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REGULARITY OF MAPS BETWEEN SOBOLEV SPACES

MARTINS BRUVERIS

Abstract. Let F : Hq → Hq be a Ck-map between Sobolev spaces, either

on Rd or on a compact manifold. We show that equivariance of F under the

diffeomorphism group allows to trade regularity of F as a nonlinear map for

regularity in the image space: for 0 ≤ l ≤ k, the map F : Hq+l → Hq+l is

well-defined and of class Ck−l. This result is used to study the regularity of the

geodesic boundary value problem for Sobolev metrics on the diffeomorphism

group and the space of curves.

1. Introduction

The main result of this paper is inspired from and a generalisation of results
on the smoothness of geodesics for right-invariant Riemannian metrics on the dif-
feomorphism group. Riemannian metrics on the diffeomorphism group have been
studied since it was recognised in [1] that solutions of Euler’s equations for incom-
pressible fluids correspond to geodesics on the group of volume-preserving diffeo-
morphisms with respect to a right-invariant Riemannian metric. The well-posedness
of Euler’s equation was established in [11] by showing that the corresponding ge-
odesic spray is a smooth vector field on the group Dq

vol(M) of volume-preserving
Hq-diffeomorphisms for q > dimM/2 + 1 and M a compact manifold. A smooth
geodesic spray on a Hilbert manifold gives rise to a smooth exponential map and
because the metric is right-invariant, this exponential maps is Dq

vol(M)-equivariant.
The right-invariance of the exponential map was used in [11] to show the following

result: if the initial conditions of a geodesic are of class Hq+k, then so is the whole
geodesic. This property implies that smooth (C∞) initial conditions for Euler’s
equations have smooth solutions. The same property was observed for various
other right-invariant Riemannian metrics on the diffeomorphism group as well as
for reparametrisation invariant Riemannian metrics on the space of curves.

In this paper we want to prove a general version of this result, both for Sobolev
spaces on Euclidean space and for Sobolev spaces on manifolds.

Theorem. Let q > d
2 + 1, 0 ≤ l ≤ k and F : Hq(Rd,Rn) → Hq(Rd,Rm) be a

Dq(Rd)-equivariant Ck-map, i.e. F (u ◦ ϕ) = F (u) ◦ ϕ. Then F maps Hq+l into
Hq+l and F : Hq+l(Rd,Rn) → Hq+l(Rd,Rm) is a Ck−l-map.

Here and in the following we assume q ∈ R and l, k ∈ N. The group Dq(Rd) is
the group of Hq-diffeomorphisms; see Sect. 3.

Previously the strongest statement was that if F : Hq → Hq is a Dq-equivariant
C1-map, then F : Hq+1 → Hq+1 is well-defined. No statement was made about the
continuity or differentiability of the resulting map. Next we state the corresponding
result for Sobolev spaces on manifolds. Let M be a compact manifold and N,P
smooth manifolds, all without boundary.
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Theorem. Let q > dimM/2 + 1, 0 ≤ l ≤ k and F : Hq(M,N) → Hq(M,P ) be
a Dq(M)-equivariant Ck-map, i.e. F (u ◦ ϕ) = F (u) ◦ ϕ. Then F maps Hq+l into
Hq+l and F : Hq+l(M,N) → Hq+l(M,P ) is a Ck−l-map.

In a nutshell this results states that given an equivariant map F : Hq → Hq we
can trade smoothness of the map to gain spatial smoothness of the image F (u). If
F is a C∞-map, then it also induces a C∞-map between the spaces H∞.

Corollary. Let q > d
2 + 1 and F : Hq(Rd,Rn) → Hq(Rd,Rm) be a Dq(Rd)-

equivariant C∞-map. Then F : H∞(Rd,Rn) → H∞(Rd,Rm) is a C∞-map.

The same can be also formulated for maps defined on compact manifolds.

Corollary. Let q > dimM/2 + 1 and F : Hq(M,N) → Hq(M,P ) be a Dq(M)-
equivariant C∞-map. Then F : C∞(M,N) → C∞(M,P ) is a C∞-map.

In Sect. 5 we apply this theorem to study the regularity of the geodesic boundary
value problem for right-invariant Riemannian metrics on the diffeomorphism group.
We show that if ϕ0 and ϕ1 are nonconjugate along the geodesic ϕ(t), then the
whole geodesic is as smooth as ϕ0 and ϕ1. In Sect. 6 we show the same result for
reparametrization invariant Sobolev metrics on the space of curves.

Note. We will write u . v, if the inequality u ≤ Cv holds for some constant
C > 0, that may depend on the parameters q, k, l, d,m, n and the manifolds M,N,P
involved, but is independent of the functions F, u, v. The constant may also depend
on the auxiliary functions ωi, hj and Xj introduced in the proofs and additional
dependencies will be stated in the text.

2. Differentiability in Banach Spaces

For Banach spaces E,F we denote by Lk
sym(E,F ) the space of bounded, sym-

metric, k-linear mappings E × . . . × E → F . Let U ⊆ E be open. A function
f : U → F is C1, if it is Fréchet differentiable and the derivative Df : U → L(E,F )
is continuous.

