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Abstract

Optimization problems are vital in physical sciences, commercial and finance

matters. In a nutshell, almost everyone is the stake-holder in certain optimiza-

tion problems aiming at minimizing the cost of production and losses of system,

and also maximizing the profit. In control systems, the optimal configuration

problems are essential that have been solved by various newly developed meth-

ods. The literature is exhaustively explored for an appropriate optimization

method to solve such kind of problems.

Particle Swarm Optimization is found to be one of the best among several

optimization methods by analysing the experimental results. Two novel PSO

variants are introduced in this thesis. The first one is named as N State Markov

Jumping Particle Swarm Optimization, which is based on the stochastic tech-

nique and Markov chain in updating the particle velocity. We have named

the second variant as N State Switching Particle Swarm Optimization, which

is based on the evolutionary factor information for updating the velocity. The

proposed algorithms are then applied to some widely used mathematical bench-

mark functions. The statistical results of 30 independent trails illustrate the

robustness and accuracy of the proposed algorithms for most of the benchmark

functions. The better results in terms of mean minimum evaluation errors and

the shortest computation time are illustrated.

In order to verify the satisfactory performance and robustness of the proposed

algorithms, we have further formulated some basic applications in power system

operations. The first application is about the static Economic Load Dispatch



and the second application is on the Dynamic Economic Load Dispatch. These

are highly complex and non-linear problems of power system operations con-

sisting of various systems and generator constraints. Basically, in the static

Economic Load Dispatch, a single load is considered for calculating the cost

function. In contrast, the Dynamic Economic Load Dispatch changes the load

demand for the cost function dynamically with time. In such a challenging and

complex environment the proposed algorithms can be applied. The empirical

results obtained by applying both of the proposed methods have substantiated

their adaptability and robustness into the real-world environment. It is shown

in the numerical results that the proposed algorithms are robust and accurate

as compared to the other algorithms. The proposed algorithms have produced

consistent best values for their objectives, where satisfying all constraints with

zero penalty.
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Introduction



Chapter 1. 2 Introduction

1.1 Motivation of the Research

The importance of research has been revealed fifteen hundred years ago referring to the

explanation of Quranic verse as follows:

“Observe! In the creation of the heavens and the earth; in the alternation of the night

and the day; in the sailing of the ships through the ocean for the benefit of mankind; in

the rain which Allah sends down from the skies, and the life which He gives therewith to

an earth that is dead; in the beasts of all kinds that He scatters through the earth; in the

change of the winds, and the clouds which they trail like their slaves between the sky and

the earth – (Here) indeed are signs for people that are wise. (Surah Al-Baqarah, 2:164)”

To get the ball rolling, we present the topic of optimization. In general term, opti-

mization is concerned with the life of everyone in the real-world, which is an individual

problem or a community one. The basic idea is about minimization or maximization of

an objective according to the constraints applied to the problem. Furthermore, a partic-

ular solver is selected by studying the nature of the problem. First of all, the problem

has to be categorized into a specific class. The categorization is further based on mathe-

matical and analytical grounds. The main categories are commonly known as linear and

non-linear, static and dynamic, convex and non-convex, smooth and non-smooth. These

terms are sometimes used interchangeably, however, each one has its own meaning and

background. The problems that have linearity, differentiability and smoothness in the ob-

jective functions are relatively simple and easy to solve. In contrast, non-linear, non-convex

and non-differentiable functions are much more challenging. Subsequently, the solutions

are categorized into two cases. The first case is the classical or conventional methods com-

monly used for linear type and differentiable problems. The use of classical methods is

discouraged by conditional entailment to the problem. The second case is about heuristic

methods. These methods imitate the process of learning behaviour of animals such as

birds, fish, bees and other natural phenomenon. These methods are very effective, when

used to solve many real-world problems. The solution is not guaranteed to be a true opti-

mum, however, an approximate or near optimum solution is always produced. Moreover,

stochastic or randomized terms have been introduced and explored in detail with the appli-

cations in the real-world problems. An optimum is predicted with a certain probability by

randomly searching in the boundary space. Genetic Algorithm (GA), Evolutionary Com-

putation (EC), Simulated Annealing (SA), Tabu Search (TS), Hill Climbing (HC), Ant

Bee Colony (ABC) and Particle Swarm Optimization (PSO) algorithms have been applied

to solve real-world problems Chapter 2. Furthermore, all the above heuristic methods have

their strengths and weaknesses. The one which is most commonly used is GA, which has
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its own characteristics to find the optimal solution for complex problems. However, there

are some limitations concerned with GA, that are also common in other heuristic methods.

The GA has the complicated implementation procedure, where the best optimum value is

dependant on the initial population or initial state. An excessive number of evaluations are

required for a specific problem and sometimes the algorithm takes days to compile results.

These limitations makes GA inefficient and unattractive.

Particle Swarm Optimisation (PSO) is a population based technique first developed in

1995 by Kennedy and Eberhart [36; 37]. The idea is taken from fish schooling, birds flock-

ing, and the learning behaviour of each individual in the swarm. The population of fish,

birds, or agents is called swarm. It has further generalized the area for research as swarm

intelligence. Each member of the swarm is a candidate solution, which is named as particle

here. The main characteristics of PSO algorithm are its simple structure, easy implemen-

tation and quick convergence. PSO algorithm has widely been used by many researchers

for various engineering optimization problems. It has also been used for artificial neural

networks training. PSO has been developed with the intention to address the limitations

of the existing methods, particularly GA. PSO algorithm has the simple structure and easy

implementation procedure. Two main terms velocity and position are used which controls

the flow of entire algorithm with the help of cognitive, social and inertia weight parame-

ters. The simple structure, easy implementation and quick convergence have enchanted the

greater part of the research community. It has been investigated by applying to numerous

real-world problems. The strengths and limitations of PSO algorithms have been high-

lighted as the motivations for further improvements. The basic PSO algorithm has been

gradually modified and improved in many aspects. Some other additional stochastic and

mathematical methods have been involved to obtain the maximum performance of PSO

algorithm. However, each variant is designed with a specific mechanism for an individual

problem. It may produce better results for a specific problem with current parameters

settings. However, some adjustment will be required to fit into other problems. In order

to investigate the strength of modified PSO algorithms, complex and dynamic problems in

the real-world have also to be evaluated. The power system is one of the world’s most im-

portant, huge, complex, and expensive systems. In our daily life, everyone needs electricity

and the main problem is the exponentially increasing demand for electricity production.

Extraordinary funds and time are needed to expand the capacity of power generation. In

this case, to obtain the maximum performance of the existing power generation system in

a reliable and affordable way is the primary task. Optimization is required in every part

of the power system. In this thesis, we consider the static ELD and Dynamic Economic

izaz
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Load Dispatch, which is part of the Unit Commitment problem.

In summary, the main emphasis of this thesis is the development of novel PSO algo-

rithms and later solve the complex and dynamic problems of power system operations. The

applications are used to test the diversity of newly developed algorithms in this complex

environment.

1.2 Goals of the Thesis

1.2.1 The state-of-the-art for Particle Swarm Optimization

In search of a suitable method for solving complex problems, meta-heuristics have been

widely explored and several algorithms have been developed in the last few decades.

Amongst all of algorithms, this study is focused on the state-of-the-art for Particle Swarm

Optimization (PSO) algorithm. As we have discussed briefly about the nature of com-

plex problems, dynamic optimization is a challenging task. Apart from the problem, PSO

algorithm has the capability of combining and merging other techniques into it. Modi-

fication for improvement in performance is always welcomed by researchers. In the last

two decades, many variants have been developed and many applications have been made.

Due to its simplicity, the PSO algorithm can be easily modified and implemented to many

different kinds of optimization problem.

The PSO algorithm has few parameters that are cognitive, social and inertia weights.

Each parameter has strong influence to control the movement of particle. The adjustment

of parameter is also a challenging task. Therefore, the recent research is focused on the

automatic parameter adaptation according to the dimensionality and nature of the prob-

lem. Basically, as a member of heuristics techniques family, PSO learns through the social

and personal learning behaviours. The second topic that has recently been considered

for improvement in the existing PSO algorithm is the topological improvement. It is our

basic concern to reduce computation complexity, computation time and also to simplify

implementation procedure. In our newly developed algorithms, we aim for satisfying the

aforementioned objectives.

In this section, some publications are considered to be the bases for research proposed

and developed in this thesis. In the following, we will present a serial connection of this

thesis to the existing methods.

The enhancement in speed of global convergence, and avoiding premature local conver-

gence are the main objectives to be achieved in the newly developed algorithms. Several

works have been conducted to achieve these objectives [1; 2; 3; 4]. In this development,
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adjusting the parameters of the algorithm, the association of auxiliary search operators and

augmenting topological structure have turned into the three most conspicuous approaches

[5]. Conversely, still, it has found to be challenging to achieve both the goals simulta-

neously. The comprehensive-learning PSO (CLPSO) [4] emphasises on the escaping from

local optima, but results in a slower convergence.

In the successive revisions of PSO algorithm, the prime objective that has been con-

sidered is to minimize the complexity in the algorithm. The problem of local optimum or

premature convergence has also been examined thoroughly in [1; 2; 3; 4]. The improved al-

gorithms have been further verified by doing some applications in real-world environment.

Due to the indeterminate, non-linear and complex nature of the real-world problems, there

is always a gap for enhancement in the current state algorithms. Apparent to that, the

auxiliary skills have been applied to control the parameters significantly [6; 7; 8]. The

topological structures have been developed to achieve the second objective to ensure global

optimum and avoid premature convergence [4].

Adaptive PSO (APSO) [7] has concentrated on the global convergence and topological

enhancement. The evolutionary factor Ef has further been added the population distribu-

tion characteristics via the mean distance between the global best and other particles in the

swarm. Four states, S1, S2, S3, and S4, have been described by taking population distri-

bution information Ef into account, which indicates convergence, exploration, exploitation

and jumping out states respectively. Fuzzy classification method has been used which has

resulted some limitations of 1). excessive computation of acceleration coefficients in each

generation, 2). swarm stagnation in the local optima if the current global best is the local

optimum, and 3). is the complicated implementation of classification method.

Switching PSO (SPSO) in [8] has been developed to further improve the search per-

formance of APSO algorithm and addressed all its limitations. A novel approach, the

Markovian switching has been used to avoid getting trapped in to local optima or prema-

ture convergence, and leader competitive penalized multi-learning approach (LCPMA) has

been used to improve global search performance [9]. Same four states as described in [7]

have been used here. However, a new mode-dependent technique with Markovian Jump-

ing parameters has been adopted in the velocity update equation to improve the search

performance. SPSO has produced promising results in [8; 9]. SPSO has been re-evaluated

in comparison with some other state-of-the-art algorithms on some benchmark problems.

It has been observed that SPSO is very problem specific, and it requires much parame-

ter adjustment to perform better in the dynamic environment or any other new problem.

However, to enhance the performance of SPSO, it has been further modified in this thesis
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by extending the concept of four states into N states.

1.2.2 Main Contributions in the Thesis

Several methods have been proposed to solve optimization problems. In the comparative

analysis some methods have performed better. Basically, to check the effectiveness of a spe-

cific method, significant computation capacity is required to complete a task in a complex

environment. Actually, by complex environment we refer to the real-world problem. How-

ever, steady growth have been observed in the development of a competent optimization

method. As far the selection of the real-world applications are concerned, we have chosen

static Economic Load Dispatch (ELD) and Dynamic Economic Load Dispatch (DELD).

These are the power systems operations problems of highly non-linear and complex nature.

Both of the problems have non-linear and non-smooth constraints with their objectives.

Basically, several algorithms have been already applied for the same type of problems, but

a robust and more accurate algorithm is a challenging task. Therefore, the main aim of this

thesis is to explore, examine and develop novel algorithms capable of solving a particular

real-world problem efficiently with more accurate and robust performance.

To show how we achieve the above mentioned aims and objectives, we summarise the

main contributions of this thesis as follows.

(I) The first contribution of this thesis is the development of a new algorithm named

as N State Markov Jumping Particle Swarm Optimization (NS-MJPSO). The pro-

posed algorithm is developed in the inspiration of a serial connection of algorithms,

that are APSO [7] and SPSO [8]. The further improvement of these algorithms and

extending their capability is the main concern in this thesis. Evolutionary concept,

population distribution, stochastic technique and Markov chain have been used. A

new mechanism of N states is proposed here. The better understanding of the prob-

lem nature is required to determine the number of states accurately. Where N can

take any value. Markov chain is introduced here to keep the particle moving in the

search space. Therefore, the problem of premature convergence is solved by the pro-

posed algorithm. The N number of acceleration coefficients are pre-defined and then

the appropriate coefficient value is assigned in each of the current states. The initial

transition probability Φ = 0.9 is set for the randomly chosen current state, and then

the next state is predicted. A mode-dependent switching parameter is introduced in

the velocity update equation of particle swarm optimization. The newly developed
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NS-MJPSO is then applied to some benchmark functions for validating the perfor-

mance. The simulation results have concluded the best overall performance of the

proposed algorithm.

(II) The second contribution of this thesis is the development of another new algorithm

named N State Switching Particle Swarm Optimization (NS-SPSO). The main idea

of the NS-SPSO is similar to the algorithm NS-MJPSO. In addition, with all the

advantages of stochastic NS-MJPSO algorithm, we have also observed some limita-

tions in the analysis of parameters experimental settings. For the use of NS-MJPSO,

we need some background knowledge of the problem in hand for optimization. For

example, how to set the jump probability and number of states N . The second

problem is the increasing computation time and complexity in NS-MJPSO. We can

apply NS-MJPSO with increased states when the main interest is the accuracy of

the result and the computation time is not very important. Therefore, to address

these limitations, in the new algorithm we exclude the stochastic term Markov chain

from the body of the algorithm. Yet the N states concept is still used. Time varying

concept is introduced for the measurement of inertia weight ω. NS-SPSO is based

on evolutionary technique. The resultant algorithm is applied to the same bench-

mark functions used for NS-MJPSO algorithm. The results are then compared with

various state-of-the-art PSO variants including NS-MJPSO algorithm. It has been

observed that the novel NS-SPSO has performed very well in comparison.

(III) As the third contribution, we have applied both of the algorithms, NS-MJPSO and

NS-SPSO to solve Static Economic Load Dispatch (ELD) problem. The main reason

and inspiration for applying new algorithms is the enormous application development

of basic PSO and its variants for ELD problems [10; 11; 12; 13]. Basically, ELD is

a complex, highly non-linear and non-smooth function. The main objective is to

minimize the total generation cost while meeting the load demand and satisfy the

constraints. Another recently published SL-PSO [14] has also been applied to the

same problem. The performance of all three algorithms is then evaluated by solving

several case studies having 6, 13, 15, 40, and 140 unit systems, which represents from

small and simple 6 to large and complicated 140 unit systems. Each case study has

its own dimensionality, maximum minimum capacity limits and other related data

settings. Promising results have been produced by all the three algorithms.

(IV) The fourth main contribution describes the application of the newly developed NS-

MJPSO and NS-SPSO algorithm in Dynamic Economic Load Dispatch (DELD)
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problems [15; 16; 17; 18]. The static ELD refers to the single load within the entire

compilation of the algorithm. Whereas, the DELD needs to change the load with

time. 24 hours dispatch is considered for this problem. Therefore, we have 24

different loads to be optimally and economically scheduled with the defined limits

and constraints of the system. Two case studies of 5, and 10 Unit system are

selected. The results of the algorithms shows that the proposed algorithms have

produced promising values for its objective with fast convergence.

1.3 Overview of the Chapters

The main work of thesis is organized chapter-wise in the following order:

Chapter 2: This chapter describes the exhaustive survey of the background literature related to

evolutionary computation, genetic algorithms, particularly the developmental studies

of PSO algorithm and its applications in many fields including power systems. The

main subject for literature is the categorized survey of PSO algorithm development

and their applications particularly in ELD and DELD problems in power system.

Chapter 3: This chapter provides the first method, the N State Markov Jumping Particle Swarm

Optimization (NS-MJPSO) algorithm. This algorithm is based on stochastic tech-

nique of Markov chain and evolutionary factors. The method is exhaustively evalu-

ated for various uni-modal and multi-modal benchmark functions and the results are

compared with the existing well-known PSO variants.

Chapter 4: This chapter presents the second method, the N State Switching Particle Swarm

Optimization (NS-SPSO) algorithm. This algorithm is based on the evolutionary

factors. The method is exhaustively evaluated for various uni-modal and multi-

modal benchmark functions and the results are compared with the NS-MJPSO and

other existing well-known PSO variants.

Chapter 5: This chapter introduces the first successful application of the newly developed two

algorithms NS-MJPSO and NS-SPSO, and also the recently published SL-PSO [14].

The problem for application is the static Economic Load Dispatch (ELD). With aim

to minimize the total generation cost while satisfying all constraints.

