge.

For case 3, which is statically indeterminate (Figures 13 and 14), neither displacement nor

stress results are significantly affected by the number of elements. Both stress and displacement

results converge as ε is decreased. The displacement error for the multi-scale procedure decreases

from about 9% for L=20m to less that 0.5% for L=100m.

Deformed figures for transverse loading and the statically indeterminate load cases are shown

in Figures 15, 16, 17 and 18, highlighting that the extent of plastic zones is constant with varying

model length.
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Figure 10: Multi-scale and FE stress convergence at the comparison point for the axially loaded

cantilever (case 1)
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Figure 11: Multi-scale and FE displacement convergence at the comparison point for the transver-

sally loaded cantilever (case 2)
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Figure 12: Multi-scale and FE stress convergence at the comparison point for the transversally

loaded cantilever (case 2)
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Figure 13: Multi-scale and FE displacement convergence at the comparison point for the statically

indeterminate load case (case 3)
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Figure 14: Multi-scale and FE stress convergence at the comparison point for the statically

indeterminate load case (case 3)

Figure 15: Material state for transverse loading, L=20m. Elements with stress greater than yield

limit are black; elements with stress under yield limit are grey.
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Figure 16: Material state for transverse loading, L=100m. Elements with stress greater than

yield limit are black; elements with stress under yield limit are grey.

Figure 17: Material state for statically indeterminate load case, L=20m. Elements with stress

greater than yield limit are black; elements with stress under yield limit are grey.
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Figure 18: Material state for statically indeterminate load case, L=100m. Elements with stress

greater than yield limit are black; elements with stress under yield limit are grey.

5 Conclusions

We presented a nonlinear computational homogenisation theory which can be directly applied

to cases in which different structural models are used at different length scales, whereby volumet-

ric averaging principles are not applicable, and where the lower-scale problem is not necessarily

governed by an energy potential.

An original and more general theoretical justification of how the micro-scale BVP is defined

starting from the macro-strain was provided. In our generalised formulation we introduced at

each point of the macro domain a representative domain element (RDE) instead of a RVE,

because our theory is not restricted to solid continua. We revisited the conventional point of

departure that the RDE average of the micro-strains has to be equal to the macro-strain, which

is not applicable to the general case as a means of deriving appropriate boundary conditions

for the RDE. In particular, we observed that not only is this assumption unnecessary but it is

also insufficient to define a well-posed micro-scale BVP. Instead, we showed that to construct

a general theory that is applicable regardless of the structural models used at either scale it is

sufficient to introduce a linear operator, which maps the ‘smooth’ part of the micro-displacement

field in the RDE to the macro-strain, as well as a suitably defined trace operator that imposes
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boundary conditions on the RDE, the latter to be defined based on engineering judgement. As

a physically realistic choice of boundary conditions is also a required input for conventional

computational homogenisation procedures, this does not represent a limitation of our approach.

The up-scaling procedure used to recover the stress field in the large-scale model is based upon a

generalised Hill’s condition, which is not invoked as an a priori assumption but is obtained from

general duality principles.

Instead of using volumetric averaging to transfer quantities between small and large scales,

the small-scale model is augmented with additional degrees of freedom corresponding to the

large-scale strains, allowing both the imposition of strains and the recovery of stresses via linear

constraint equations.

For the sake of simplicity but also driven by our interest for the analysis of flexible risers,

in this paper our formulation has been developed for cases where a geometrically linear model

is used at the small scale, whereas a geometrically nonlinear model is used at the large scale.

However, the principles can be be extended to the general case where geometrical nonlinearity

is accounted for at both scales, which will be addressed in future work.

An application of the method to the nonlinear multi-scale analysis of truss structures has

been presented. This type of problem has been chosen because it cannot be analysed by apply-

ing existing methods proposed in the literature because different models are used at different

scales and because the small-scale model (the truss) is not recoverable from a continuum model.

Furthermore, due to the very low computational cost of the small-scale model direct numer-

ical simulations (DNS) can be performed, which allowed us to study and discuss multi-scale

convergence for three loading conditions.

The extension of computational homogenisation to structural-to-structural multi-scale models

enables new approaches to material and structural modelling problems bridging length scales to

be implemented and could allow the rapid creation of multi-scale models using combinations

of simple structural elements such as springs, dampers, frictional sliders and thermal expansion

elements to represent local behaviour. Where constitutive models are complex, such structural-

to-structural multi-scale could be significantly more efficient than continuum multi-scale models
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due to dimensional reduction.

We suggest that the computational homogenisation method outlined in this article could be

a fruitful approach to modelling problems including marine flexible risers, auxetic materials,

honeycomb structures or other impact attenuation materials like foams. Further work is also

needed to address the mathematical conditions for the existence and uniqueness of the multi-

scale solution and for multi-scale convergence.
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