The following lemma is standard and is stated without proof.

Lemma 2.1. Let E,F be Banach spaces and U ⊆ E a convex, open set. Let
α ∈ C(U,L(E,F )). Assume that f : U → F is a mapping, such that

f(y) = f(x) +

∫ 1

0

α(x+ t(y − x)).(y − x) dt ,

holds for all x, y ∈ U . Then f ∈ C1(U, F ) and Df = α.

The next lemma shows, that if a function is differentiable on a dense subspace
of a Banach space and the derivatives can be extended to continuous maps on the
bigger space, then the function is differentiable on the bigger space.

Lemma 2.2. Let E,F,G be Banach spaces, E ⊆ F a dense subspace, f ∈ Ck(U,G)
with U = V ∩ E and V ⊆ F open. If we can extend f and its derivatives Djf to
Djf ∈ C(V,Lj

sym(F,G)) for 0 ≤ j ≤ k, then f ∈ Ck(V,G).

Proof. We have for x, y ∈ U , and 0 ≤ j ≤ k − 1,

(1) Djf(y) = Djf(x) +

∫ 1

0

Dj+1f(x+ t(y − x)).(y − x) dt .

Since Djf can be extended to Djf ∈ C(V,Lj
sym(F,G)) and both sides in (1) are

continuous on V , the identity continues to hold for x, y ∈ V .
Now we argue inductively: Since f ∈ C(V,G) and Df can be extended to V , we

obtain by Lem. 2.1 that f ∈ C1(V,G). Now we apply Lem. 2.1 with Df in place



REGULARITY OF MAPS BETWEEN SOBOLEV SPACES 3

of f to conclude that Df ∈ C1(V,L(F,G)) and so f ∈ C2(V,G). In this way we
obtain inductively that f ∈ Ck(V,G). �

3. Dq(Rd)-equivariant Maps

The Sobolev spaces Hq(Rd) with q ∈ R can be defined in terms of the Fourier
transform

Ff(ξ) = (2π)−d/2

∫

Rd

e−i〈x,ξ〉f(x) dx ,

and consist of L2-integrable functions f with the property that (1 + |ξ|2)q/2Ff is
L2-integrable as well. An inner product on Hq(Rd) is given by

〈f, g〉Hq = Re

∫

Rd

(1 + |ξ|2)qFf(ξ)Fg(ξ) dξ .

Denote by Diff1(Rd) the group of C1-diffeomorphisms of Rd, i.e.,

Diff1(Rd) = {ϕ ∈ C1(Rd,Rd) : ϕ bijective, ϕ−1 ∈ C1(Rd,Rd)} .

For q > d/2 + 1 and q ∈ R there are three equivalent ways of defining the group
Dq(Rd) of Sobolev diffeomorphisms:

Dq(Rd) = {ϕ ∈ Id +Hq(Rd,Rd) : ϕ bijective, ϕ−1 ∈ Id +Hq(Rd,Rd)}

= {ϕ ∈ Id +Hq(Rd,Rd) : ϕ ∈ Diff1(Rd)}

= {ϕ ∈ Id +Hq(Rd,Rd) : detDϕ(x) > 0, ∀x ∈ R
d} .

If we denote the three sets on the right by A1, A2 and A3, then it is not difficult to
see the inclusions A1 ⊆ A2 ⊆ A3. The equivalence A1 = A2 has first been shown
in [10, Sect. 3] for the diffeomorphism group of a compact manifold; a proof for
Dq(Rd) can be found in [15]. Regarding the inclusion A3 ⊆ A2, it is shown in [22,
Cor. 4.3] that if ϕ ∈ C1 with detDϕ(x) > 0 and lim|x|→∞ |ϕ(x)| = ∞, then ϕ is a

C1-diffeomorphism.
It follows from the Sobolev embedding theorem, that Dq(Rd) − Id is an open

subset of Hq(Rd,Rd) and thus a Hilbert manifold. Since each ϕ ∈ Dq(Rd) has
to decay to the identity as |x| → ∞, it follows that ϕ is orientation preserving.
More importantly, Dq(Rn) is a topological group, but not a Lie group, since left-
multiplication and inversion are continuous, but not smooth operations.

We will use the following two results regarding the multiplication and composi-
tion of functions in Sobolev spaces.

Lemma 3.1 ([15, Lem. 2.3]). Let q, r ∈ R with q > d
2 and 0 ≤ r ≤ q. Then

pointwise multiplication

Hq(Rd,R) ×Hr(Rd,R) → Hr(Rd,R) , (f, g) 7→ f · g ,

is a bounded bilinear map.

Lemma 3.2 ([15, Thm. 1.1 and Rem. 1.5]). Let q > d
2 + 1 and k ∈ N. Then

Hq+k(Rd,Rn) ×Dq(Rd) → Hq(Rd,Rn) , (f, ϕ) 7→ f ◦ ϕ ,

is a Ck-map.

Now we are ready to state and prove the main theorem for R
d.