Chapter 6: This chapter introduces the second successful application of the newly developed two

algorithms NS-MJPSO and NS-SPSO. The problem for application is the Dynamic

Economic Load Dispatch (DELD). With aim to minimize the total generation cost

with the dynamically changing load demands while satisfying all constraints.
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Chapter 7: In this chapter, we conclude our thesis with the scope, limitations and the possible

future work.



Chapter 2

Background
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2.1 Introduction

Optimization is the real world problem, which can be defined as the minimization or

maximization of a function and satisfying some constraints on that function. To solve

such kind of problem, we model the real world problem mathematically. It has been

observed that some problems are linear, while some are non-linear by nature. Basically,

three different approaches have been adopted to solve certain optimization problems[19].

The first one is the deterministic approach which is based on the given initial condition

or initial assumption. The second approach is the analytic approach which is also defined

as the conventional approach of optimization. The analytical methods have the targets

pre-defined for a specific problem. These types of methods might fail to work when the

dimensionality of the problem increases dramatically. The third one is the stochastic

approach which can always find the near optimum solution. We further elaborate stochastic

approaches in the next section.

2.2 Stochastic Algorithms

The deterministic and analytical methods fail to find the optimal solution for high dimen-

sional problems. The stochastic approaches are adopted for such kind of problems [20].

These approaches find the approximate solution, or nearly optimum solution, which means

the global optimum is not guaranteed here. Stochastic approaches are very powerful in

nature comparatively. These methods are easy to implement and appropriate for com-

binatorial problems because these methods do not need the function to be differentiable

and continuous. Stochastic methods have the random probability distribution and these

methods are analysed statistically without guarantee to be precise. Various stochastic

algorithms have been developed for solving real world optimization problems, including

Simulated Annealing, Random Search, Hill Climbing, Tabu Search, and Evolutionary Al-

gorithms. These algorithms follow the same pattern for solving the problem iteratively.

These algorithms have the following steps:

1. The current solution or initial solution is randomly created.

2. The current solution is further modified to find new solution.

3. The new solution is then evaluated and compared with the current solution. If the

new solution is better than the current solution, we change the current solution to

the new solution; otherwise we keep the same value for the current solution.
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4. Repeat step 2 until the stopping criteria is met.

These methods require several iterations and perturbations to the initial random solu-

tion, which causes slow convergence, local optimum or premature convergence. To consider

these problems we further explore evolutionary algorithms.

2.3 Evolutionary Algorithms

In evolutionary algorithms we generalise the area as evolutionary computation. The evo-

lution is considered as a foundation term. Evolutionary algorithms are all based on pop-

ulation of candidate solutions, where the candidate solutions are randomly generated in

a finite search space. All the candidate solutions are evolved to find their possible opti-

mal solutions. There are several strategies and methods named as evolutionary process,

evolutionary strategies, evolutionary programming etc. These are all different methods,

having different processes. However, all of them are originated under the general term

of evolutionary computation. The initialization of the population is the first step of each

evolutionary computation algorithm. Numerous structures have been adopted to generate

and initialize population randomly in the search space. The next step is formulating an ob-

jective or fitness evaluation function. This function is used for the evaluation of the entire

population throughout the search space. Decisions are made on the basis of the derived

function evaluation values. Some candidate solutions are selected as parents to produce

new candidate solutions, called offspring or child. The process of evolution is described as

two different techniques, which are crossover and mutation. In crossover technique the bits

of parent candidates are twisted, exchanged, and recombined with each other to produce

an offspring. Mutation changes the bits of one parent and thus produces a new offspring.

The new population is generated through crossover and mutation. This new population

of offspring is then evaluated on the given evaluation function or fitness function until it

reaches its global optimum or maximum number of iterations.

Evolutionary algorithms have several reasons for being a suitable optimization method.

For instance, problem domain knowledge is represented to generate population within its

boundaries and dimensionality. We can also merge a conventional approach to evolutionary

algorithms to make it a robust optimization method. This can absorb the dynamic vari-

ations in the problem. The main advantage of evolutionary algorithms is the adaptation

of non-differentiable objective functions. The evolutionary algorithms were first proposed

in 1950s and were evolved slowly because of the absence of high performance computing.

However, the invention of less expensive and high speed processing power of computers has
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diverted researchers attention to evolutionary algorithms. The evolutionary algorithms are

further classified into four different techniques.

2.3.1 Evolutionary Programming

Fogel has developed evolutionary programming (EP) in 1966 [21; 22]. EP is used to find

the optimum of real valued functions. The mutation operator is first introduced. Hence,

the two basic operators Selection and Mutation are used. An individual candidate solution

is composed of a set of real valued trajectories. The trajectories of the candidate solution

represent the decision variables in the objective function and the parameters for mutation.

Tournament selection is adopted in EP. The best candidate solution is always maintained

for further iterations. Mutation is used by taking the uniform probability distribution. The

rate of mutation decreases as it comes close to the optimum. One offspring is produced

by one parent in every iteration. The N best offspring having the best fitness values are

selected for the next generation. EP has also been applied in power systems [23; 24].

2.3.2 Evolutionary Strategies

Rechenberg in 1970’s first introduced evolutionary strategies (ES) [25]. The ES adopts

problem-dependent representations, and this method also uses mutation and selection for

its search operations. ES is applied to real-valued search problems. There are two pairs

of the real valued vectors. One trajectory consists of problem parameters that need to be

considered for optimization, and the second consists of strategy parameters that are used

for the mutation control. Two strategies, comma and plus are used for the next generation.

Comma strategy describes, a portion of the offspring is presented to act as a parent in the

next generation. In this strategy some best candidate solutions are wasted. The second

strategy which is named as plus strategy operates the competition of parents and offspring

to be preserved in the next generation. Various researchers introduced some modified and

improved strategies regarding to ES, which develop the mutation operator by applying

normal distributed random numbers to the set of its parameters. Several applications of

ES have been presented in [26; 27; 28].
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2.3.3 Genetic Algorithm

Bremermann and John Holland are known as the pioneers of Genetic Algorithms (GA).

The idea is briefly described in [29; 30]. A lot of works have been done, and many variants

have been presented and published for further improvements in operations of GA, such

as structure for representation, creation of population, the selection criteria for a specific

population, the process of mutation, and the process of crossover. Each individual of

the population is known as chromosome and each chromosome is made of small genes.

Each chromosome is represented as a string and each bit in that string is a gene. Initial

population is generated randomly depending upon the nature of the problem. The crossover

is applied as single point, multipoint, and uniform with more than 95% rate. The mutation

is also applied with the least rate of 5% for avoiding stagnation and premature convergence.

The elitism mechanism is also used survival of the fittest. The best fit individual is selected

to take part in the next generation. GA has widely been applied in many areas and it has

shown good results because of its evolutionary, flexible and adaptive nature [31; 32]. It has

also been applied in power systems [33] and signal processing [34; 35].

2.3.4 Genetic Programming

Genetic programming is a special case of genetic algorithm or part of it. Genetic Pro-

gramming uses computer programs as population. Each individual in the population is a

computer program. The population of programs is modelled as parse trees. GP solves the

problems in the following steps.

1. GP generates initial population randomly in different ways. Each individual is the

structure of functions and terminals or nodes that are computer programs.

2. Each individual program is compiled and evaluated, a fitness function is assigned

according to the problem domain because the fitness function is also problem specific.

3. Offspring are created in three different ways, which are called new population.

(a) The individuals with best fitness values are copied as offspring.

(b) New offspring are created from computer program by genetic mutation operator.

(c) The genetic reproduction operator crossover is applied to create new population.

4. The current best individual or computer program which is selected in all generation

is concluded as the result of GP.
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2.4 Particle Swarm Optimization

PSO is a population based technique first developed in 1995 by Kennedy and Eberhart

[36; 37]. The idea is taken from fish schooling, birds flocking, and the learning behaviour

of each individual in the swarm. The population of fish, birds, or agents is called swarm.

It has further generalized the area for research as swarm intelligence. Each member of the

swarm is a candidate solution, which is named as particle here. The main characteristics of

PSO algorithm are its simple structure, easy implementation and quick convergence. PSO

algorithm has widely been used by many researchers for various engineering optimization

problems. It has also been used for artificial neural networks training.

2.4.1 Traditional PSO Algorithm and its Framework

PSO is one of the most powerful and modern, population based, swarm intelligence tech-

nique for solving global optimization problems. The particles emulate the behaviour of fish

school and bird flocks to find the objective of the real-world optimization problem. Pop-

ulation is referred as swarm, and each individual agent is the candidate solution referred

to the term particle. The particles are represented as real valued according to the original

basic PSO. Basically, two approaches are used for initializing the swarm in the beginning.

The first one is the case where population is initialized randomly. The second approach

is to initialize the swarm according the variables of the problem in consideration. Each

particle i in the swarm has some attributes. Each particle is associated with two vectors,

i.e. the velocity vector vi = [v1i , v
2
i , · · · , vDi ] and the position vector xi = [x1i , x

2
i , · · · , xDi ],

where D is the dimensionality of the problem. The velocity and position are initialized

randomly within the range of its search space. Throughout the development process, the

velocity and position of ith particle are updated on dimension D according to the following

two equations.

vi(t+ 1) =vi(t) + c1r1(pbesti(t)− xi(t)) + c2r2(gbesti(t)− xi(t)) (2.1)

xi(t+ 1) =xi(t) + vi(t+ 1) (2.2)

c1 and c2 are the acceleration coefficient weights normally having the constant value 2.0.

r1 and r2 are two uniformly distributed random numbers belonging to (0, 1). The velocity

update equation has three terms on the right-hand side in which the first term is called

momentum or inertia weight. The second term is called cognitive part which denotes the
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personal influence of the particle. The third term is called social part which denotes the

social and collective influence of the particle. The main role of the acceleration coefficients

is to adjust the balance between exploitation and exploration of each particle in the search

space during its movement. Vmax is also introduced to further constrain the movement of

particle within the boundary of the search space. The value of Vmax is given according to the

problem minimum and maximum boundary. The small Vmax causes exploitation, and big

Vmax causes exploration. Each particle memorizes best positions it has found in the history.

The best position that is found by each particle itself is called personal best Pbest position.

However, the best position found by the whole swarm is called global best or Gbest. In the

beginning, each particle moves with random velocity in the search space. Subsequently,

each particle dynamically fine-tunes its movement velocity matching to the experiences of

its own and other participants. The particle position will be updated constantly until the

final optimal solution is found or maximum iteration is reached. Fig.2.1 describes the main

process of traditional PSO algorithm.

Comparatively, PSO is one of the simplest and fastest method to find the best value

and assure convergence stability. In contrast to the other algorithms, PSO has the flexible

and balanced approach to adjust its movement in local and global search spaces. Though,

having all the above mentioned qualities, PSO also has various shortcomings, it looks very

sensitive to properly tune the parameters and weights for a specific problem. Further,

the lack of diversity in the population some time cause stagnation, premature convergence

or local convergence. Consequently, PSO has been a broad burning topic for researchers.

To improve the poor search performance of the PSO algorithm, many variants have been

developed. All the variants have been classified into five different categories [5]. In contri-

bution to the context of this research, the development of an N State Markovian Jumping

PSO is one of the aims of this work. In the following subsection we have explored the

classification of PSO research directions.

2.4.2 PSO Research Directions

A sum of the latest studies has been explored for the development of a suitable PSO

algorithm that can be applied into the complex environment. Most of the modifications

have been made in PSO algorithm are based on applications. That’s the quality of PSO

algorithm to fit to the new environment, after a minor adjustment in its parameters. To

generalize PSO algorithm for further research, numerous aspects have been considered for

the improvement of traditional PSO. Cheng [14], have also designed the study into five

main categories, which is listed as follows:
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1. Parameters Adaptation: As we have mentioned in the previous paragraph that

PSO has been applied in several areas, and it has been modified according to the

nature and requirement of the problem. The main structure of the algorithm is main-

tained, however, some additional parameters have been introduced. In the following

subsection we have discussed the primary parameters and some additional parameters

of PSO algorithm.

(a) Maximum Velocity: Vmax was originally assigned a fixed value. Though, Fan,

Shi [38; 39] introduced a dynamic strategy for Vmax. Further, Abido [40; 41] has

proposed the following dynamic strategy for Vmax.

Vmax = Xmax−Xmin

N
(2.3)

where Xmax and Xmin represent the boundaries values of particles in the swarm,

while N is the maximum number of iterations.

(b) Acceleration Coefficients: The movement of the particle in the search space,

to the global optimum, is controlled by acceleration coefficients. Small values

of c1, the cognitive factor, causes local convergence, while large values causes

exploration of the particle. c2 is the social influence factor. The variation of

its values effect the global convergence of the algorithm, this has been reported

in [42]. PSO with time varying acceleration coefficients has been proposed by

Ratnaweera [43], the algorithm is aimed to dynamically change the values of

acceleration coefficients in each iteration. The improved behaviour of the swarm

is observed throughout the course of maximum iteration. However, in most of

the PSO applications a fixed value 2.0 is assigned to both of the acceleration

coefficients.

(c) Inertia Weight: The inertia weight factor denoted as ω has the prominent

impact on the movement of the particles in the search space. It has first been

presented by Shi, Eberhart [44]. In the beginning ω was assigned static value 1.0.

Later on, Shi and Eberhart [45; 46] presented a dynamic strategy for adjusting

the value of ω. Best results have been recorded for the ω in the interval [0.8, 1.2].

PSO with linearly decreasing inertia weight (PSO-LDIW) is also proposed by

Shi Eberhart [46]. Basically, inertia weight is clamped to the previous velocity

to control its influence for further iterations.

(d) Constriction Factor: The idea of constriction factor is first proposed by Mau-
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ric Clerc [47]. It has been shown that the contribution of constriction factor im-

proves the overall performance as well as eliminates the Vmax from main struc-

ture of the algorithm. Several models have been proposed for constriction factor.

The following model has been widely used by the researchers.

vi(t+ 1) =χ(ωvi(t) + c1r1(pbesti(t)− xi(t)) + c2r2(gbesti(t)− xi(t))) (2.4)

χ = 2

|2−ϕ−
√
ϕ2+4(ϕ)|

(2.5)

ϕ = c1 + c2 = 4.1 (2.6)

Eberhart has further investigated the performance of the constriction factor

in comparison with inertia weight [48]. The improvement in the convergence

rate has been observed. However, caused failure in some cases, but the overall

performance was encouraging.

2. Hybrid PSO: PSO algorithm is capable of solving the problem individually on its

own, but sometimes, we use PSO in combination with other techniques. The aim

is to attain maximum performance in respect to the desired objective. Robinson

and Juang [49; 50] have used PSO in combination with GA as a hybrid technique.

Valdez has used PSO with fuzzy logic and GA for neural networks [51]. PSO has also

been used in combination with ant colony optimization (ACO) [52]. Zhang [53] has

developed an amalgam of differential evolution (DE) and PSO. Some other additional

parameters have been introduced to form PSO as a hybrid algorithm [54; 55].

3. Topological Improvement: This part of PSO area is related to the work done by

other researchers for topological constructions. The improved topological construc-

tion of the population aim for the swarm diversity, which further avoids premature

convergence [56; 57]. Kennedy [58] has proposed various topological structures. The

common topological models are Gbest Model, Lbest Model or ring topology, Wheel,

and Von Neuman Model. Each model has its own merits and demerits. Mendes

and Kennedy developed a fully informed PSO version [59]. FIPS is focused on the

neighbourhood best strategy rather than Gbest and Pbest. It means that the struc-

ture is simpler, which is also the aim of many researchers to maintain the simplicity

of PSO algorithm. Liang has developed comprehensive particle swarm optimization

(CLPSO) [4], which has also the similar approach of the neighbourhood best for

updating its trajectories.
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4. Multi Swarm PSO: The fourth category describes the multi-swarm PSO algo-

rithms. In the multi-swarm PSO, the swarm shares historical information among

other participant swarms. As described in dynamic multi-swarm PSO (DMS-PSO)

[60]. Another multi-swarm PSO named cooperative PSO (CPSO) is proposed by

Berg [61]. Large scale problems are further divided into sub-problems. Thus, CPSO

and some other variants have contributed the best solution to the large scale problems

and also a new variant to the area of multi-swarm [62; 63] has been developed.

5. Simplified and Robust PSO: This category is about the efforts made by many

researchers to make PSO algorithm work effectively in the limited resources of com-

putation and memory. In contrast to the above mentioned categories, this category

is designated to explore the variants of PSO, which proposed simplification and in-

expensive computation requirements. No additional parameters or techniques have

been adopted. James Kennedy has introduced a variant of PSO [64] named as Bare-

bones PSO (BbPSO) dependent on certain probability. The concept of Gaussian

distribution is used for position update as an alternative to the basic velocity update

equation. Zhou has introduced a simplified variant named intelligent particle opti-

mization (ISPO) in [65]. Instead of initializing a swarm, just a single particle is used

for optimization process. Iacca has described more explanation and applications of

single particle optimization in [66]. A new variant of PSO named fitness evaluation

strategy for particle swarm optimization (FESPSO) is introduced [67], where the

objective is to find the optimum with minimum number of function evaluations.