Theorem 3.3. Let q > d
2 + 1, 0 ≤ l ≤ k and F : Hq(Rd,Rn) → Hq(Rd,Rm) be

a Dq(Rd)-equivariant Ck-map, i.e. F (u ◦ ϕ) = F (u) ◦ ϕ. Then F maps Hq+l into
Hq+l and F : Hq+l(Rd,Rn) → Hq+l(Rd,Rm) is a Ck−l-map.
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Proof. The proof is split into several steps.
Step 1. If F : Hq → Hq is C1, then F : Hq+1 → Hq+1 is C0.

Let (Ωi)i∈N be a uniformly localy finite cover of Rd by open balls, (ωi)i∈N a sub-
ordinate smooth partition of unity with uniformly (in i) bounded derivatives, and
h1, . . . , hd a basis of Rd. Then an equivalent norm for Hq(Rd,Rn) is given by

(2) ‖u‖Hq ∼ ‖u‖Hq−1 +

d
∑

j=1

∑

i∈N

‖ωiDu.hj‖Hq−1 ;

see [24, Sect. 7.2.2].
Let ψt = exp(t.ωi.hj) be the one-parameter subgroup generated by ωi.hj , i.e., ψt

satisfies the ODE ∂tψt = ωi.hj ◦ ψt. The existence of ψt – nontrivial since Dq(Rd)
is not a Lie group – is shown for example in [8, Thm. 4.4]. Then by Lem. 3.2 the
map

R×Hq+1 → Hq , (t, u) 7→ u ◦ ψt

is C1. Now fix u ∈ Hq+1 and consider the identity F (u ◦ ψt) = F (u) ◦ ψt. Both
sides of the identity are C1 as maps R → Hq−1 and by differentiating at t = 0 we
obtain the identity

DF (u).Du.ωihj = D (F (u)) .ωihj ,

We can estimate the Hq-norm of the right hand side via the left hand side,

‖ωiD (F (u)) .hj‖Hq ≤ ‖DF (u)‖L(Hq,Hq)‖ωiDu.hj‖Hq ,

and hence we see using the equivalent Hq-norm (2) that

(3) ‖F (u)‖Hq+1 . ‖F (u)‖Hq + ‖DF (u)‖L(Hq,Hq)‖u‖Hq+1 .

This shows that F (u) ∈ Hq+1, provided u ∈ Hq+1. Regarding continuity we can
show in the same manner the estimate

(4) ‖F (u) − F (v)‖Hq+1 . ‖F (u) − F (v)‖Hq+

+ ‖DF (u) −DF (v)‖L(Hq ,Hq)‖u‖Hq+1 + ‖DF (v)‖L(Hq ,Hq)‖u− v‖Hq+1

for u, v ∈ Hq+1, from which the continuity of F : Hq+1 → Hq+1 follows.
Step 2. If F : Hq → Hq is a Ck-map, then F : Hq+k−1 → Hq+k−1 is C1 and

F : Hq+k → Hq+k is C0.
We will show this together with the explicit estimates

‖F (u) − F (v)‖Hq+k .

k
∑

j=0

‖DjF (u) −DjF (v)‖Lj(Hq ,Hq) +(5)

+ ‖DjF (v)‖Lj(Hq ,Hq)‖u− v‖Hq+k

‖DF (v)‖L(Hq+k−1,Hq+k−1) .

k
∑

j=0

‖DjF (v)‖Lj(Hq ,Hq) ,(6)

which are valid for u, v in a bounded Hq+k-ball, using induction on k.
For k = 1 this is step 1. Now assume the statement has been shown for k

and let F : Hq → Hq be Ck+1. Then DF ∈ Ck(Hq,L(Hq, Hq)) and thus also
DF ∈ Ck(Hq×Hq, Hq). Since Hq(Rd,Rn)×Hq(Rd,Rn) ∼= Hq(Rd,R2n), we obtain
by induction that DF ∈ C1(Hq+k−1, Hq+k−1) and DF ∈ C(Hq+k ×Hq+k, Hq+k).
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We now take v, w ∈ Hq+k lying in a bounded Hq+k-ball and apply (3) to obtain

‖DF (v).w‖Hq+k . ‖DF (v).w‖Hq+k−1 + ‖D2F (v).w‖L(Hq+k−1 ,Hq+k−1)

. ‖DF (v)‖L(Hq+k−1,Hq+k−1) +
k

∑

j=0

‖Dj+1F (v).w‖Lj(Hq,Hq)

.

k+1
∑

j=0

‖DjF (v)‖Lj(Hq ,Hq) .

From this we obtain

‖DF (v)‖L(Hq+k ,Hq+k) .

k+1
∑

j=0

‖DjF (v)‖Lj(Hq ,Hq) ,

which completes the induction for (6).
The induction assumption (5) applied to the Ck-mapDF shows that for u, v, w ∈

Hq+k, lying in a bounded Hq+k-ball,

‖DF (u).w −DF (v).w‖Hq+k .