After the classification of the literature, we have found that it is very important to explore

and contribute further to each category. Nevertheless, the work in this thesis is more

focused on the first category of parameter adaptation and also contributes to the other

categories to some extent. As the main problem of PSO algorithm is its sensitivity to

the adjustment of its parameters, we have proposed generalized and efficient strategy for

parameters control as an initial objective of our research. By using Markov chain, it has

also contributed to the second category of hybrid PSO [8]. Additionally, the switching

technique contributes to the topological enhancement category. Due to its systematic

structure, it contributes to almost all categories. The extensive empirical work validates

the robustness of the method in competition to the other methods used. This research

is based on some variants of PSO algorithm. We will make some brief discussions about

those variants in the following section.
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2.5 PSO Variants

PSO has been adopted widely in solving real world practical problems because of its mod-

est theory and efficient performance. Therefore, the PSO has become more interesting and

important optimizer for researchers. Kennedy, Clerc [68] and many other researchers have

reported their work on the improvement of PSO convergence, stability [69; 70; 71], con-

trolling parameters, topological framework and the introduction of auxiliary parameters

[5; 72; 73]. Here we explore the major improvements and some well-known variants as the

background for our research.

1. PSO variants with inertia: Shi and Eberhart [44] have developed a variant of

PSO with time decreasing inertia weight.

ω = ωmax −
(ωmax − ωmin)× t

T
(2.7)

where t represents the index of the current iteration, T is the maximum number

of iterations, ωmax represents the maximum inertia weight and ωmin is the mini-

mum inertia weight having the values between 0.9 and 0.4 respectively. In [74] Shi

and Eberhart have developed a new variant named adaptive PSO with fuzzy inertia

weight. The weight of inertia is changed according to the best value in the current

evaluation and the inertia weight used for that particular evaluation is recorded. So,

in the next evaluation that particle inertia weight will be adopted. Later on, PSO

with constriction factor is developed by Clerc in [47; 68] which has already been

explained in the previous section. This work is based on global PSO version with

inertia weight parameter [44].

2. PSO variants with acceleration coefficients: In PSO algorithm the particle’s

movement is modelled by velocity update equation. In the velocity update equation

we have further three parts. The first part is related to inertia weight or momentum

of the particle, the second part is personal or cognitive influence of the particle and

the third part is concerned with the social or global influence of the particle. As

we know that each part has an essential influence and control in the success of the

algorithm. In the basic PSO [36] a value 2.0 is used as constant for acceleration

coefficients and many researchers have adopted this constant value. The concept of

ad-hoc weights of acceleration coefficients is introduced by Suganthan [56]. A specific

and temporary values are assigned to the acceleration coefficients c1 and c2. A new

variant PSO with time varying acceleration coefficients named Hybrid-PSO-TVAC
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is presented in [43]. A maximum and minimum boundary is given for c1 and c2 then

program the starts with small values of c2 for global exploration and big values for

c1 to avoid local convergence.

c1 = (c1l − c1f )× maxiter−iter
maxiter

+ c1f , (2.8)

c2 = (c2l − c2f )× maxiter−iter
maxiter

+ c2f (2.9)

where c1f = 2.5 and c2f = 0.5 are the starting values, and c1l = 0.5 and c2l = 2.5

are the ending minimum values adopted by cognitive and social learning accelerating

coefficients respectively. The weights of acceleration coefficients are linearly increased

or decreased with time t, till T , where t is the current iteration and T is the number

of maximum iterations.

3. Hybridized Variants of PSO: Some evolutionary techniques have been used in

combination with PSO algorithms in the hybrid manner. Genetic Algorithm (GA)

is used in [75] and selection mechanism is introduced. Juang in [50] has also used

GA in combination with PSO algorithm for ANN training. Furthermore, crossover

and mutation has also been used in the PSO environment [76; 77] respectively. Zhan

has explored many hybrid PSO variants in the background literature and he has also

proposed a new variant APSO in [7], where a new adaptive strategy for accelera-

tion coefficients selection has been used. In addition, four states strategy has been

developed on the bases of evolutionary state estimation (ESE). A specific value of

acceleration coefficient is assigned according to the particle’s current state. First of

all, the current state is determined by using the evolutionary factor. The mean dis-

tance of each particle from the global optimum and each particle is calculated. The

fuzzy membership approach is used to measure the degree of membership of each

particle to be in a specific state. So, the higher the value of evolutionary factor, the

far the particle is from the global optimum and thus the larger value for acceleration

coefficient is assigned to jump high to reach the optimum. In other words, the large

values of evolutionary factor represents the particle is far away from the global op-

timum and needs more steps to get to the global optimum. Some limitations have

been found in APSO due to fuzzy classification method. To further improve APSO

algorithm, a new switching particle swarm optimization (SPSO) is proposed [8] and

the Markov chains is used for velocity update. The SPSO algorithm is based on the

similar concept of APSO [7]. Basically, the SPSO has been developed to overcome the

shortcomings of the APSO algorithm by introducing Markov chain instead of fuzzy

classification. The similar concept of evolutionary factors and four state is used here.
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SPSO has been used in many applications and has shown satisfactory performance

in comparison to other algorithms. The performance of SPSO algorithm has ex-

amined on some mathematical benchmark functions and then it has been used for

parameters identification in genetic regulatory networks (GRN). Due to its promising

performance many researchers have applied SPSO successfully in many other opti-

mization problems. Recently, [78] has applied SPSO for face recognition. SPSO has

been adopted for parameter estimation in [9] of lateral flow immunoassay. The same

algorithm has been modified with local evolutionary by Zeng in [79] and has further

been used for quantitative analysis in combination with differential evolution.

4. Proposed Variants: The background study of PSO algorithm has motivated to

move in this direction and make some further improvement to this area. Therefore,

an N State Markov Jumping Particle Swarm Optimization (NS-MJPSO) is proposed

in this work. A more robust and sophisticated structure for state switching is pro-

posed. An N states concept is used instead of four state. An appropriate value of N

state is assigned according to the nature and size of the problem. It also depend on

the objective of the problem. For instance, if accuracy and better solution quality is

required then we assigned large value to N states. As we know that the larger the N

the accurate the results are. However, computation burden is increased with larger

N states. In the N states, the four states are further divided into sub-states. It

means that we can improve the quality of accuracy by describing each states in small

parts, where each sub-state represents the degree of association to a specific state.

In other words, to what extent the particle has reached a particular region. The rest

of the structure is exactly the same as basic SPSO. In Chapter 3, the development of

NS-MJPSO has briefly been explained with formulation and experimental work using

mathematical benchmark functions. As we know that the increase in N states causes

extra computational burden in the novel NS-MJPSO algorithm and also it is some-

times difficult to assign jumping probability accurately. For that reason, we have

proposed another novel PSO algorithm named N states switching particle swarm

optimization (NS-SPSO) algorithm, which excludes the Markov chains method. The

novel NS-SPSO is purely based on the evolutionary factor information, which has

significantly minimized computational burden and algorithm complexity. In the pro-

posed NS-SPSO, we don’t need domain knowledge. The N states are described as

the sub-states or stage of the four main states. The velocity update is entirely de-

pendant on the evolutionary factor, where N number of acceleration coefficients are

pre-initialized according to the sub-states. The novel NS-SPSO has been tested for

various mathematical benchmark functions. It has been shown in the tabular and
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graphical illustrations of simulation results that the proposed NS-SPSO has the ad-

vantage of adaptation due to the evolutionary technique. The proposed NS-SPSO is

the first best algorithm in terms of the shortest computation burden and second best

in terms of accuracy of the solution.

In this next section we discuss about some applications of PSO reported in the literature.

2.6 PSO Applications

1. Artificial Neural Network Training (ANN): We have already described briefly

the applications of PSO algorithm in many disciplines. One of them is the training

of neural network that has investigated by many researchers. The improvement to

the strategy of synaptic weights and topology have been selected as the main interest

in ANN. Both of the supervised and unsupervised learning approaches have been

considered. The authors in [80; 81] have reported the comparison of PSO algorithm

with back-propagation algorithms in ANN, where the faster convergence speed has

been observed by using PSO algorithm. PSO was first adopted for training the

Recurrent Neural Network Model in [82]. PSO algorithm has also been used for

nonlinear optimization problems, SVM, radial basis functions and fault detection in

[83; 84; 85].

2. Digital Signal Processing: PSO has been used for digital-filtering and the results

are then compared with GA, where PSO was found more efficient than other methods

[86]. In [87] PSO algorithm has been used for signal detection, multi-user detection

and estimation [88; 89].

3. Image Processing: In image processing, PSO algorithm has been used for image

segmentation [90; 91], image classification [92; 93], noise cancellation [94], clustering

[95; 96], image restoration [97; 98], pattern matching [99] and texture analysis [100].

Given by all the above literature, PSO is one of the efficient, simpler and robust

method for image processing.

4. Robotics: The researchers in the field of robotics have also applied PSO algorithm

for fuzzy network design in robotics [101; 102]. PSO has been used in robotics path

planning and source localization [103; 104].

5. Power System: Yamille [105] and AlRashidi [106] have summarized an extensive

survey of PSO variants and their applications in power systems. The applications of
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PSO algorithms in the area of power systems depends on the nature and the objective

function of the optimization problem in hand. Those problems are classified as linear

and non-linear, constrained and unconstrained, integer and mix-integers. While some

problems require differentiation, derivative based methods are applied in that case.

Due to the adaptive nature of PSO algorithm, it has been slightly modified and then

applied to the variety of optimization problems in power systems. The most common

problems where PSO has been applied are the optimal problem flow [41; 107; 108],

reactive power dispatch optimization[109; 110; 111], Power load forecasting [112;

113], Controller design of power systems [40; 114], transmission network planning

[115; 116], power generation planning [117; 118], losses minimization [119; 120] and

the power system operations problems [10; 121; 122]. PSO algorithm has similar

implementation procedure for all types applications, but the only thing that needs to

be formulated is the objective function and the only difference in all the applications

is the parameter adjustments. Power system operation is the focus for applications in

this thesis. In the following subsection we will explore the background for economic

load dispatch (ELD) and dynamic economic load dispatch (DELD) using basic PSO

algorithm and other variants of PSO algorithms.

2.6.1 PSO Applications in ELD Problems

We have further categorized the literature into two subsections. In the first subsection, we

have summarized the applications of traditional PSO algorithm and in the second section

we have described the modified PSO applications in ELD problems.

2.6.1.1 Applications of Traditional PSO in ELD

ELD has further been divided into two sub-categories. The first one called static economic

load dispatch, which is the simple case of ED problems and the second one is the dynamic

economic load dispatch, which is very complex and highly nonlinear case of ED problems.

We will briefly discuss both of them in Chapter 5 and Chapter 6 respectively. Traditional

PSO algorithm has been used for many optimization problems in power system. Whereas

in the ELD problems, the traditional PSO has first been proposed by Gaing in [10]. The

generators have many nonlinear constraints, which are denoted as power balance, gener-

ation limits, prohibited operating zones, line losses and ramp-rate limits. The traditional

PSO algorithm has been used to evaluate the quadratic cost function or objective func-

tion. The 6− units, 15− units, and 40− units benchmark data is used. The results are
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then compared with the GA for the same objectives. The traditional PSO has produced

good quality solution with minimum cost value and shortest in computation time. In [15]

Gaing has applied traditional PSO algorithm for dynamic economic load dispatch (DELD)

problem. As we know that, DELD is highly complex and large scale problem, where the

power load changes dynamically over a period of time. Moreover, the constraints are highly

nonsmooth or nonlinear applied to each individual unit. It means that the DELD problem

needs to be solved with the minimum generating cost and within the satisfaction of the

constraints boundaries. In the given literature DELD is solved for 24 hours, where different

load has been selected for each hour. The cost minimization function is similar to the static

ELD problem, but the only difference is involvement of dispatch hours t in case of DELD.

All the constraints mentioned in ELD are considered here along with the new constraint

spinning reserve used in [123].

In [124] the authors have used the PSO with constriction factor for DELD problem.

In [121] the authors have proposed a novel approach for solving ELD problem with valve-

point loading effects and multi-fuels constraints. These constraints make the cost objective

function non-smooth. In [125] the authors have applied the basic PSO algorithm to var-

ious ELD problems considering all generator constraints including multi-fuels, multi-area

and environmental constraints. Environmental constraints have imposed the law about

pollution reduction. It is obvious that the increase in the power demand leads to the in-

crease power generation, which on the other hand causes increase in pollution. For that

reason, research in the domain of green energy or renewable energy is the important topic.

The satisfactory performance of the traditional PSO in ELD and DELD problems has en-

couraged researcher to further modify and enhance the structure of PSO algorithm, which

can further be used for ELD and DELD problems. Further, in the next section we have

explored the applications of modified versions of PSO algorithm.

2.6.1.2 Applications of PSO Variants in ELD

Some additional techniques are used in combination with PSO algorithm to get the max-

imum performance from the objective. In [122] the modified version of PSO algorithm

with Gaussian probability distribution has been developed. The Gaussian approach has

first been proposed in [126], where the random numbers in the velocity update equation

named as rand1 and rand2 are replaced with the Gaussian probability distribution (GPD)

parameters. The random numbers in the interval [−1, 1] are created by applying Gaussian

probability distribution. The values are mapped with the basic interval of random numbers

[0, 1] after creating the GPD. Moreover, a technique called chaotic sequence in also used

here to avoid premature convergence to the local optimum. The proposed algorithm have
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been tested for 15 − units and 20 − units in comparison with traditional PSO algorithm

and some other variants, where the proposed algorithms performed better than others.

Another variant of PSO algorithm called New PSO (NPSO) has been proposed in [127].

The modification in the NPSO version is two fold. The first one is the split-up mechanism

in c1 the cognitive parameter of PSO algorithm. Normally, we record the best position

ever visited by each particle, while the worst individual position is recorded as well and c1

is further divided into c1a, and c1b. Best exploration is achieved by adding this mechanism.

Furthermore, an additional technique namely local random search (LRS) is combined with

the novel NPSO for better exploitation in the search space. The initial population is gen-

erated according to the modified LRS approach. This NPSO is applied to the non-convex

ELD problems along with LRS mechanism. The NPSO-LRS is then tested for three differ-

ent unit systems having 6−unit, 40−unit and 10−unit systems with various operational

and system constraints corresponding to each unit of the system. The results obtained

from the proposed have been compared with other existing methods. It has been observed

that the proposed algorithm performed better than other methods. Later on, the authors

of this paper have proposed another version of PSO algorithm named anti-predatory PSO

algorithm with applications in ELD problems [128]. In [11] an improved PSO algorithm

(IPSO) is proposed. The method of chaotic sequences and crossover is is employed. The

modified version is then applied to very large-scale ELD problems in power system. The

operational constraints valve-point loading, multi-fuels, equality and inequality constraints,

with and without power losses, prohibited operating zones are considered for ELD prob-

lem. 10, 15, 40 and 140 unit system data is used. It has been concluded at the end that

the proposed algorithm has performed very well in comparison to the others methods. A

new hybrid version of PSO is introduced in [129] with applications in ELD non-smooth

problems, where the successful performance have been reported. In the next subsection we

describe the literature about dynamic economic dispatch.

2.6.1.3 Applications of PSO and Variants in DELD

As we know that, the DELD problems have the dynamic nature due to the large-scale fluc-

tuating load demands with time. Subsequently, with the formulation of dynamic dispatch

problem the research has been motivated to several optimization methods incorporating the

characteristics and the capability to solve the problems with constraints. The first attempt

to find a competent method for solving such kind of problems was based on the mathemat-

ical methods such as gradient based method, lambda iteration, Lagrange multiplier based

method, interior point method, dynamic programming and non-linear programming. As

mentioned in the previous section DELD is a complex, high dimensional and non-linear
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optimization problem. DELD ensure the supply of power to the dynamically changing

loads during the period of 24 hours. The dynamic and non-linear constraints such as,

ramp-rate limits and valve-point loading effects makes the objective function non-smooth

and difficult to solve. The analytical and traditional methods fail to work due to curse of

dimensionality and non-linearity in objection functions. Hybridized and enhanced versions

of current optimization methods have been used to solve DELD problems.

In [130] the authors have applied an improved version of PSO algorithm. Chaotic mu-

tation has been used to avoid premature convergence to the local optimum. This method

enhances the global search ability. The acceleration coefficients c1 and c2 have been com-

puted and controlled before objective function evaluation. The value of c1 is initialized with

a small value and thus increased in each iteration with ratio of maximum iterations and

the number of particles used. The social acceleration factor c2 value is decreased iteratively

with the same ratio of c1. The proposed IPSO algorithm is then applied to DED objectives

of having 10 and 30 unit systems. The results show the better performance of IPSO in

solution quality, computation time and convergence as compared to the other algorithms.