.

k
∑

j=0

‖Dj+1F (u).w −Dj+1F (v).w‖Lj(Hq,Hq)

+ ‖Dj+1F (u).w‖Lj(Hq,Hq)‖u− v‖Hq+k

.

k+1
∑

j=1

‖DjF (u) −DjF (v)‖Lj(Hq ,Hq) + ‖DjF (v)‖Lj(Hq ,Hq)‖u− v‖Hq+k ;

here we have used the module property of Sobolev spaces. Therefore DF ∈
C(Hq+k,L(Hq+k, Hq+k)) with

(7) ‖DF (u) −DF (v)‖L(Hq+k ,Hq+k) .

.

k+1
∑

j=1

‖DjF (u) −DjF (v)‖Lj(Hq,Hq) + ‖DjF (v)‖Lj(Hq ,Hq)‖u− v‖Hq+k

Since also F ∈ Ck(Hq, Hq), by induction F ∈ C(Hq+k, Hq+k). Now we can apply
Lem. 2.2 to obtain that F ∈ C1(Hq+k, Hq+k) and hence by step 1, we have F ∈
C(Hq+k+1, Hq+k+1) together with the estimate,

‖F (u) − F (v)‖Hq+k+1 . ‖F (u) − F (v)‖Hq+k + ‖DF (u) −DF (v)‖L(Hq+k ,Hq+k)

+ ‖DF (v)‖L(Hq+k,Hq+k)‖u− v‖Hq+k+1 .

Now we combine the induction assumption (5) and the estimates (7) and (6) to
obtain

‖F (u) − F (v)‖Hq+k+1 .

k+1
∑

j=0

‖DjF (u) −DjF (v)‖Lj(Hq ,Hq) +

+ ‖DjF (v)‖Lj(Hq ,Hq)‖u− v‖Hq+k+1 .

This concludes the induction.
Step 3. If F : Hq → Hq is Ck, then F : Hq+l → Hq+l is Ck−l.

The case l = 0 is trivial and the case l = k was proven in step 2. Now let 1 ≤ l ≤ k.
We consider DjF as a map DjF : Hq(Rd,R(j+1)n) → Hq(Rd,Rm). Then the maps

F,DF,D2F, . . . , Dk−lF : Hq → Hq are at least Cl .
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Thus by step 2 we have

F,DF,D2F, . . . , Dk−lF : Hq+l → Hq+l are C0 ,

and we have the additional inequality for 0 ≤ j ≤ k − l and u, v in a bounded
Hq+l-ball,

‖DjF (u) −DjF (v)‖Lj(Hq+l,Hq+l) .

l
∑

j=0

‖Dl+jF (u) −Dl+jF (v)‖Ll+j(Hq,Hq) +

+ ‖Dl+jF (v)‖Ll+j(Hq ,Hq)‖u− v‖Hq+l ,

which shows DjF ∈ C(Hq+l,Lj(Hq+l, Hq+l)). Thus by Lem. 2.2 we obtain F ∈
Ck−l(Hq+l, Hq+l). This concludes the proof. �

Remark 3.4. All the arguments in the proof of the theorem are local in nature,
i.e. the one-parameter subgroups exp(t.ωi.hj) are only considered around t = 0, the
estimates for ‖F (u)−F (v)‖Hq+k and ‖DF (v)‖Hq+k−1 are only required to hold for
u, v in bounded balls and the statement about differentiability itself is local. Hence
the theorem can also be proven for functions defined on open subsets of Sobolev
spaces.

Corollary 3.5. Let q > d
2 + 1, 0 ≤ l ≤ k, V ⊆ Hq(Rd,Rn) an open subset and

F : V → Hq(Rd,Rm) a Dq(Rd)-equivariant Ck-function, i.e. F (u ◦ ϕ) = F (u) ◦ ϕ
for q ∈ Dq(Rd), whenever u, u ◦ ϕ ∈ V . Then F maps U = V ∩ Hq+l into Hq+l

and F : U → Hq+l(Rd,Rm) is a Ck−l-map.

4. Dq(M)-equivariant Maps

In this section we assume that M is a d-dimensional compact manifold and N,P
are n- and m-dimensional manifolds respectively, both without boundary.

To define the spaces Hq(M,N) we require q > d
2 . A continuous map f : M →

N belongs to Hq(M,N), if around each point x ∈ M , there exists a chart χ :
U → U ⊆ R

d of M and a chart η : V → V ⊆ R
n of N around f(x), such that

η ◦ f ◦ χ−1 ∈ Hq(U,Rn). When N = R
n, then Hq(M,Rn) is the Sobolev space

of functions on a manifold and the condition q > d
2 is not necessary; see [2]. In

general Hq(M,N) is not a vector space, but Hq(M,N) can be given the structure
of a C∞-smooth Hilbert manifold; this was done first in [12, 21] and a different but
compatible differentiable structure is described in [15].

For q > d
2 + 1 the diffeomorphism group Dq(M) can be defined by

Dq(M) = {ϕ ∈ Hq(M,M) : ϕ bijective, ϕ−1 ∈ Hq(M,M)}

= {ϕ ∈ Hq(M,M) : ϕ ∈ Diff1
+(M)} ,

and Diff1(M) denotes the group of C1-diffeomorphisms of M . The diffeomorphism
group is an open subset of Hq(M,M) and it is a topological group.

We will need the following result on the boundedness of pointwise multiplications
and the regularity of the composition map.

Lemma 4.1 ([15, Lem. 2.13 and Sect. 3]). Let q, r ∈ R with q > d
2 and 0 ≤ r ≤ q.

Then pointwise multiplication

Hq(M,R) ×Hr(M,R) → Hr(M,R) , (f, g) 7→ f · g ,

is a bounded bilinear map.

Lemma 4.2 ([15, Thm. 1.2 and Rem. 1.5]). Let q > d
2 + 1 and k ∈ N. Then

Hq+k(M,N) ×Dq(M) → Hq(M,N) , (f, ϕ) 7→ f ◦ ϕ ,

is a Ck-map.
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Now we can state the analogue of Thm. 3.3 for Sobolev spaces on manifolds and
Dq(M)-equivariant maps.

Theorem 4.3. Let q > d
2 + 1, 0 ≤ l ≤ k and F : Hq(M,N) → Hq(M,P ) be a

Dq(M)-equivariant Ck-map, i.e. F (u ◦ ϕ) = F (u) ◦ ϕ. Then F maps Hq+l into
Hq+l and F : Hq+l(M,N) → Hq+l(M,P ) is a Ck−l-map.

Proof. Step 1. Reduction to N = R
n and P = R

m.
Using Whitney’s embedding theorem we can embed N and P into Euclidean space.
Let N0 ⊆ R

n0 be a tubular neighborhood of N in R
n0 and denote by ιN : N → N0

and rN : N0 → N the inclusion and retraction maps. Similarly we introduce the
tubular neighborhood P0 ⊆ R

m0 of P and the maps ιP and rP . Then we extend F
to the map F0 : Hq(M,N0) → Hq(M,P0) via the following commutative diagram

Hq(M,N)
F // Hq(M,P )

u7→ιP ◦u

��
Hq(M,N0)

u7→rN◦u

OO

F0

// Hq(M,P0)

The extension F0 is again Dq(M)-equivariant, since

F0(u ◦ ϕ) = ιP ◦ F (rN ◦ u ◦ ϕ) = ιP ◦ F (rN ◦ u) ◦ ϕ = F0(u) ◦ ϕ .

We note that Hq(M,N0) and Hq(M,P0) are open subsets of Hq(M,Rn0) and
Hq(M,Rm0) respectively. If the theorem is proven in the case, when N and
P are the Euclidean space, then together with Rem. 4.4 this shows that F0 :
Hq+l(M,N0) → Hq+l(M,P0) is Ck−l. Now we write

F (u) = rP ◦ ιP ◦ F (rN ◦ ιN ◦ u) = rp ◦ F0(ιN ◦ u) .

Since composition from the left with C∞-functions rP , ιN are C∞-maps on Sobolev
spaces, it follows that F : Hq+l(M,N) → Hq+l(M,P ) is Ck−l.

For the rest of the proof we will assume that N = R
n and P = R

m.
Step 2. If F : Hq → Hq is C1, then F : Hq+1 → Hq+1 is C0.

Choose smooth vector fields X1, . . . , XA ∈ X(M) such that

span{X1(x), . . . , XA(x)} = TxM ,

for all x ∈M . Then an equivalent norm for Hq(M,Rn) is given by

‖u‖Hq ∼ ‖u‖Hq−1 +

A
∑

j=1

‖Tu.Xj‖Hq−1 .

Let ψt = exp(t.Xj), where exp denotes the Lie group exponential on Dq(M).
Then t 7→ ψt is a one-parameter subgroup and the map

R×Hq+1 → Hq , (t, u) 7→ u ◦ ψt

is C1. Now fix u ∈ Hq+1 and consider the identity F (u ◦ ψt) = F (u) ◦ ψt. Both
sides of the identity are C1 as maps R → Hq−1 and by differentiating at t = 0 we
obtain the identity

DF (u).(Tu.Xj) = T (F (u)) .Xj ,

We can estimate the Hq-norm of the right hand side via the left hand side,

‖T (F (u)) .Xj‖Hq ≤ ‖DF (u)‖L(Hq,Hq)‖Tu.Xj‖Hq ,

and hence we see using the Hq-norm from above that

‖F (u)‖Hq+1 . ‖F (u)‖Hq + ‖DF (u)‖L(Hq,Hq) .‖u‖Hq+1
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This shows that F (u) ∈ Hq+1, provided u ∈ Hq+1. Regarding continuity we can
show in the same manner the estimate

‖F (u) − F (v)‖Hq+1 . ‖F (u) − F (v)‖Hq+

+ ‖DF (u) −DF (v)‖L(Hq ,Hq)‖u‖Hq+1 + ‖DF (v)‖L(Hq ,Hq)‖u− v‖Hq+1

for u, v ∈ Hq+1, from which the continuity of F : Hq+1 → Hq+1 follows.
The rest of the proof follows in the same way as steps 2 and 3 of the proof of

Thm. 3.3. �

Remark 4.4. As in the previous section, all the arguments in the proof of the
theorem are local in nature, i.e. the one-parameter subgroups exp(t.ωi.hj) are
only considered around t = 0 and the statement about differentiability itself is
local. Hence the theorem continues to hold for functions defined on open subsets
of Sobolev spaces and because the local version is used implicitely in the proof we
state it below.