In [131] the authors have introduced a novel improved version of PSO algorithm. In this

proposed algorithm the feasibility and probabilistic based with priority list based method

to deal with non-linear type of constraints. The best thing in this method is that it does

not need any penalty parameters for handling the constraints. The proposed algorithm is

then tested on three case studies of 10 unit systems with and without considering trans-

mission losses into account in the first two cases, while in the third case study the 10 unit

system data is used in the triplicate manner and hence a large-scale 30 unit is obtained.

In [18] the authors have proposed a new version of PSO algorithm namely adaptive PSO

with successful applications in ELD and DELD. In the proposed APSO, the movement of

particle is adjusted according to the current position of particle, if the particles are in the

best region the acceleration is very slow. The ranking mechanism is adopted and the first

rank is assigned to the best particles. The proposed algorithm is tested on the various unit

systems for ELD and 5 unit system of DED problems and has produced best results in

comparison to the other algorithms. Gaing has applied traditional PSO in [15] for DELD

problems. Previously, Gaing has used the same algorithm for static ELD problems. In

the scheduled time t for dispatch to the load according to the minimum and maximum

generation limit of each generator. The minimum per unit cost Fmin and maximum per

unit cost Fmax have been computed. The population is initialized in the range of Fmin and

Fmax along with the dimensions of the unit system. The initialized population satisfies

all constraints of power balance and prohibited operating zones. The transmission losses

are calculated on B coefficient matrix. Then the evaluation function is calculated for all
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particles, during the maximum number of iterations.

The proposed method has been tested on two case studies of 6 and 15 unit systems. In

the first case study of the 6 unit system for 24 hours dispatch with the dynamic changing

loads in the interval of 930 Mega watts and 1263 Mega watts. In the second case study of

having 15 unit system for the period of 24 hours and dynamically changing loads in the

interval 2215 Mega watts and 2953 Mega watts. The simulation results have demonstrated

the capability of the proposed algorithm for the most complex optimization problems.

Artificial intelligence based techniques have been widely used individually and also in

the hybrid manner for solving DELD problems. In [13] the authors have developed a

hybrid multi-objective PSO algorithms namely fuzzy self-adaptive learning PSO algorithm

(FSLPSO). The inertia weight parameter is controlled by fuzzy adaptive mechanism. The

acceleration coefficients are assigned fixed values 2. The fuzzy adaptive learning concept

is used here because of the high-level uncertainties. The first uncertainty is the load

demand that can be changed with time. The second uncertainty is the renewable power

system resources of wind. The problem is formulated on scenario-based method to deal

with such kind of uncertainties. Therefore, an appropriate scenario has been adopted for a

specific scheduled time and a desired load. The emission is considered as an objective to be

minimized along with the total energy saving. Subsequently, it produces a multi-objective

task for the proposed algorithm and the proposed algorithm has performed very well for

dynamic economic and emission dispatch (DEED) problem. The constraints applied here

are valve-point loading effect, spinning reserves, ramp-rate limits and also the constraints

concerned with wind power plant. The 10 unit systems with and without losses, where the

100 unit system without losses are used for the experiments.

According to [132] the DED problem has been investigated considering its operational

constraints for 5, 10 and 110 unit systems using Lbest PSO. The previous literature support

the feasibility of PSO algorithm of ELD and DELD problems, though, their limitations have

also been reported. Producing the suboptimal solution is one of the main problem. The

algorithm get trapped into the local minimum. To avoid this problem a dynamic varying

sub-swarm strategy is introduced in the Lbest version of PSO. The entire population is

further divided into sub-swarms and the sub-swarm are evaluated individually. The best

position found in each sub-swarm is compared and thus the Gbest has been selected after

comparison. The proposed modified algorithm has produced the best value for the objective

in comparison to the other algorithms solving the same problem.

In [133] DELD is formulated as non-linear and non-convex optimization problem be-

cause of the valve-point loading effects in the system. A novel enhanced adaptive PSO

algorithm is developed and then applied to the DELD problem. The dynamic characteris-
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tics of the system are the ramp-rate limits and calculating the losses simultaneously. The

novel EAPSO has the ability to deal with the problems of the existing traditional PSO

algorithms or its variants particularly it avoids premature convergence. This is because

of the mutation concept adaptation, dynamic inertia weight and also the self-adaptively

adjusted acceleration coefficients. The novel EAPSO has been tested on 5, 10 and 30 unit

systems of the power plant. The results has shown that the proposed EAPSO outperformed

the algorithms in comparison.

Another, improved version of PSO algorithm namely TVAC-IPSO has been developed

in [134]. The primary objective of DED is to ensure the supply of power to the loads for

a given time span in the minimum generating cost considering the system and operational

constraints. The iteration based PSO (IPSO) [135] has been first proposed and used

for ELD problems. In this paper IPSO has further been modified by adding the time

varying acceleration coefficients concept. The iteration best or time best particle is recorded

and new terms Lbest, c3 and r3 are introduced in velocity update equation. This new

algorithm is then applied to two case studies, 5 and 10 units of dynamic economic dispatch

problems. The non-linear, dynamic and non-convex kind of constraints such as valve-point

loading effects, ramp-rate limits, prohibited operating zones and transmission losses were

considered before solving the objective. In the next section we discuss the applications of

the new switching PSO algorithm. Furthermore, we have modified the switching PSO and

two novel enhanced versions of SPSO have been developed.

2.7 Applications of Switching PSO

In [8] the authors have first proposed a novel switching PSO algorithm. The Markov chain

concept is applied as the base for this algorithm. The main concept of this algorithm is

derived from the adaptive PSO (APSO) [7]. Both of the algorithms have used evolutionary

factors, population probability distribution and four states strategies. For the evolutionary

factor Ef the mean distance is calculated by the Euclidean formula.

Pd(i) =
1

N − 1

N∑
j=1,j 6=i

√√√√ D∑
k=1

(xi(k)− x̄j(k))2 (2.10)

where N and D represents swarm size and dimensions of the problem respectively, and

then Ef is calculated as follows.
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Ef =
Pdg − Pd(min)

Pd(max) − Pd(min)
∈ [0, 1] (2.11)

where Pdg represents the index of global best particle Pd(max) and Pd(min) represent the

maximum and minimum mean distance respectively. Hence, after finding the values of

the Ef the fuzzy classification is derived in APSO and Markov jumping is used in SPSO.

The four states are Exploration, Exploitation, Convergence and Jumping-out states. Some

limitations of APSO have been highlighted and thus some modifications have been made

to develop an enhanced version. This version is named as Switching PSO (SPSO). Here

the first state is considered as Convergence, second Exploration, third Exploitation and

fourth as Jumping-out state. A new mode-dependent switching parameter is introduced

here. A suitable value for acceleration coefficients is assigned according to the current

state of the particle. A smaller value is assigned in convergence state, while a larger

value in jumping state. The weight of inertia ω is also dependent on evolutionary factor

and current state of the particle. An adaptive value of ω is assigned in each iteration

according to the current state of the particle. The SPSO has been tested on several

mathematical benchmark functions and has also been applied to the genetic regulatory

networks (GRN) for parameter identification. Recently in [78] SPSO has been added the

concept of Wavelet Neural Network (WNN) and then applied parameter optimization in

face direction recognition. According to [136] SPSO has been modified and applied in the

hybrid manner by introducing differential evolution (DE) and the new algorithm is then

applied to lateral flow immunoassay analysis. In [9] the SPSO has been used with hybrid

EKF for parameters estimation in lateral flow immunoassay. Consequent to the extensive

search for the applications SPSO, we have found very limited number of applications.

The idea of Markovian jumping and switching mechanism has widely been used in other

techniques. After having the extensive search and study of the literature, we have noticed

that SPSO has never been applied in power systems.

In this thesis, we have further investigated the performance of SPSO in comparison

to the other well-known PSO variants. Through these investigations, we have made some

assumptions for the improvement of performance after having some further modifications

in the basic version of SPSO algorithm. Some assumptions have been made for the im-

provement in the performance of basic SPSO algorithm. Two new versions of SPSO have

been proposed. In the following section we discuss the newly proposed algorithms and

their application in ELD and DED problems in power systems.
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2.8 NS-MJPSO, NS-SPSO and Their Applications in

ELD and DED Problems

The newly developed SPSO has exhaustively been analysed for further improvement. Sub-

sequently, the idea of N state is proposed with the assumption of the best performance

and quick convergence. The proposed algorithm is named N State Markov Jumping PSO

algorithm. Previously, in the basic SPSO the four state strategies were used as explained in

the previous section. A generalized and automatic controlled strategy for state-switching

is proposed here. Basically, the four state term sounds like more specific to a certain ca-

pacity problem. However, the N State is more generalized term and it can take any value.

Here, we have used 4, 6 and 8 in our experiments. The four states are further divided

into sub-states. In the relatively high dimension search space the sub-state represents the

degree of being in a particular state. By this mechanism we assume that the algorithm

will converge to the global optimum for following the smooth curve. As we know that by

increasing the number of states, the accuracy of the solution increase and the computa-

tional burden slightly increases. For that reason, we will first test for the small values and

then gradually on the large value of N . The N value having the small evaluation error

and shortest computation time will be considered. As we mentioned previously that the

basic SPSO has never been applied in power system. So, the first contribution of this

thesis is the implementation of new algorithm in very important optimization problems of

power system. The feasibility of SPSO and the proposed N State Markov Jumping PSO

is elaborated as follows:

The concept of Markov chain has widely been used for economic and financial, decision

making, and control systems [137; 138; 139; 140]. The Markov chain has also used in the

power system related applications [141; 142] for unit commitment and economic dispatch

problems. Transition probability distribution is drawn for all states. The Markov chain

might preserve its current state or it could change to another state corresponding to its

transition probability. Basically, transition is the process of switching within the various

states. This switching is dependent on its transition probability. It is already known

that the basic PSO has the problem of getting trapped into local optimum. The Markov

chain is used in the velocity update equation for the switching or jumping purposes, which

has enabled the swarm to perform global search. The parameters are assigned the value

according to the current state. Subsequently, the swarm converge to the global optimum

in few steps. The Markov Jumping is applied to population distribution determined by

evolutionary factors. Evolutionary factor is further explained in the next paragraph.
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The evolutionary factor Ef has been used to optimally control the process of the PSO

algorithm. In the algorithm the swarm diversity is not only influenced by the increment

of iteration, but the evolutionary factor has also controlled over the population distribu-

tion. As the population is initialized the whole population get scattered in search space.

Though, the particles move towards their best neighbours and group together in the local

or global region of the search space. These groups or clusters were then analysed by to

determine the state of each particle. After the encouraging performance of evolutionary

techniques applications in numerous backgrounds the researchers have combined evolu-

tionary technique with PSO algorithm [6; 143]. The evolutionary algorithms has been

applied to numerous backgrounds including power systems, and it has produced promising

results. In [144; 145; 146] evolutionary techniques have been used for the economic dispatch

problems in power system.

There is always a room for improvement in the research particularly in the power

systems. Since the substantial increase in the daily energy usage the research in power

system is focused on the balanced supply of power to the loads at the minimum cost. The

research in this area is an inadequate to the increasing demand on the other hand. Power

system is a huge system, which needs huge planning, massive budget, extensive technical

expertise and long time to start running. Meanwhile, the existing systems are focused to be

maintained and operated in the optimal manner. Several strategies for efficient scheduling

and economic operation of the existing power systems were proposed in the literature. In

this thesis, we aim to contribute an improvement in this area. We have studied and analysed

the hybrid type algorithms, the evolutionary and Markov chain techniques in combination

with PSO algorithms for ELD and DED problems in power systems. In Chapter 3, we

present our first proposed algorithm. The proposed algorithm efficiently explores the search

space and converges to the global optimum very fast. However, the computation burden

increases with increasing the number of states. To solve the problem of computation

time, we have proposed another algorithm in Chapter 4, the second proposed algorithm.

Furthermore, in Chapter 5, we have applied both of the novel algorithms to static ELD

problems and in Chapter 6, we have applied both of the algorithms to DELD problems.
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3.1 Introduction

In this chapter we introduce a new variant of Particle Swarm Optimization algorithm with

N State Markov Jumping (NS-MJPSO). The aim of this method is to improve the global

search performance, and its capability of solving the real-world problems. Basically, the real

world problems are non-linear and that’s a challenging problem to be solved. It has been

revealed in the literature that evolutionary types of methods have a better performance

in non-linear problems. The wide use, simple structure, and easy implementation of the

Particle Swarm Optimization (PSO), are the motivation for this work. PSO is a competent,

population-based, swarm intelligence technique for optimization. The traditional PSO

along-with its modified variants have been explored and re-evaluated. The problem of

getting stuck in the local-optimum is observed in PSO evaluation. However, in the NS-

MJPSO, we combine PSO algorithm with Markov chain. Markov chain is used to keep the

particle moving in the search space with certain probability. The second reason for using

Markov chain is also its better performance applications in economic-based, decision and

control systems. The proposed method is examined by some widely used, uni-modal and

multi-modal mathematical benchmark functions. The evaluation results are then compared

with the most cited existing state-of-the-art PSO variants on the same functions. Later this

chapter, we present some background work in Section 3.2, the structure of traditional PSO

in Section 3.2.1. In Section 3.3, the proposed work is briefly described. The experimental

work is given in Section 3.4 and In Section 3.5, we have summarised the whole chapter.

3.2 Some Related Work

Particle Swarm Optimization (PSO) is a population based method developed in 1995 by

Kennedy and Eberhart [36; 37]. The idea is taken from the swarm’s agents intelligent

learning behaviour such as birds flocking and fish schooling [147]. PSO uses a simple

mechanism of copying the best location find their peers, the particles compare their current

states value to the neighbours and then jump to the new location if it is better than their

current state. In other words, the particle memorises the location find by its own experience

known as the personal best position Pbest. It is also called the local best position or the

best position find by each particle so far. The objective is to find the best position in entire

search space. The best position in the entire swarm and for all Pbest is called the global best

position Gbest. It is the best position find by the entire swarm. PSO algorithm is described

as velocity and position update. Two acceleration coefficients named as cognitive c1 and

social c2. Initially, a constant value 2 is used for both of the acceleration coefficients.
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According to the basic PSO algorithm, two uniformly distributed random numbers in the

range of [0, 1], denoted as rand1 and rand2. The simple framework, easy implementation,

few parameters adjustment and fast convergence are the impressive attractions in the PSO

algorithm. That’s why PSO has been used and modified by many researchers in the last

two decades for various real world optimization problems [1; 2; 5; 73; 148; 149; 150].

PSO algorithm is briefly studied and analysed for further improvement and solving the

current problems that has been observed during its applications in the real-world problems.

The random values causes instabilities and inconsistencies in the evaluation results. These

inconsistencies have weaken the performance of PSO algorithm, particularly in the multi-

modal and high-dimensionality problems [4]. Similar to the other evolutionary algorithms,

PSO also sometimes get trapped into the local optimum, called premature convergence.

The excessive function evaluations (FEs) are required to escape from the local optimum [3].

To address all the above mentioned limitations, many variants of PSO has been developed.

Shi and Eberhart [45], have introduced constant inertia weight ω with two acceleration

coefficients. This version is again further modified as an adaptive ω parameter in [46].

Fast convergence has been achieved by using the constant and adaptive inertia ω. Another

variant has been developed by Shi and Eberhart in [74], where a fuzzy strategy is proposed

to control the velocity by dynamically updating the ω. Furthermore, various techniques

have been proposed by for the efficient adjustment of acceleration coefficients [43; 151].

c1, c2 and ω are assigned the maximum and minimum value for each. The final values

are calculated according the maximum number of evaluations denoted as Time-Varying

Coefficients. The purpose of TVAC version is to control parameters and converge quickly

to global optima. Some supplementary parameter are applied to help the basic parameters

efficiently find their values.

Furthermore, to speed up convergence and to escape from local optima have become the

two utmost significant research topics in PSO. Numerous works have been done to attain

these goals [1; 2; 3; 4]. In this improvement, controlling the parameters of algorithm, the

addition of supplementary search operators and enhancing the topological structure have

become the three most prominent approaches [5]. It has found to be challenging to achieve

both the goals simultaneously. The comprehensive-learning PSO (CLPSO) [4] emphases

on solving the problem of sub-optimal solution. However, the algorithm results in slower

convergence.

Moreover, in the developmental studies of PSO algorithm the primary objective that

has been considered is the minimization of computation complexity. Secondly, the problem

of local optima or premature convergence has been investigated exhaustively by [1; 2; 3; 4].

The improved algorithms have been further tested by doing some applications in real-
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world environment. Due to the uncertain, non-linear and complex nature of the real-world

problems there is always a gap for improvement in the current dealing algorithms. In

response to that, the secondary techniques have been applied to control the parameters

significantly [6; 7; 8]. The topological structures have been developed to achieve the second

objective to ensure global optimum and avoid premature convergence [4].

Adaptive PSO (APSO) [7] has been focused on achieving both the goals by introducing

the evolutionary factor Ef , which has further added the population distribution character-

istics, the mean distance between the global best and other particles in the swarm. Four

states S1, S2, S3, and S4 have been described by taking population distribution information

Ef in to account, which symbolizes convergence, exploration, exploitation and jumping out

states respectively. Fuzzy classification method has been used, which has resulted some

limitations of excessive computation acceleration coefficients in each generation, swarm

stagnation in the local optima, if the current global best is the local optimum and the last

one is the complicated implementation of classification method.

Switching PSO (SPSO) in [8] has further improved the performance of the APSO

and has addressed its limitations. A novel approach, where the Markovian switching has

been used to avoid getting trapped in to local optima (premature convergence) and leader

competitive penalized multi-learning approach (LCPMA) is used to improve global search

performance [9]. Same four states as described in [7] have been used here. However, a

new mode-dependent technique with Markovian Jumping parameters has been adopted

in the velocity update equation to improve the search performance. SPSO has produced

promising results in [8; 9]. SPSO has been re-evaluated in comparison with some other

state-of-the-art algorithms on some benchmark problems. It has been observed that SPSO

a very problem specific and requires much parameter adjustment to perform better in

the dynamic environment or any other new problem. Therefore, to further enhance the

performance of SPSO, it has been modified in this thesis.

The proposed NS-MJPSO contribution is two fold. The first improvement is the robust

N states concept rather than four used in SPSO, where N takes value N = [1....N ].

The second is adaptation of linearly decreasing inertia weight (LDIW) [45]. Third is the

computational complexity, that has been improved by simplifying the structure. Proposed

NS-MJPSO has been evaluated on 12 widely used benchmark functions given in Section 3.4.

In the next Section 3.2.1, we have explored the development of PSO algorithms starting

from the traditional PSO algorithm.
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3.2.1 Traditional PSO Algorithm Structure

In PSO algorithm swarm represents the population of n particles, where each particle i

represents a potential solution to a problem in hand and each particle i is composed of two

vectors, where the first one is the velocity of ith particle in Dth dimension and t time is

represented as vi(t) = [vi1(t), vi2(t), · · · , viD(t)] and the second one is position of the ith

particle in Dth dimension, and in t time is represented as, xi(t) = [xi1(t), xi2(t), · · · , xiD(t)],

where D represents dimension of the solution search space. The swarm velocities and

positions are initialized randomly with their respective boundaries xin(t) ∈ [xmin,n, xmax,n]

(1 ≤ n ≤ D) with xmin,n and xmax,n, of the search space. The velocity is limited to a

maximum Vmax is set to 20% of the search boundary [73]. Throughout the evaluation

process, each particle i with dth dimension are updated as follows.

vi(t+ 1) =ωvi(t) + c1r1(pbesti(t)− xi(t)) + c2r2(gbesti(t)− xi(t)) (3.1)

xi(t+ 1) =xi(t) + vi(t+ 1) (3.2)

where ω is called inertia weight [44], c1 and c2 are the cognitive and social learning fac-

tors also called acceleration coefficients [37]. Two uniformly distributed random num-

bers denoted as r1 and r2 are generated between U [0, 1] [36], where pb represents pbi =

(pbi1, pbi2, · · · , pbiD). Personal best is the position with the best fitness found by the ith

particle itself so far and gb represents gbD = (gb1, gb2, · · · , gbD), where global best is the

best particle ever found by the entire swarm. In the PSO neighbourhood version nBest is

used for global best, GBest is used for the global version and LBest is used for the local

version of PSO. The particle’s personal experience and its social interaction determine it-

eratively the direction towards its best position. A step-wise Pseudo-code 1 is presented

here followed by the basic flow chart in Figure 3.1 using [37].

3.2.2 Developments of PSO

PSO has gained much attention due to its simplicity and effective performance. Numerous

work have been done to address all the limitations of PSO algorithm and make it more

convenient and reliable. Therefore, various methods have been used in [45; 46], where

the PSO with inertia weight ω has been developed to fine-tune the search space. It has

been observed that large inertia weight induce global exploration and small values effect

local exploitation. A linearly decreased inertia weight (PSO-LDIW) has been proposed in
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Algorithm 1 Traditional PSO Algorithm

1: Initialize the swarm positions and velocities randomly in the search space, with D
dimensions

2: while Stopping condition not true do
3: for Each particle i do
4: Update velocity for all swarm using Equation (3.1)
5: Update position for all swarm using Equation (3.2)

6: Evaluate the fitness function f(
−→
X i)

7: if f(
−→
X i) < f(

−→
P i) then

8:
−→
P i ←

−→
X i

9: end if
10: if f(

−→
X i) < f(

−→
P g) then

11:
−→
P g ←

−→
X i

12: end if
13: end for
14: end while

Figure 3.1: Basic PSO Flow Chart
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[45; 46] ω is calculated as follows:

ω = (ωmax − ωmin)× maxiter− iter

maxiter
+ ωmin (3.3)

where ωmax = 0.9 has been given the starting, and ωmin=0.4 the ending boundary for

inertia weight, maxiter is the number of maximum iteration, and iter is the value of

current iteration. Mauric Clerc has introduced the new PSO with constriction factor for

analysing and improving convergence behaviour in [68]. The constriction factor equation

is given as follows:

χ = 2

|2−ϕ−
√
ϕ2+4(ϕ)|

(3.4)

ϕ = c1 + c2 = 4.1 (3.5)

where χ is set to 0.729, c1 and c2 are both assigned 2.05 in [68]. It has been shown in [48]

that practically, constriction factor is the same as inertia weight. In [44] the authors have

focused on the global-version of PSO (GPSO) with inertia weight defined in Equation (3.1).

Furthermore, the other two very important parameters of PSO are acceleration coeffi-

cients c1 denoted as cognitive learning and c2 denoted as social learning factors. In [152]

the authors have described two models, social-only and cognitive-only. It has been shown

in the results that the acceleration coefficients have the significant influence in the control

of PSO algorithm. In [36] the authors have proposed constant value 2.0 for both of the

acceleration coefficients, which has widely been adopted. In [56] it has been presented that

the values of acceleration coefficients can be adjusted and tuned according to the problem

nature and dimensionality. In [43] another algorithm named PSO with time-varying coef-

ficients (PSO-TVAC). The cognitive c1 and social c2 learning factors have been modelled

in linearly decreased structure in Equation (3.6) bellow. PSO-TVAC has also the similar

concept as the PSO-LDIW [46].

c1 = (c1l − c1f )× maxiter−iter
maxiter

+ c1f , (3.6)

c2 = (c2l − c2f )× maxiter−iter
maxiter

+ c2f (3.7)

where c1f = 2.5 and c2f = 0.5 are the initial values and c1l = 0.5 and c2l = 2.5 are the

ending values adopted by cognitive and social learning coefficients respectively.

Moreover, topological improvement is that has largely been studied by many researchers

for improving the search performance of PSO algorithm. In [59] the authors have proposed

a fully informed particle swarm optimization algorithm (FIPSO) the entire swarm is con-
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sidered as one neighbourhood. Each particle move according to its own knowledge about

the entire swarm. Evolutionary operators such as selection [75], crossover [76] and mu-

tation [77] have been added to PSO for topological improvement of the swarm. In [4] a

comprehensive learning PSO (CLPSO) has been developed with the similar motivation of

topological improvement. It has also described learning behaviour of the particle with the

best position found in its history. Later on, an adaptive PSO (APSO) [6] with evolutionary

factor and fuzzy membership for the automation and control of its parameters. Similarly,

a switching PSO (SPSO) has been proposed recently in [8]. The same four states strategy

and evolutionary factor [7] has been followed. However, a new mechanism of Markovian

Jumping has been introduced for better search performance as a supplementary parameter.

Furthermore, the leader competitive penalized multi learning approach (LCPMA) [8] is also

adopted for improving the global and local search performance.

3.3 A Novel N State Markovian Jumping PSO

This section presents a novel NS-MJPSO for the improvement of the search performance.

Firstly, the value of N state is determined. An auxiliary parameter is added to the velocity

update Equation (3.1). Performance in the different number of states is evaluated for 12

uni-modal and multi-modal widely used benchmark functions [4; 153], which are given in

Section 3.4, Table ??.

3.3.1 Population Distribution and Evolutionary Factor

In the beginning of population distribution, the particles are spread out in the search space.

In the iterative evolutionary process the particles group together in the later stages and

find their local and global optimal places in the search space. Therefore, the extraction of

information from the population distribution and using that for further describing the evo-

lutionary state is an important research topic in PSO. Hence, the population distribution

information in each generation is important to be recorded. A clustering based technique

was introduced for evolutionary state estimation in [6; 143]. Whereas, fuzzy classification

method is used for calculating four evolutionary states in [8].

In the first step of the population distribution, where the mean distance from the global

best particle in the search space for each particle i is calculated. The particle having small

mean distance from the global best is possibly be in convergence state and more likely to

stay in the same state. On the other hand, the particle with the maximum mean distance

would more likely to change its state and jump to another one. The mean distance is
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Figure 3.2: N State Markov chain

calculated by using Euclidean metric as follows [7].

Pd(i) =
1

N − 1

N∑
j=1,j 6=i

√√√√ D∑
k=1

(xi(k)− x̄j(k))2 (3.8)

In Equation (3.8) N represents swarm size and D stands for dimensions of the problem.

Ef =
Pdg − Pd(min)

Pd(max) − Pd(min)
∈ [0, 1] (3.9)

The mean distance of all Pd(i) have been derived using Equation (3.8), where the Pdg

represents the index of global best particle and Pd(max), Pd(min) represents the maximum

and minimum mean distance of each particle from its global best. The values derived by

Equation (3.8) are then used to compute the evolutionary factor using Equation (3.9) [7].

In [7] and [8] evolutionary factor Ef has been applied and four states are derived in the

[0, 1] range using fuzzy classification [7]. Markov chain have been used to further improve
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the search performance and convergence [8]. The idea of Markov chain is much interesting

and promising. Furthermore, to improve the existing switching PSO algorithm, we have

proposed an N Markovian State PSO algorithm. Initially, we have assumed that the N

states concept for its applications in the real world problems. This work presents, a robust

PSO algorithm by extending the switching mechanism up to N states. It further divides

each of the four states to possible sub-states. The sub-states smoothly describe the unit

of association for a particular state and hence the algorithm adopts a more suitable values

for its parameters, where each sub-state represents the early and final stage of each state.

Hence, by increasing the number of states, we assume the improved search performance in

terms of the average/best evaluation results, accuracy and global convergence. Whereas,

the computation burden slightly increases by increasing the number N states. An auxiliary

parameter δ is used in the new velocity update Equation (3.11) in Section 3.3.2.

3.3.2 Markovian Jumping in the Velocity Update Equation

We have introduced a mode-dependent velocity update equation with Markovian jumping

parameters having N possible states. It preserves the current state with the maximum

probability and jump to the other state with minimum probability, where to improve the

search performance of PSO algorithm. The process of Markovian jumping is formulated

here. Markov Jumping parameter takes the value δ(t)(t ≥ 0) from the set of finite states

τ = {1, 2, · · · , N}. The probability matrix of state transitions Γ = (φij)N×N is stated as

follows:

Γ =



φ1,1 φ1,2 φ1,3 · · · φ1,N

φ2,1 φ2,2 φ2,3 · · · φ2,N

φ3,1 φ3,2 φ3,3 · · · φ3,N

...
...

...
...

φN,1 φN,2 φN,3 · · · φN,N



υ = {δ(t+ 1) = j | δ(t) = i} = φij, i, j = 1, 2, · · · , N (3.10)

The transition values start from i to j, and φij ≥ 0, where (i, j) ∈ τ and
∑N

j=1 φij = 1.

Subsequently, δ(t) = 1, 2, 3, · · · , N , where (t ≥ 0) each represents the unit of association to

a particular state. The new auxiliary parameter δ has been clamped with the acceleration

coefficients in the velocity update Equation (3.11) given as follows:
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vi(t+ 1) =ωvi(t) + c1(δ(t))r1(t)(pbesti(t)− xi(t)) + c2(δ(t))r2(t)(gbesti(t)− xi(t)), (3.11)

xi(t+ 1) =xi(t) + vi(t+ 1) (3.12)

whereas, an appropriate value for c1 and c2 have been selected according to δ. The corre-

sponding fixed values of the acceleration coefficients will be taken according to the particle’s

current state. Description of N states and probability transition matrix is given bellow.

States =



1, 0 ≤ Ef <
1
N
,

2, 1
N
≤ Ef <

2
N
,

3, 2
N
≤ Ef <

3
N
,

...
...

N, N−1
N
≤ Ef < 1

Γ =



φ 1− φ 0 0 · · · 0 0 0 0
1−φ
2

φ 1−φ
2

0 · · · 0 0 0 0

0 1−φ
2

φ 1−φ
2

0 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 · · · 0 1−φ
2

φ 1−φ
2

0 0 0 0 · · · 0 0 1− φ φ


Basically, it is given that φ and 1 − φ are the state transition control probabilities.

Iteratively, it may jump to another state or stay in the current state depending on its state

transition probability. The next state can be quickly and easily predicted. The transition

probability φ compose a significant part here in the evolutionary process. The φ is checked

for two values 0.8 and 0.9, while 0.9 has been used throughout due to the better impact

on accuracy and search diversity.

3.3.3 Computing Inertia Weight

As we have mentioned above in Section 3.2.2 that the inertia weight ω has an influential

part in PSO algorithm control, global and local search performance. In this chapter, we

compute the inertia weight ω by using the linearly decreasing with maximum times.
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Figure 3.3: Proposed NS-MJPSO Flow Chart

ω = (ωmax − ωmin)× iter

maxiter
+ ωmin (3.13)

As we know that, the large values of inertia weight ω move the swarm towards the global

exploration and the small inertia weight ω leads the swarm towards the local exploitation

in the search space. In our experiments, we have adjusted inertia weight ωmax and inertia

weight ωmin between 0.9 and 0.5 to keep the particles move faster towards the global

optimum.

3.3.4 The Weights of Acceleration Coefficients

The acceleration coefficients are also based on the number of transient states. In the N

number of states, N number of acceleration coefficients are manually assigned. We have

assigned c1(δ(0)) and c2(δ(0)) 2.05 as the initial value here and further the algorithm

adopts the adjusted values from the array according to the current evolutionary state. The

strategy for selecting the appropriate value of the accelerating coefficients is determined as

follows.
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1. The first one is the jumping-out state, which is further categorised according the total

number of states N and the appropriate value of accelerating coefficient is assigned

in time t with the unit of being in the jumping-out state. For instance, whether it

needs a high jump from its current state or a small jump. Therefore, large values

are assigned to c2 and small values are assigned to c1 to let the swarm fly towards

the global optimum. We assume the maximum values of c2 as 2.2 and 2.1 and c1 are

assigned 1.8 and 1.7, if N is 8 and can adjusted further if N is otherwise.

2. The next is determined as exploration state, in this state, it is very important to

explore the entire search space and converge quickly. For that reason c1 has assigned

a large value 2.2 and 2.1 and a small value 1.8 and 1.7 to c2.

3. The third one is exploitation state, in this state we assume the swarm nearly con-

verged to the global optimum or we can say that it is near to the convergent state.

Therefore, we consider a large value 2.1 of c1 and a small value 1.9 of c2.

4. The last one is the convergence state, in this state the particles group together on

a single global optimal position. Thus, to avoid premature convergence and balance

the search between local and global regions on the search space, we assign the same

moderate value 2 to both c1 and c2.

In contrast to other methods [7] of calculating accelerating coefficients our approach is

simpler and effective. The current state is determined from the probability matrix [8]. It

has been observed that the current state has the large value of probability to remain in the

same state and has the small probability to jump to the other state. This ensures the very

fast convergence and avoid the swarm to fly towards the local optimum. The Markovian

jumping process is demonstrated by the following Pseudocode 2.