Corollary 4.5. Let q > d
2 + 1, 0 ≤ l ≤ k, V ⊆ Hq(M,N) an open subset and F :

V → Hq(M,P ) a Dq(M)-equivariant Ck-map, i.e. F (u ◦ ϕ) = F (u) ◦ ϕ, whenever
u, u ◦ ϕ ∈ V . Then F maps U = V ∩Hq+l into Hq+l and F : U → Hq+l(M,P ) is
a Ck−l-map.

5. Geodesic Boundary Value Problem on the Diffeomorphism Group

In this section we assume that M is Rd or a compact manifold without boundary
of dimension d and q ∈ R with q > d

2 + 1.
The group Dq(M) introduced in the previous sections is a smooth Hilbert mani-

fold and a topological group. Let G be a smooth right-invariant metric on Dq(M),
i.e.

Gϕ(X,Y ) = 〈X ◦ ϕ−1, Y ◦ ϕ−1〉 ,

for some fixed inner product 〈·, ·〉 on X
q(M) and X,Y ∈ TϕD

q(M). Note that
〈·, ·〉 does not necessarily have to induce the Sobolev topology on X

q(M). If the
geodesic spray of the metric is a smooth vector field on TDq(M), then it admits an
exponential map

Exp : TDq(M) ⊇ U → Dq(M) ,

defined on an open neighborhood U of the zero section. Because the metric is right-
invariant, the geodesic spray and the exponential map are Dq(M)-equivariant, i.e.

Exp(X ◦ ψ) = Exp(X) ◦ ψ ,

holds for X,X ◦ ψ ∈ U .
Because Dq(M) is not a Lie group – in particular the inverse map ϕ 7→ ϕ−1 is

continuous but not differentiable – not every inner product 〈·, ·〉 leads to a smooth
right-invariant metric G. Similarly, because the topology induced by the metric
can be weaker than the manifold topology, not every smooth metric admits an
exponential map. Hence the assumption, that G is a smooth metric with a smooth
exponential map, are nontrivial.

5.1. Metrics with smooth sprays. At this point we should give examples of
metrics to which this discussion applies.

Let (M, g) be a compact Riemannian manifold and dµ the induced volume form.
It is shown in [14] that the geodesic spray of the H1-metric

〈u, v〉 =

∫

M

g(u, v) + g(∇u,∇v) dµ

is smooth on Dq(M). In [20] the smoothness of the spray is shown for a more general
family of H1-metrics, defined using the Hodge decomposition of vector fields.
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If n > d
2 + 1 is an integer and

A = (Id +∆n) or A = (Id +∆)n ,

where ∆u = (δdu♭ + dδu♭)♯ is the positive definite Hodge Laplacian or some other
combination of intrinsically defined differential operators with smooth coefficient
functions, such that A is positive and elliptic, then the metric induced by the inner
product

〈u, v〉 =

∫

M

g(Au, v)dµ ,

is smooth on Dn(M); see [11] and [19] for details.
Let M = R

d and A be a Fourier multiplier of order 2s ≥ 1 with s ∈ R, i.e.

F (Au) (ξ) = a(ξ)Fu(ξ) ,

for some function a(ξ) satisfying certain asymptotic and ellipticity conditions, then
the metric induced by the inner product

〈u, v〉 =

∫

Rd

Au · v dx ,

is smooth on Dq(Rd) provided q ≥ s and q > d
2 + 1. The same is true for metrics

defined by Fourier multipliers on Dq(S1); see [4] and [13].

5.2. Initial value problem. The smoothness and equivariance of the exponential
map together imply via Thm. 4.3 that for k ≥ 0 the map

Exp : U ∩ TDq+k(M) → Dq+k(M)

is also smooth. To see that we can apply the theorem note that THq(M,M) =
Hq(M,TM) and hence TDq(M) ⊂ Hq(M,TM) is an open subset. This also holds
in the smooth category (k = ∞) and the map

Exp : U ∩ T DiffH∞(M) → DiffH∞(M)

is smooth. When M is compact DiffH∞(M) = Diff(M) is the group of smooth
diffeomorphisms; for M = R

d it is the intersection DiffH∞(Rd) =
⋂

k> q

2
+1 D

q(Rd).

This can be interpreted as a “no loss of regularity”-result for the geodesic equa-
tion on Dq(M). If the initial conditions ϕ0, X0 of a geodesic are of class Hq+k

with k ≥ 0, then the whole geodesic ϕ(t) = Exp(t.X0) is also of class Hq+k. In
other words, the geodesic is at least as smooth as its initial conditions. Because
the geodesic equation can be solved forward and backward in time we also have a
version of a “no loss of regularity”-result: if for some time t > 0, both ϕ(t) and
∂tϕ(t) are of class Hq+k, then the initial conditions ϕ0, X0 must already be of class
Hq+k

The property of the exponential map to preserve smoothness was first observed
in [11]; for a detailed exposition see [13]. However, for the proofs in the above
references one needs to know a priori that for a given metric the geodesic spray is
smooth on all groups Dq+k(M) with k ∈ N. One advantage of Thm. 4.3 is that
the smoothness of the spray on Dq(M) alone already implies its smoothness on
Dq+k(M) for all k ≥ 0.