3.4 Experimental Work

The proposed NS-MJPSO has been evaluated 12 commonly used benchmark functions that

are given in Table 3.1 [14]. Initially, the proposed NS-MJPSO is applied to the 12 functions

f1 to f12 in 30 dimensions. Then the evaluation results are compared with published values

of six state-of-the-art algorithms. The reported results are derived from the 30 independent

trials. All the work have been conducted on a PC with an Intel Core i5-3320M 2.6 GHz

CPU and Microsoft Windows 10 Pro 64-bit system. The benchmark test experiments of

the 12 uni-modal and multi-modal problems for the proposed NS-MJPSO and other PSO

variants in comparison are all coded in Matlab R2015a. It is also worth to be mentioned
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Algorithm 2 Markov Jumping Process

1: N ← Number of states
2: D ← Dimension
3: S ← Population
4: X ← Current Position
5: C ← Acceleration Coefficients
6: for Each particle i do
7: Calculate the mean distance using Equation (3.8)
8: temp2 ← 0
9: for k do ← 1 : S
10: temp ← 0
11: for j do ← 1 : D
12: temp ← (X(i, j)−X(k, j))2 + temp
13: end for
14: temp2 ← temp2 +

√
temp

15: end for
16: Disi ← temp2/S
17: end for
18: calculate Ef and current state
19: Ef ← (Disj −min(Dis))/(max(Dis)−min(Dis))
20: for doi← 0 :N States
21: if theni/N States ≤ Ef < (i+ 1)/N States
22: δ ← current state i
23: end if
24: end for
25: predict the next state using transition matrix Γ
26: φ(1, 1)← 0.9 initially fixed
27: φ(Ns, Ns)← 0.1 minimum
28: for Each State i do ← 0 : Ns

29: calculate the next state using the φ given values
30: end for
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that because of the N state Markov jumping mechanism and the evolutionary control of the

current states, the algorithm converge to its optimum in the early stages of their function

evaluations.

Table 3.1: The Benchmark Functions

Name Function Dimension Search space

Sphere (f1) f(x1 · · ·xn) =
∑n

i=1 x
2
i 30 [-100, 100]

Schwefel 2.22 (f2) f(x0 · · ·xn) =
∑n

i=0 |xi|+
∏n
i=0 |xi| 30 [-10, 10]

Schwefel 1.2 (f3) f(x1 · · ·xn) =
∑n

i=1(
∑i

j=1 xj)
2 30 [-100, 100]

Schwefel 2.21 (f4) f(x0 · · ·xn) = maxi{|xi|, 1 ≤ i ≤ n} 30 [-100, 100]

Rosenbrock (f5) f(x1 · · ·xn) =
∑n−1

i=1 (100(x
2
i − xi+1)

2 + (1− xi)2) 30 [-30, 30]
Step (f6) f(x1 · · ·xn) =

∑n
i=1 x

2
i 30 [-100, 100]

Schwefel (f7) f(x1 · · ·xn) = 418.982887.n+
∑n

i=1(−xi.sin(
√
|xi|)) 30 [-500, 500]

Rastrigin (f8) f(x1 · · ·xn) = 10n+
∑n

i=1(x
2
i − 10cos(2πxi)) 30 [-5.12, 5.12]

Ackley’s (f9) f(x0 · · ·xn) = −20exp(−0.2
√

1
n

∑n
i=1 x

2
i )− exp(

1
n

∑n
i=1 cos(2πxi)) + 20 + e 30 [-32, 32]

Griewank (f10) f(x1 · · ·xn) = 1 + 1
4000

∑n
i=1 x

2
i −

∏n
i=1 cos(

xi√
i
) 30 [-600, 600]

Penalized 1 (f11) f(x1 · · ·xn) = π
n{10sin

2(πy1) +
∑n−1

i=1 (yi − 1)2[1 + 10sin2(πyi+1)] + (yn − 1)2} 30 [-50, 50]
+
∑n

i=1 u(xi, 10, 100, 4),
y = 1 + (14)(xi + 1)

Penalized 2 (f12) f(x1 · · ·xn) = 0.1{sin2(3πx1) +
∑n−1

i=1 (xn − 1)2[1 + sin2(πxi+1)] + (xn − 1)2} 30 [-50, 50]
+
∑n

i=1 u(xi, 5, 100, 4),

3.4.1 Performance of the Proposed NS-MJPSO on Benchmark

Functions

In the experimental analysis of the 12 benchmark functions, we have selected the six

illustrative PSO modified versions for comparing the performance of proposed NS-MJPSO

algorithm on the same problems. First one is the recently developed PSO variant named

as SL-PSO [14], second is the local-neighbourhood PSO (Local-PSO) [58], third is the

global best version (GPSO) [46], fourth is the dynamic multi-swarm version of PSO (DMS-

PSO) [60; 62], fifth one is the fully-informed PSO (FIPS) [59], the sixth and last one is

comprehensive-learning PSO (CLPSO) [4]. The required parameters along-with the values

are described here in Table 3.2. The proposed NS-MJPSO has presented outstanding

performance on 10 out 12 problems (f1 to f6 and f8 to f12), containing uni-modal and

multi-modal problems. We have shown the performance of proposed NS-MJPSO algorithm

individually for each function in Table 3.3 to Table 3.14 and Figure 3.5 to Figure 3.16 as

follows:
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(f1) The Sphere Function. (f2) The Schwefel 2.22 Function

(f3) The Schwefel 1.2 Function. (f4) The Schwefel 2.21 Function

(f5) The Rosenbrock Function. (f6) The Step Function
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(f7) The Schwefel Function. (f8) The Rastrigin Function

(f9) The Ackley’s Function. (f10) The Griewank Function

(f11) The Penalized 1 Function. (f12) The Penalized 2 Function

Figure 3.4: The 3D representation of f11 and f12
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Table 3.2: Parameter coefficients of the PSO variants for comparison

Algorithm Inertia weight Acceleration Coefficients
SL-PSO automatic automatic
LPSO [0.9, 0.4] c1 = c2 = 2.0
GPSO [0.9, 0.4] c1 = c2 = 2.0
DMS-PSO 0.729 c1 = c2 = 1.49445,m = 3, R = 15
FIPS χ = 0.729 c1 + c2 = 4.1
CLPSO [0.9, 0.7] c1 = c2 = 1.49445
NS-MJPSO [0.9, 0.5] c1 = [2, N ], c2 = [2, N ], φ = 0.9, N

Table 3.3: Simulation results for Sphere function

Algorithm Mean Best Value Std Dev
NS-MJPSO 2.16E-150 2.79E-161 1.82E-144
SL-PSO 4.24E-90 5.08E-92 3.26E-89
LPSO 4.89E-12 1.80E-14 4.86E-12
FIPS 7.23E-70 4.78E-71 6.55E-70
DMS-PSO 3.81E-15 4.97E-20 1.02E-14
CLPSO 6.32E-19 1.69E-19 4.56E-19
GPSO 5.56E-33 3.30E-45 1.93E-32
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Figure 3.5: The mean fitness of f1 30 dimensional problems

NS-MJPSO The new algorithm NS-MJPSO has produced best results for f1 Sphere function in

terms of the minimum error, mean and standard deviation. The robustness and

accuracy of the NS-MJPSO is shown by the mean value achieved in Table 3.3.

SL-PSO, FIPS The SL-PSO and FIPSO have the similar good performance in second and third

ranking.

GPSO has also produced the best performance for f1 Sphere function in terms of the best

minimum value.

LPSO has resulted poor performance for f1 Sphere function in terms of its statistical eval-

uations.

CL-PSO has also relatively poor results for same function.

DMS-PSO This algorithm have the similar performance as CL-PSO for f1

NS-MJSPSO The new algorithm NS-MJPSO has produced best results for f2 Schwefel 2.22 function

in terms of the minimum error, mean and standard deviation. The results produced

by NS-MJPSO are more robust and accurate as given in Table 3.4.



Chapter 3. 52 N State Markov Jumping PSO Algorithm

Table 3.4: The Schwefel 2.22

Algorithm Mean Best Value Std Dev
NS-MJPSO 7.93E-95 2.51E-98 6.40E+00
SL-PSO 1.50E-46 1.09E-47 6.27E-47
LPSO 1.33E-08 9.36E-10 1.39E-08
FIPS 9.99E-39 2.71E-39 5.40E-39
DMS-PSO 3.29E-11 1.42E-14 8.70E-11
CLPSO 7.49E-12 4.70E-12 2.28E-12
GPSO 9.67E+00 1.85E-28 1.03E+01

Number of generations: (Population=50,Dimension=30)
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Figure 3.6: The mean fitness of f2 on 30 dimensional problems
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SL-PSO, FIPS The SL-PSO and FIPSO have again the similar good performance for f2 and stand

on rank 2 and 3 respectively.

GPSO has also produced the best performance for f2 Schwefel 2.22 function in terms of the

best minimum value.

LPSO has resulted poor performance for f2 Schwefel 2.22 function in terms of its statistical

evaluations.

CL-PSO has also again produced poor results for f2 as well.

DMS-PSO This algorithm have the similar performance as CL-PSO for f2

Table 3.5: Function Schwefel 1.2

Algorithm Mean Best Value Std Dev
NS-MJPSO 1.48E-23 5.45E-27 9.13E+02
SL-PSO 4.66E-07 5.95E-08 9.69E-07
LPSO 2.75E+01 8.10E+00 1.43E+01
FIPS 1.16E+00 3.58E-01 6.05E-01
DMS-PSO 8.35E+01 1.06E+01 5.51E+01
CLPSO 1.06E+03 6.74E+02 3.20E+02
GPSO 2.22E+03 4.44E-05 3.46E+03

NS-MJPSO Our algorithm NS-MJPSO is on the top for f3 Schwefel 1.2 function in terms of the

best minimum value, mean and standard deviation. In addition to that NS-MJPSO

is more robust and with accurate results for f3 given in Table 3.5.

SL-PSO The SL-PSO has relatively good performance for f3.

GPSO has also produced the best performance for f3 Schwefel 1.2 function in terms of the

best minimum value.

FIPS has poor performance for f3.

LPSO has resulted poor performance for f3 Schwefel 1.2 function.

CL-PSO has also again produced poor results for f3 as well.

DMS-PSO This algorithm have the similar performance as CL-PSO for f3
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Figure 3.7: The mean fitness of f3 30 dimensional problems

Table 3.6: Function Schwefel 2.21

Algorithm Mean Best Value Std Dev
NS-MJPSO 3.04E-21 1.48E-23 8.22E-21
SL-PSO 1.17E-24 1.44E-25 5.62E-25
LPSO 2.14E-02 8.23E-03 8.04E-03
FIPS 2.42E+00 3.60E-01 1.15E+00
DMS-PSO 2.14E+00 8.52E-01 8.80E-01
CLPSO 4.50E+00 3.32E+00 5.15E-01
GPSO 3.87E-05 3.71E-06 3.27E-05
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Figure 3.8: The mean fitness of f4 on 30 dimensional problems

SL-PSO The SL-PSO has produced the best performance for f4 in terms of the best minimum

value, mean and standard deviation.

NS-MJPSO The newly developed NS-MJPSO has second better performance in terms of accu-

racy for f4 Schwefel 2.21 function, where in computation time is better than all the

algorithms used in comparison here.

GPSO has also produced the best performance for f4 Schwefel 2.21 function in terms of the

best minimum value.

FIPS has poor performance for f4.

LPSO has resulted poor performance for f4 Schwefel 2.21 function.

CL-PSO has also again produced poor results for f4 as well.

DMS-PSO This algorithm have the similar performance as CL-PSO for f4

NS-MJPSO The newly developed NS-MJPSO stands number one for f5 Rosenbrock function in

terms of robustness and accuracy shown in Table 3.7.
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Table 3.7: The Function Rosenbrock

Algorithm Mean Best Value Std Dev
NS-MJPSO 1.92E-04 8.47E-09 1.64E+04
SL-PSO 2.15E+01 9.79E+00 2.23E+01
LPSO 6.27E+01 7.32E+00 5.98E+01
FIPS 2.59E+01 1.25E-01 1.71E+01
DMS-PSO 3.86E+01 2.74E-01 3.03E+01
CLPSO 9.55E+00 1.73E+00 7.73E+00
GPSO 1.31E+02 3.84E-01 5.59E+02
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Figure 3.9: The mean fitness of f5 30 dimensional problems
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SL-PSO The SL-PSO, CL-PSO and LPSO have similar average performance for f5.

GPSO , FIPS and DMS-PSO have similar and relatively better performance for f5 Rosen-

brock function in terms of the best minimum value.

Table 3.8: The Step Function

Algorithm Mean Best Value Std Dev
NS-MJPSO 0.00E+00 0.00E+00 0.00E+00
SL-PSO 0.00E+00 0.00E+00 0.00E+00
LPSO 0.00E+00 0.00E+00 0.00E+00
FIPS 0.00E+00 0.00E+00 0.00E+00
DMS-PSO 2.67E-01 0.00E+00 5.21E-01
CLPSO 0.00E+00 0.00E+00 0.00E+00
GPSO 0.00E+00 0.00E+00 0.00E+00
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Figure 3.10: The mean fitness of f6 on 30 dimensional problems

NS-MJPSO In f6 all the algorithms have shown similar performance. NS-MJPSO has the robust

adaptability for such type of problems, where it convergence to global optimum in

shorter computation.
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GPSO has also produced the best performance for f6 Step function.

FIPS has also produced the best performance for f6 Step function.

LPSO has also produced the best performance for f6 Step function.

CL-PSO has also produced the best performance for f6 Step function.

DMS-PSO has also produced the best performance for f6 Step function. However, slow perfor-

mance and some inconsistency is observed.

Table 3.9: The Schwefel Function

Algorithm Mean Best Value Std Dev
NS-MJPSO 2.99E+03 1.40E+03 2.16E+03
SL-PSO 1.56E+03 8.29E+02 4.24E+02
LPSO 1.87E+03 9.51E+02 5.30E+02
FIPS 2.70E+03 1.34E+03 7.56E+02
DMS-PSO -2.55E-01 -7.66E+00 1.40E+00
CLPSO 4.85E-13 0.00E+00 8.18E-13
GPSO 5.52E+03 2.82E+03 2.33E+03

NS-MJSPSO In f7 Schwefel function all the algorithms including NS-MJPSO, have the similar

poor performance in terms of best values. However, NS-MJPSO is faster than the

other algorithms in comparison.

CL-PSO has the best performance for f7 Schwefel function Figure 3.11.

SL-PSO has also similar performance as NS-MJPSO.

GPSO , FIPS and LPSO has same performance for f7

Table 3.10: Rastrigin Function

Algorithm Mean Best Value Std Dev
NS-MJPSO 0.00E+00 0.00E+00 0.00E+00
SL-PSO 1.55E+01 6.96E+00 4.16E+00
LPSO 1.69E+01 4.01E+00 1.05E+01
FIPS 4.25E+01 2.70E+01 6.66E+00
DMS-PSO 3.32E-02 1.78E-15 1.82E-01
CLPSO 6.13E-09 4.23E-10 6.86E-09
GPSO 3.05E+01 1.98E-07 3.15E+01
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Figure 3.11: The mean fitness of f7 30 dimensional problems

Number of generations: (Population=50,Dimension=30)
0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000

M
ea

n 
fit

ne
ss

:lo
g(

f(
x)

)

10-15

10-10

10-5

100

105

GPSO
LPSO
CLPSO
DMSPSO
FIPS
SLSPO
NS-JPSO

(f8) The Rastrigin Function

Figure 3.12: The mean fitness of f8 on 30 dimensional problems
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NS-MJSPSO In f8 Rastrigin function NS-MJPSO has the performance in comparison to all algo-

rithms in terms of best evaluation values and also the computation time.

CL-PSO has the second best performance for f8 in comparison to NS-MJPSO.

SL-PSO , and LPSO have the same performance. However, the SL-PSO is much faster than

LPSO.

GPSO , has also good performance in terms of best value.

DMS-PSO has also good performance, where as usual has much computation time in comparison

Figure 3.12.

Table 3.11: The Ackley’s Function

Algorithm Mean Best Value Std Dev
NS-MJPSO 1.33E-14 6.22E-15 3.41E-15
SL-PSO 5.54E-15 2.66E-15 1.23E-15
LPSO 2.87E-06 7.68E-08 5.48E-06
FIPS 7.16E-15 6.22E-15 2.46E-15
DMS-PSO 1.49E-08 6.84E-11 3.71E-08
CLPSO 2.98E-10 1.24E-10 9.33E-11
GPSO 9.25E-01 6.22E-15 3.52E+00

NS-MJSPSO In f9 Ackley’s function, NS-MJPSO, FIPS, and GPSO have the same minimum best

values. However, the proposed NS-MJPSO is much faster than others.

SL-PSO has the best performance f9 Ackley’s function, and has the minimum value.

DMS-PSO , and CLPSO have the similar average performance for f9 Ackley’s function Fig-

ure 3.13.

NS-MJSPSO In f10 Griewank function, NS-MJPSO, SL-PSO, FIPS, DMS-PSO, and GPSO have

the same minimum values. As shown in Figure 3.14 NS-MJPSO has converged very

early.

CL-PSO , and LPSO have the same performance for f10 Griewank function Figure 3.14.