5.3. Boundary value problem. Of interest is the following inverse problem:
given a geodesic, is the initial velocity at least as smooth as the boundary dif-
feomorphisms?

If ϕ(t) is a geodesic in Dq(M) and ϕ(0), ϕ(1) ∈ Dq+k(M) for some k ≥ 0, does
it follow that ϕ(t) ∈ Dq+k(M) for 0 < t < 1? Note that this is different from the
“no loss of regularity”-result above, which required both ϕ(1) and ∂tϕ(1) to be of
class Hq+k. We provide an affirmative answer under the assumption that ϕ(0) and
ϕ(1) are nonconjugate along ϕ(t).
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A first answer was given in [16] for Hk-metrics (k ≥ 1 on Dq(S1 × S1) with q
sufficiently large, provided the geodesic remains in a sufficiently small neighborhood
around the identity. The following application of Thm. 4.3 allows us to extend this
result to a wider class of metrics on compact manifolds with fewer restrictions on
the order and the geodesic.

Proposition 5.4. Let G be a smooth right-invariant metric on Dq(M) with a
smooth exponential map Exp : TDq(M) ⊇ U → Dq(M) and ϕ0, ϕ1 ∈ Dq(M),
X ∈ Tϕ0

Dq(M). If ϕ1 = Exp(X) and ϕ0, ϕ1 ∈ Dq+k(M) for some k ≥ 0 and
πDq(M) × Exp : TDq(M) → Dq(M) × Dq(M) is locally invertible around X, then

X ∈ TDq+k(M).

Proof. We have πDq(M) × Exp(X) = (ϕ0, ϕ1). Let

Log : V0 × V1 → TDq(M)

be the local inverse of πDq(M) × Exp with Vi ⊆ Dq(M) an open neighborhood of
ϕi. Because Exp and πDq(M) are Dq(M)-equivariant, so is Log,

Log(η0 ◦ ψ, η1 ◦ ψ) = Log(η0, η1) ◦ ψ ,

for ηi ∈ Vi and ψ ∈ Dq(M) such that ηi ◦ ψ ∈ Vi. Now we apply Thm. 4.3 – note
that Log is a C∞-function – to conclude that

Log :
(

V0 ∩ Dq+k(M)
)

×
(

V1 ∩ Dq+k(M)
)

→ TDq+k(M)

is also a C∞-function. Since ϕ0, ϕ1 ∈ Dq+k(M), we obtain that X = Log(ϕ0, ϕ1) ∈
TDq+k(M). �

For a C∞-smooth exponential map we can also make a statement about the group
Diff(M) of C∞-smooth diffeomorphisms. If M = R

d, then we have to consider the
group DiffH∞(Rd) =

⋂

q> d
2
+1 D

q(Rd) of diffeomorphisms that decay to Id like an

H∞-function.

Corollary 5.5. Let G be a smooth right-invariant metric on Dq(M) with a smooth
exponential map. If ϕ0, ϕ1 ∈ Diff(M) (or DiffH∞(Rd) for M = R

d) are nonconju-
gate along the geodesic ϕ(t), then ϕ(t) ∈ Diff(M) for all t ∈ [0, 1].

Proof. The geodesic is given by ϕ(t) = Exp(t∂tϕ(0)) and Prop. 5.4 shows that
∂tϕ(0) ∈ Tϕ0

Diff(M). Hence ϕ(t) ∈ Diff(M) as well. �

6. Geodesic Boundary Value Problem on Imm(S1,Rd)

We can apply the same idea to show a result about the regularity of the geodesic
boundary value problem on the space of curves. Let d ≥ 2. We consider the space

Imm(S1,Rd) =
{

c ∈ C∞(S1,Rd) : c′(θ) 6= 0 , ∀θ ∈ S1
}

of immersions or smooth regular curves and for q > 3/2 also the space of Sobolev
curves

Iq(S1,Rd) =
{

c ∈ H1(S1,Rd) : c′(θ) 6= 0 , ∀θ ∈ S1
}

,

together with the family of reparametrization invariant Sobolev metrics

Gc(h, k) =

∫

S1

a0〈h, k〉 + · · · + an〈D
n
s h,D

k
s 〉ds ;

here Dsh = 1
|c′|h

′ and ds = |c′| dθ denote differentiation and integration with re-

spect to arc-length respectively. The coefficients aj ≥ 0 are assumed to be constant
with a0, an > 0, n is the order of the metric and h, k ∈ Tc Imm(S1,Rd) are tangent
vectors at c.