NS-MJSPSO In f11 Penalized 1 function, NS-MJPSO, has converged to the global optimum very

quick. SL-PSO, FIPS, and GPSO have the same best values. However, the GPSO

and FIPS are relatively very slower than NS-MJPSO and SLPSO.
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Figure 3.13: The mean fitness of f9 30 dimensional problems

Table 3.12: The Griewank Function

Algorithm Mean Best Value Std Dev
NS-MJPSO 0.00E+00 0.00E+00 0.00E+00
SL-PSO 0.00E+00 0.00E+00 0.00E+00
LPSO 3.94E-03 2.44E-13 6.29E-03
FIPS 4.48E-09 0.00E+00 2.34E-08
DMS-PSO 7.22E-03 0.00E+00 1.06E-02
CLPSO 2.20E-12 7.22E-15 4.28E-12
GPSO 1.05E-02 0.00E+00 1.44E-02

Table 3.13: The Penalized 1 Function

Algorithm Mean Best Value Std Dev
NS-MJPSO 1.57E-32 1.57E-32 5.76E-02
SL-PSO 1.57E-32 1.57E-32 5.57E-48
LPSO 6.97E-15 2.45E-16 1.20E-14
FIPS 1.57E-32 1.57E-32 5.57E-48
DMS-PSO 3.46E-03 1.24E-21 1.89E-02
CLPSO 3.09E-20 9.08E-21 1.56E-20
GPSO 3.46E-03 1.57E-32 1.89E-02
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Figure 3.14: The mean fitness of f10 on 30 dimensional problems
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Figure 3.15: The mean fitness of f11 30 dimensional problems
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DMS-PSO , and CL-PSO have the same performance in terms of best values for f11 Penalized

1 function Figure 3.15

Table 3.14: The Penalized 2 Function

Algorithm Mean Best Value Std Dev
NS-MJPSO 1.35E-32 1.35E-32 3.35E-03
SL-PSO 1.35E-32 1.35E-32 2.01E-03
LPSO 8.45E-14 3.36E-15 1.27E-13
FIPS 3.66E-04 1.35E-32 2.01E-03
DMS-PSO 4.76E-03 1.47E-18 8.98E-03
CLPSO 4.17E-19 1.09E-19 2.82E-19
GPSO 1.43E-16 1.35E-32 7.82E-16
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Figure 3.16: The mean fitness of f11 30 dimensional problems

NS-MJSPSO In f12 Penalized 2 function, NS-MJPSO, has converged to the global optimum very

quick. SL-PSO, FIPS, and GPSO have the same best values. However, the GPSO

and FIPS are relatively very slower than NS-MJPSO and SLPSO.

DMS-PSO , and CL-PSO have again the same performance in terms of best values for f12

Penalized 2 function Figure 3.16
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3.4.2 Computation Time of the Proposed NS-MJPSO

The mean time for all the algorithms in shown in Figure 3.17. The Local PSO (LPSO)

has the smaller average computation time. However, our newly developed has the second

level faster computation time along-with having the best minimum values for most of the

uni-modal and multi-modal problems.

Figure 3.17: Average computation of the proposed NS-MJPSO in comparison

3.5 Summary

This chapter has contributed a new stochastic based PSO algorithm named N State

Markov Jumping Particle Swarm Optimization (NS-MJPSO) algorithm. NS-MJPSo has

combined the term evolutionary method for population distribution and Markov jumping

for stochastic analysis of the search space. To further illustrate the performance of this

newly developed NS-MJPSO algorithm, we have applied to evaluate 12 uni-modal, multi-

modal and non-linear benchmark functions. Furthermore, we have re-implemented Social-

learning PSO (SL-PSO), Globalbest PSO (GPSO), Localbest PSO(LPSO), Fully-informed

PSO(FIPS), Dynamic Multi-Swarm PSO (DMS-PSO) and Comprehensive-learning PSO

(CL-PSO). The performance of all the above mentioned algorithms is evaluated on the
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same functions. It has been clearly visualized in graphs and tables that the novel NS-

MJPSO has the significant performance in terms of solution quality with increasing the N

states. The algorithm has performed well for most of the mathematical benchmark func-

tions in the trials. The computational burden is slightly increased, but the sophisticated

technique of Markovian Jumping has significantly contributed to a robust method for op-

timization. The proposed NS-MJPSO can be used for any kind of optimization problems,

where accuracy is the main concern for the problem.



Chapter 4

A Novel N State Switching PSO

Algorithm
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4.1 Introduction

In this chapter we introduce a novel N State Switching Particle Swarm Optimization

(NS-SPSO) algorithm. The NS-SPSO algorithm is based on the assumptions to further

improve the performance of NS-MJPSO by excluding some complex steps. The first step

is to determine the jumping probability according to the domain knowledge. Practically,

it is very difficult to have enough domain knowledge about the optimization problem. The

second step is to reduce the computational complexity and burden induced by Markov

chain. In the novel NS-SPSO algorithm, the velocity is updated purely according to the

evolutionary factor value. The particle switches from one state to another state according

to the assessment of its current evolutionary factor. Furthermore, the choice of staying

in the current state or switching to the other state is made by how large the value of

evolutionary factor is. First of all the population distribution and the mean distance by

using Euclidean distance are determined. The evolutionary factor is then derived by using

the population distribution and mean distance of each particle from the global best. In the

population distribution, we determine that how far is the particle away from each other

and also its global optimum. The main states are described as exploration, exploitation,

convergence and jumping-out states. However, in the N states, we further divide the main

states into sub-states or stages. Each state is assigned a value in the range of (0, 1).

The parameters are assigned adequate weights according to each sub-state or stage. In

the N states, N number of acceleration coefficients are assigned, but the appropriate value

is taken during the evaluation process according to the current state. Subsequently, the

algorithm converges to the optimum in few iterations. For that reason, we have adopted

the linearly time decreasing inertia weight concept for NS-SPSO algorithm. Extensive

simulations have been carried out to examine the performance of our proposed NS-SPSO

algorithm by applying it to 12 widely used benchmark functions. The benchmark func-

tions consist of six uni-modal and six multi-modal problems. The results produced by

NS-SPSO are then compared with NS-MJPSO and other state-of-the-art algorithms. The

average/best evaluation values are shown in the tables and further illustrated in the graph-

ical figures. The proposed algorithm has consumed shortest computation time and also

has produced second best results in terms of accuracy in comparison to all other variants

except NS-MJPSO. Furthermore, the proposed algorithm has solved the problem of pre-

mature convergence to some extent by the concept of state switching. The particle learns

from the population distribution about the neighbourhood and also the global best posi-

tion. Then the particles efficiently move towards the global optimum in shorter time. The

classification of N states has induced the balance between local and global search regions.
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The rest of work in this chapter is organized as Section 4.2 is dedicated to summarise the

background literature, the structure of basic PSO algorithm and its developments towards

the proposed work. In Section 4.3 the structure of the proposed algorithm is presented. In

the following Section 4.4 the performance of proposed NS-SPSO algorithm is thoroughly

examined in comparison to the other well-known PSO variants. In Section 4.5, we have

briefly summarised our proposed work in this chapter.

4.2 Related Work

Particle Swarm Optimization (PSO) is a meta-heuristic, population based algorithm first

introduced by Kennedy and Eberhart in 1995 [36; 37]. The main concept is inspired

by the swarm intelligent behaviour and choreography of birds flocking and fish schooling

[147]. PSO imitates the participant agents called particles to get to the optimum location

in the search space. After the random initialization of population the particles compare

their current position to their neighbours and thus move to the new position. Basically,

each particle is a candidate solution and it keeps track of the best places found by itself

within the trial history. It is denoted as personal best or Pbest symbolically. Whereas,

the best value ever found by entire swarm is called global best or Gbest. All particles are

collectively named as swarm. PSO algorithm is based on two simple equations denoted as

velocity update vi, and position update xi. A constant value 2 is used for the acceleration

coefficients c1 and c2. Apart from that, two uniformly distributed random numbers denoted

as rand1 and rand2 have also been used. The simplified structure, good quality solutions,

quick convergence and algorithm reliability are the main characteristics that have attracted

researchers in various fields. PSO has been applied to various real world optimization

problems [1; 2; 5; 73; 148; 149; 150] in the last two decades. Due to the limitations of

getting trapped into local optimum and excessive evaluations the basic PSO has been

further modified. Several variants have been developed with extra capabilities.

In PSO modified versions, the diversity of the swarm has been improved by introducing

the various structures for topologies in [56; 57]. Kennedy and Mendes in [58] have proposed

two different types of topologies named as ring and Von-Neumann topologies. A novel fully-

informed PSO (FIPS) has been proposed in [59]. In FIPS the particles learn from their

peers with the best fitness in their neighbourhood. Comprehensive learning PSO (CLPSO)

has been developed in [4]. This algorithm has also contributed to the area of topological

improvements of PSO. The performance of the above mentioned algorithms are investigated

on the uni-modal and multi-modal functions. Another variant of PSO is developed that

derives the mean distance of particles in the local neighbourhood. This algorithm has been
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used for the problems having many local optima [154].

PSO algorithm is used in combination with the other techniques such as evolutionary

techniques [7], genetic algorithm [49; 51] and ant bee colony [52]. Additional parameters

have been introduced into PSO algorithm. The concept of niching has been incorporated

with PSO algorithm in [155]. Gaussian mutation has been introduced by [54]. Another

Adaptive Particle Swarm Optimization (APSO) algorithm has been proposed [7], evolu-

tionary state information has been used as an additional term added to the process of basic

PSO. Four evolutionary states S1, S2, S3, and S4 have been introduced. Each state has

assigned an appropriate value from the fuzzy membership interval of the particle current

state. The evolutionary factor Ef has been used to initialize the population distribution,

and to measure the mean distance between the global best and other particles in the swarm.

Four states have been described by taking population distribution information Ef in to

account, which describes convergence, exploration, exploitation and jumping-out states re-

spectively. Fuzzy classification method is used for classifying the states, which results in

some limitations of excessive computation of acceleration coefficients in each generation,

swarm stagnation in the local optima, if the current global best is the local optimum and

the last one is the complicated implementation of classification method.

Furthermore, in the PSO performance studies, the computation time has been con-

sidered as the initial objective for improvement. Another aim that has been considered

is solving the problem of local optima or premature convergence [1; 2; 3; 4]. The given

improved variants have been thoroughly investigated by applying them into numerous

real-world problems. However, due to the non-linear, multi-modal, high-dimensional and

complex types of the real-world problems there is still a desirable room for further enhance-

ment to the PSO algorithm. In response to that, the supplementary techniques have been

merged to significantly control the parameters of PSO algorithm [6; 7; 8]. The topological

structures have been improved to explore the search space, ensure global optimum and

avoid premature convergence [4].

A novel hybrid type, switching PSO (SPSO), has been proposed in [8]. Evolutionary

state information is used to find the mean distance of all the particles. Then Markov chain

is applied to randomly switch particle within the four states according to certain transition

probability. Appropriate values of acceleration coefficients have been predefined for all

states. The main consideration of the switching PSO is to establish the balance between

local, global search region and converge quickly to the global optimum in few iterations.

The switching mechanism has ensured that the particle will change its state according to

certain probability and will not get trapped into local optimum prematurely. SPSO has

shown best performance for benchmark functions and genetic regulatory networks (GRN)
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application [8]. Therefore, to make the existing SPSO robust and more accurate, we have

proposed some modifications to the current SPSO algorithm.

The proposed N state switching particle swarm optimization algorithm (NS-SPSO) is

the modified version of our previously developed algorithm NS-MJSPO described in Chap-

ter 3, where N is number of possible states that can be any positive value. Basically, the

main idea is similar to four state versions given in APSO and SPSO [7; 8]. The NS-SPSO

algorithm is based on evolutionary techniques. The N states are visualised as sub-states or

stages of four states. Furthermore, the evolutionary states are described by calculating and

then using the population distribution, mean distance using Euclidean space, maximum

minimum values and also the index of global best particle in the population distribution

information. The inertia weight ω is an important parameter of PSO algorithm, which has

first been introduced by [44]. In this work we compute the inertia weight ω by combing

the evolutionary factor and the time varying strategy [46]. Acceleration coefficients c1 and

c2 both takes N number of tuned values. The proposed algorithm is then applied to 12

commonly used uni-modal and multi-model functions of various dimensions. The results

are compared with some well known and most cited algorithms. The proposed algorithm

has performed well in terms of shortest computation time and average/best evaluation

values in comparison to all variants in comparison except NS-MJPSO in accuracy for most

of the benchmark functions. However, in few problems some additional parameter tuning

is required to improve the quality of solution in terms of better evaluation values.

4.2.1 The Basic Framework of PSO Algorithm

The PSO algorithm refers to the intelligent searching behaviour of all participants named

as particles. The population of all particles is called swarm of size n, where each individual

particle i is a candidate solution in the problem space. Each particle i holds two vectors

quantities, the first one is the velocity of ith particle in Dth dimension and t time is rep-

resented as vi(t) = [(vi1(t), vi2(t), · · · , viD(t))] and the second one is the position of the ith

particle in Dth dimension and in time t is denoted as xi(t) = (xi1(t), xi2(t), · · · , xiD(t)),

where D represents dimension of the solution search space. The swarm velocities and

positions are initialized randomly with their respective boundaries xin(t) ∈ [xmin,n, xmax,n]

(1 ≤ n ≤ D) with xmin,n and xmax,n of the search space. Where Vmax is maximum veloc-

ity set to the 20% of the search space [73]. During the process of algorithm evaluation

iteratively the particle i with dth dimension is updated as follows.

vi(t+ 1) =ωvi(t) + c1rand1(pbesti(t)− xi(t))

+ c2rand2(gbesti(t)− xi(t))
(4.1)
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xi(t+ 1) =xi(t) + vi(t+ 1) (4.2)

where ω is called inertia weight [44] c1 and c2 are denoted as acceleration coefficients [37].

rand1 and rand2 are two uniformly distributed random numbers generated between U [0, 1]

[36]. Pbest represents pbesti = (pbi1, pbi2, · · · , pbiD). Personal best is particle with the

best fitness found by the ith particle so far and gbest means gbest denoted as gbestD =

(gb1, gb2, · · · , gbD) global best is the best particle fitness found by the entire swarm. nBest

is used for global best in the neighbourhood version. GBest for the global version and LBest

for the local version of PSO. The particle’s personal experience and its social interaction

determines the direction towards its best position iteratively. In [156] the movement of

particle in the search space and the influence of its parameter is shown in Figure 4.1.

Figure 4.1: The Particle and Parameter Social Learning Behaviour

4.3 The novel N State Switching PSO

This section elaborates the development of novel NS-SPSO for the enhancement of global

search performance. A new switching parameter δ(t) is introduced in the basic PSO velocity

update Equation (4.3). The value of N states along-with other parameters is initialised.

The novel N state switching PSO (NS-SPSO) is investigated by applying to 12 uni-modal

and multi-modal widely used benchmark functions [4; 153] which are given in Section 4.4

and Table 3.1.

vi(t+ 1) =ωvi(t) + c1(δ(t))r1(t)(pbesti(t)− xi(t))

+ c2(δ(t))r2(t)(gbesti(t)− xi(t)),
(4.3)
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xi(t+ 1) =xi(t) + vi(t+ 1) (4.4)

4.3.1 Prediction of Evolutionary States

In the beginning of population distribution the particles are dispersed in the search space.

However, in the evolutionary process the particles group together iteratively in the later

stages and find their local and global optimal positions in the search space. The extraction

of information from the population distribution and using that for further describing the

evolutionary state is an important research topic in PSO. Hence, the population distri-

bution information in each generation is important to be recorded. A clustering based

technique was introduced for evolutionary state estimation in [6; 143]. Whereas, fuzzy

classification method is used for calculating four evolutionary states in [7].

In the first step of population distribution the mean distance from the global best

particle in the search space for each i is derived. The particles having smaller distance

from the global best are close to the convergence state and it switch to the other state

according to evolutionary factor. Furthermore, the particles located far away from the

global best switch to another state with higher values of its parameters. The mean distance

is calculated by using Euclidean matrix as follows [7; 8]:

Pd(i) =
1

N − 1

N∑
j=1,j 6=i

√√√√ D∑
k=1

(xi(k)− x̄j(k))2 (4.5)

In Equation (4.5) N represents swarm size and D stands for dimensions of the problem.

Evolutionary factor Ef has been introduced by [7], and it has further been used by [8].

This thesis presents a novel switching mechanism by extending from four states up to

N states. It further divides the four states to possible sub-states. The sub-states smoothly

describe the unit of association for particle in a particular state. By dividing into sub-states,

we assume significant improvement in adopts more suitable values for its parameters. The

sub-states represents the certain stages according to the value of N states. Hence, by

increasing the number of states the performance of the algorithm will be improved in

terms of accuracy in the evaluation results. But the computation burden will increase

slightly. An auxiliary parameter δ is used in the new velocity update Equation (4.3) in

Section 4.3.