The space Imm(S1,Rd) is an open set in the Fréchet space C∞(S1,Rd) with
respect to the C∞-topology and Iq(S1,Rd) is open in Hq(S1,Rd). As open subsets
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of vector spaces the tangent bundles of the spaces Imm(S1,Rd) and Iq(S1,Rd) are
trivial,

T Imm(S1,Rd) ∼= Imm(S1,Rd) × C∞(S1,Rd)

TIq(S1,Rd) ∼= Iq(S1,Rd) ×Hq(S1,Rd) .

Sobolev metrics on curves were first introduced in [9, 18, 23]. They were gener-
alized to immersed higher-dimensional manifolds in [5]. See [3] for an overview of
their properties and how they relate to other metrics used in shape analysis.

For n ≥ 2 the metric G of order n can be extended to a smooth Riemannian
metric on In(S1,Rd); then (In(S1,Rd), G) is a strong Riemannian manifold and
G is Dn(S1)-invariant. This was first observed in [7, p. 3.2].

A Dn(S1)-invariant metric has a Dn(S1)-invariant spray and therefore the ex-
ponential map

Exp : In(S1,Rd) ×Hn(S1,Rd) → In(S1,Rd)

is Dn(S1)-equivariant. It is shown in [7, Thm. 5.5] and [6, Thm. 4.3] that the
manifold (In(S1,Rd), G) is geodesically complete and hence Exp is defined globally.
Thus Thm. 4.3 implies the following.

Proposition 6.1. Let n ≥ 2 and G be a Sobolev metric of order n with constant
coefficients. Then for all k ≥ 0,

Exp : In+k(S1,Rd) ×Hn+k(S1,Rd) → In+k(S1,Rd)

is a C∞-map. In particular, if c0 ∈ In+k(S1,Rd) and u ∈ Hn+k(S1,Rd), then
Exp(c0, u) ∈ In+k(S1,Rd).

The proposition also holds for smooth curves, i.e. k = ∞.

This proposition has been proven directly in [7, Thm. 3.7.] and under slightly
stronger assumptions in [17, Thm. 4.3.]. Informally it states that the geodesic with
respect to a Sobolev metric is at least as smooth as the initial curve and initial
velocity. We are interested in the reverse implication: is the initial velocity of a
geodesic at least as smooth as both endpoints? While we cannot give an uncondi-
tionally affirmative answer, we can do so under the assumption that the endpoints
are non-conjugate along the given geodesic.

Proposition 6.2. Let n ≥ 2 and G be a Sobolev metric of order n with constant
coefficients. If c1 = Exp(c0, u) and c0, c1 ∈ In+k(S1,Rd) for some k ≥ 0 and
Du Exp(c0, u) : Tc0I

n → Tc1I
n is invertible, then u ∈ Hn+k(S1,Rd).

Proof. The Riemannian metric G is Dn(S1)-invariant and so its exponential map

Exp : TIn(S1,Rd) → In(S1,Rd)

is Dn(S1)-equivariant,

Exp(c ◦ ϕ, v ◦ ϕ) = Exp(c, v) ◦ ϕ ,

for v ∈ TcI
n(S1,Rd) and ϕ ∈ Dn(S1). Since Du Exp(c0, u) is assumed to be

invertible, it follows that the map IdIn ×Exp : In × Hn → In × In is locally
invertible around (c0, u). Let

Log : U0 × U1 → In(S1,Rd) ×Hn(S1,Rd)

be the local inverse, with Ui ⊆ In(S1,Rd) an open neighborhood of ci. Because
Exp and IdIn are Dn(S1)-equivariant, so is Log,

Log(c0 ◦ ϕ, c1 ◦ ϕ) = Log(c0, c1) ◦ ϕ ,
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for ci ∈ Ui and ϕ ∈ Dn(S1) such that ci ◦ ϕ ∈ Ui. Now we apply Thm. 4.3 – note
that Log is a C∞-function – to conclude that

Log :
(

U0 ∩ In+k(S1,Rd)
)

×
(

U1 ∩ In+k(S1,Rd)
)

→ In+k(S1,Rd) ×Hq+k(S1,Rd)

is also a C∞-function. Since we assumed that c0, c1 ∈ In+k(S1,Rd), we obtain that
u = π2 ◦ Log(c0, c1) ∈ Hn+k(S1,Rd). �

If c0 ∈ In+k(S1,Rd) and u ∈ Hn+k(S1,Rd), then the Dn(S1)-invariance of the
exponential map implies that the whole geodesic c(t) = Exp(c0, t.u) is Hn+k-regular
as well. Furthermore the above proposition remains valid for k = ∞.

Corollary 6.3. Let n ≥ 2 and let G be a Sobolev metric of order n with constant
coefficients. If c0, c1 ∈ Imm(S1,Rd) are non-conjugate along the geodesic c(t) in
In(S1,Rd), then c(t) ∈ Imm(S1,Rd) for all t.

It was shown in [6, Thm. 5.2.] that any two curves in the same connected com-
ponent of In(S1,Rd) can be joined by a minimizing geodesic. The above corollary
shows that in the space Imm(S1,Rd) of smooth curves minimizing geodesics exist
at least on an open neighborhood of the diagonal in Imm(S1,Rd) × Imm(S1,Rd).
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