Here we have derived the mean distance of all Pd(i) by using Equation (4.5) and find Pdg the
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global best particle, Pd(max) as the maximum mean distance and Pd(min) as the minimum

mean distances. Consider the values derived by using Equation (4.5) in the population

distribution and then compute the evolutionary factor using Equation (4.6).

Ef =
Pdg − Pd(min)

Pd(max) − Pd(min)
∈ [0, 1] (4.6)

States =



1, 0 ≤ Ef <
1
N
,

2, 1
N
≤ Ef <

2
N
,

3, 2
N
≤ Ef <

3
N
,

...
...

N, N−1
N
≤ Ef < 1

Figure 4.2: The switching parameters flow diagram
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4.3.2 Mechanism for Inertia Weight Calculation

The inertia weight ω has the significant contribution in the control of PSO algorithm.

It has the main influence on the global and local search performance. If the value of ω

is small then it causes exploitation in the local search region. Large ω drag the swarm

towards global search region. In this chapter ω is by using the linearly decreasing strategy

[46].

ω = (ωmax − ωmin)× iter

maxiter
+ ωmin (4.7)

Here, we have initialized ω = 0.9 as maximum and 0.5 values as minimum. The value

of inertia weight ω is linearly decremented with time. The developments regarding inertia

weight has been briefly described in Chapter 3. The complete structure of NS-SPSO is

described by the following flowchart in Figure 4.3:

4.3.3 Selection of Acceleration Coefficients

In the proposed NS-SPSO the acceleration coefficients are selected and adjusted manually

according to the problem. N number of acceleration coefficients are required. For instance,

if N = 4 then we have to initialize four values for each acceleration coefficient C = [2, N ].

Each value is designated to a particular state. The N acceleration coefficient values are

pre-initialized. Initially, c1(δ(0)) and c2(δ(0)) are assigned 2. Then the appropriate value

for the acceleration coefficient are automatically assigned during the program execution

time. The strategy for selecting the acceleration coefficients for each state is described in

[8] as follows:

In the proposed NS-SPSO the large value of Ef describes the state as jumping-out-

state. As the particle has the intention to jump from the local optimum towards global

optimum a large value of social learning factor c2(δ(4)) = 2.2 and smaller value of cognitive

factor c1(δ(4)) = 1.8 are assigned. Subsequently, the particle flies towards the global best

region very quickly. According to this strategy the proposed algorithm converges to global

optimum in few iterations. Similarly, a relatively small value of Ef describes the current

state in the exploration-state, according to that a large value of c1(δ(3)) = 2.2 and smaller

value of c2(δ(3)) = 1.8 are assigned to let the particle explore search spaces on its personal

influence. Moreover, in the exploitation-state, a large value of c1(δ(2)) = 2.1 and smaller

value of c2(δ(2)) = 1.9 are pre-initialized. A slight changes have been made to preserve

the balance in local and global search performance. Subsequently, in the convergence-state



Chapter 4. 75 NS-SPSO

Figure 4.3: N State Switching PSO Algorithm flowchart
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equal values to both c1(δ(1)) = 2.0 and c2(δ(1)) = 2.0 because all particles group together

in the convergence-state.

4.4 The Experimental Work

The proposed NS-SPSO has been evaluated over 12 commonly used benchmark functions

that are given in Table 3.1 f1 to f12 taken from [14]. Initially, the proposed NS-SPSO

is applied to the 12 functions f1 to f12 in 30 dimensions. Then the evaluation results

are compared with published values of six state-of-the-art algorithms. All the variants

are re-implemented and evaluated for 30 independent trials. The published results of all

the variants are taken from [14] for comparison. All the experimental work have been

conducted on a PC with an Intel Core i5-3320M 2.6 GHz CPU and Microsoft Windows 10

Pro 64-bit system. The benchmark test experiments of the 12 uni-modal and multi-modal

problems for the proposed NS-SPSO and other PSO variants in comparison are all coded in

Matlab R2015a. It is also worth to be mentioned that because of the evolutionary control

and switching techniques the algorithm converge to its optimum in the early stages of the

function evaluations.

Table 4.1: Parameter coefficients of the PSO variants for comparison

Algorithm Inertia weight Acceleration Coefficients
LPSO [0.9, 0.4] c1 = c2 = 2.0
GPSO [0.9, 0.4] c1 = c2 = 2.0
DMS-PSO 0.729 c1 = c2 = 1.49445,m = 3, R = 15
FIPS χ = 0.729 c1 + c2 = 4.1
CLPSO [0.9, 0.7] c1 = c2 = 1.49445
NS-MJPSO [0.9, 0.5] c1 = [2, N ], c2 = [2, N ], φ = 0.9, N
NS-SPSO [0.9, 0.5] c1 = [2, N ], c2 = [2, N ], N

4.4.1 Performance Analysis of NS-SPSO in Benchmark Func-

tions

To analyse the performance of proposed NS-SPSO algorithm in benchmark functions, we

compare it to the newly developed NS-MJPSO Chapter 3 and five other variants of PSO

algorithm. All the variants have been re-implemented for comparison purposes. The pub-

lished values are used in the tables here produced by [14]. We compare our newly developed

NS-MJPSO algorithm described in Chapter 3 because we aim to further enhance its perfor-

mance by reducing the computational burden. Second variant is the local-neighbourhood



Chapter 4. 77 NS-SPSO

PSO (Local-PSO) [58], third is the global best version (GPSO) [46], fourth is the dynamic

multi-swarm version of PSO (DMS-PSO) [60; 62], fifth is the fully-informed PSO (FIPS)

[59], the sixth and last one is the comprehensive-learning PSO (CLPSO) [4]. The required

parameters along-with the values are described here in Table 4.1. The proposed NS-SPSO

has characterised outstanding performance on 9 out 12 problems (f1 to f6 and f8 to f12)

containing uni-modal and multi-modal problems. We have shown the performance of pro-

posed NS-SPSO algorithm individually for each function in Table 4.2 to Table 4.13 and

Figure 4.4 to Figure 4.15 as follows:

Table 4.2: (f1) The Sphere function

Algorithm Mean Best Value Std Dev
NS-SPSO 6.86E-42 1.71E-161 2.28E-41
NS-MJPSO 2.16E-150 2.79E-161 1.82E-144
LPSO 4.89E-12 1.80E-14 4.86E-12
FIPS 7.23E-70 4.78E-71 6.55E-70
DMS-PSO 3.81E-15 4.97E-20 1.02E-14
CLPSO 6.32E-19 1.69E-19 4.56E-19
GPSO 5.56E-33 3.30E-45 1.93E-32
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Figure 4.4: The mean fitness of f1 30 dimensional problems

We have executed the algorithms for 30 independent trails due to the randomness of the
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algorithms results. In the empirical results we store the mean, small evaluation errors and

standard deviation for each function in all trails. In Table 4.2 to Table 4.13 the statistical

results are given over 30 independent trails for the newly developed NS-SPSO and all other

comparison algorithms.

Sphere function (f1) is a uni-modal and simplest function surrounded by all other functions.

In Table 4.2 and Figure 4.4 demonstrates the performance of all the algorithms. The newly

developed NS-SPSO has produced the best value in comparison to all other algorithms in

terms of the minimum values. The NS-SPSO is also faster in execution in comparison.

Therefore, the newly developed NS-SPSO has the promising performance for uni-modal

problems. NS-SPSO is on top rank for (f1). Furthermore, NS-MJPSO is on rank 2 for

(f1).

Table 4.3: (f2) The Schwefel 2.22 Function

Algorithm Mean Best Value Std Dev
NS-SPSO 4.67E+00 3.46E-95 6.29E+00
NS-MJPSO 7.93E-95 2.51E-98 6.40E+00
LPSO 1.33E-08 9.36E-10 1.39E-08
FIPS 9.99E-39 2.71E-39 5.40E-39
DMS-PSO 3.29E-11 1.42E-14 8.70E-11
CLPSO 7.49E-12 4.70E-12 2.28E-12
GPSO 9.67E+00 1.85E-28 1.03E+01

Schwefels function 2.22 (f2), is also uni-modal and simple function amongst all other func-

tions. In Table 4.3 and Figure 4.5 the performance of all the algorithms have illustrated.

The newly developed NS-MJPSO has produced the best value in comparison to all other

algorithms in terms of the minimum values. The NS-SPSO is also faster in execution in

comparison. However, the newly developed NS-SPSO and NS-MJPSO algorithms have

the promising performance for uni-modal problems. NS-MJPSO is on top rank for (f2).

NS-SPSO is on rank 2 for (f2).

Table 4.4: (f3) The Schwefel 1.2 Function

Algorithm Mean Best Value Std Dev
NS-SPSO 1.67E+02 1.87E-30 9.13E+02
NS-MJPSO 1.48E-23 5.45E-27 9.13E+02
LPSO 2.75E+01 8.10E+00 1.43E+01
FIPS 1.16E+00 3.58E-01 6.05E-01
DMS-PSO 8.35E+01 1.06E+01 5.51E+01
CLPSO 1.06E+03 6.74E+02 3.20E+02
GPSO 2.22E+03 4.44E-05 3.46E+03



Chapter 4. 79 NS-SPSO

Number of generations: (Population=50,Dimension=30)
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Figure 4.5: The mean fitness of f2 on 30 dimensional problems
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Figure 4.6: The mean fitness of f3 30 dimensional problems
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Schwefels function 1.2 (f3), is a unimodal and simple problem amongst other functions.

In Table 4.4 and Figure 4.6, we have presented the performance of all the algorithms.

The newly developed NS-SPSO has produced the best value in comparison to all other

algorithms in terms of the minimum values. The NS-SPSO is also faster in execution in

comparison. However, the newly developed NS-SPSO and NS-MJPSO algorithms have

the promising performance for uni-modal problems. NS-SPSO is on top rank for (f3).

NS-MJPSO is on rank 2 for (f3).

Table 4.5: (f4) The Schwefel 2.21 Function

Algorithm Mean Best Value Std Dev
NS-SPSO 1.65E-05 7.63E-24 2.78E-05
NS-MJPSO 3.04E-21 1.48E-23 8.22E-21
LPSO 2.14E-02 8.23E-03 8.04E-03
FIPS 2.42E+00 3.60E-01 1.15E+00
DMS-PSO 2.14E+00 8.52E-01 8.80E-01
CLPSO 4.50E+00 3.32E+00 5.15E-01
GPSO 3.87E-05 3.71E-06 3.27E-05

Number of generations: (Population=50,Dimension=30)
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Figure 4.7: The mean fitness of f4 on 30 dimensional problems

Schwefels function 2.21 (f4) is a uni-modal and simple problem amongst other functions.

Table 4.5 and Figure 4.7 describes the best results in terms of accuracy and convergence
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speed for all algorithms. The newly developed NS-SPSO has produced the best value in

comparison to all other algorithms in terms of the minimum values. The NS-SPSO is

also faster in execution in comparison. However, the newly developed NS-SPSO and NS-

MJPSO algorithms have the promising performance for uni-modal problems. NS-SPSO is

on top rank for (f4). NS-MJPSO is on rank 2 for (f4).

Table 4.6: (f5) The Rosenbrock Function

Algorithm Mean Best Value Std Dev
NS-SPSO 1.14E+01 1.47E-04 1.75E+01
NS-MJPSO 1.92E-04 8.47E-09 1.64E+04
LPSO 6.27E+01 7.32E+00 5.98E+01
FIPS 2.59E+01 1.25E-01 1.71E+01
DMS-PSO 3.86E+01 2.74E-01 3.03E+01
CLPSO 9.55E+00 1.73E+00 7.73E+00
GPSO 1.31E+02 3.84E-01 5.59E+02
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Figure 4.8: The mean fitness of f5 30 dimensional problems

Rosenbrock function (f5), is a unimodal problem. In Table 4.6 and Figure 4.8 the per-

formance of all the algorithms have been given. The newly developed NS-MJPSO has

produced the best value in comparison to all other algorithms in terms of the minimum
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values. The NS-SPSO is the fastest one in execution time in comparison to all algorithms.

However, the newly developed NS-SPSO and NS-MJPSO algorithms have the promising

performance for uni-modal problems. NS-MJPSO is on top rank for (f5). NS-SPSO is on

rank 2 for (f5).

Table 4.7: (f6) The Step Function

Algorithm Mean Best Value Std Dev
NS-SPSO 0.00E+00 0.00E+00 0.00E+00
NS-MJPSO 0.00E+00 0.00E+00 0.00E+00
LPSO 0.00E+00 0.00E+00 0.00E+00
FIPS 0.00E+00 0.00E+00 0.00E+00
DMS-PSO 2.67E-01 0.00E+00 5.21E-01
CLPSO 0.00E+00 0.00E+00 0.00E+00
GPSO 0.00E+00 0.00E+00 0.00E+00
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Figure 4.9: The mean fitness of f6 on 30 dimensional problems

Step function (f6), is a discontinuous function, it is also called piecewise constant function.

In Table 4.7 and Figure 4.9, we have plotted the simulation results, which further describes

the best performance of all the algorithms. All the algorithms have produced the same

global optimum. However the newly developed NS-SPSO is the fastest one in execution
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time in comparison to all algorithms. However, the newly developed NS-SPSO and NS-

MJPSO algorithms have the promising performance for such kind of problems.

Table 4.8: (f7) The Schwefel Function

Algorithm Mean Best Value Std Dev
NS-SPSO 6.16E+03 2.69E+03 2.04E+03
NS-MJPSO 2.99E+03 1.40E+03 2.16E+03
LPSO 1.87E+03 9.51E+02 5.30E+02
FIPS 2.70E+03 1.34E+03 7.56E+02
DMS-PSO -2.55E-01 -7.66E+00 1.40E+00
CLPSO 4.85E-13 0.00E+00 8.18E-13
GPSO 5.52E+03 2.82E+03 2.33E+03
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Figure 4.10: The mean fitness of f7 30 dimensional problems

Schwefels function (f7), is a multimodal problem. In Table 4.8 and Figure 4.10 the nu-

merical and graphical results have been illustrated for all the algorithms. CLPSO and

DMS-PSO have the minimum values for this multimodal function. The newly developed

NS-SPSO and NS-MJPSO needs some further parameters adjustment to produce good

results. However, in the same setting the performance is not good for this function.

Rastrigin function (f8), is a highly multi-modal problem. In Table 4.9 and Figure 4.11
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Table 4.9: (f8) The Rastrigin Function

Algorithm Mean Best Value Std Dev
NS-SPSO 2.48E+01 3.30E+00 2.19E+01
NS-MJPSO 0.00E+00 0.00E+00 0.00E+00
LPSO 1.69E+01 4.01E+00 1.05E+01
FIPS 4.25E+01 2.70E+01 6.66E+00
DMS-PSO 3.32E-02 1.78E-15 1.82E-01
CLPSO 6.13E-09 4.23E-10 6.86E-09
GPSO 3.05E+01 1.98E-07 3.15E+01
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Figure 4.11: The mean fitness of f8 on 30 dimensional problems
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shows the average/best performance of all the algorithms. NS-MJPSO, CLPSO, DMS-

PSO and GPSO have the best performance for this multi-modal function. The newly

developed NS-SPSO needs some further parameters adjustment to get good results.

Table 4.10: (f9) The Ackley’s Function

Algorithm Mean Best Value Std Dev
NS-SPSO 1.45E-14 1.33E-14 3.28E-15
NS-MJPSO 1.33E-14 6.22E-15 3.41E-15
LPSO 2.87E-06 7.68E-08 5.48E-06
FIPS 7.16E-15 6.22E-15 2.46E-15
DMS-PSO 1.49E-08 6.84E-11 3.71E-08
CLPSO 2.98E-10 1.24E-10 9.33E-11
GPSO 9.25E-01 6.22E-15 3.52E+00
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Figure 4.12: The mean fitness of f9 30 dimensional problems

Ackleys function (f9), is a multi-modal and separable function. In Table 4.10 and Fig-

ure 4.12, we have plotted the numerical and graphical illustrations for all algorithms.

NS-SPSO, NS-MJPSO, CLPSO, DMS-PSO and GPSO have the similar best performance

in terms of best evaluation values. NS-SPSO and NS-MJPSO are relatively faster than the

other algorithms.
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Table 4.11: (f10) The Griewank Function

Algorithm Mean Best Value Std Dev
NS-SPSO 9.74E-02 5.33E-15 4.02E-01
NS-MJPSO 0.00E+00 0.00E+00 0.00E+00
LPSO 3.94E-03 2.44E-13 6.29E-03
FIPS 4.48E-09 0.00E+00 2.34E-08
DMS-PSO 7.22E-03 0.00E+00 1.06E-02
CLPSO 2.20E-12 7.22E-15 4.28E-12
GPSO 1.05E-02 0.00E+00 1.44E-02

Number of generations: (Population=50,Dimension=30)
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Figure 4.13: The mean fitness of f10 on 30 dimensional problems
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The Griewank function (f10), is a multi-modal function. Table 4.11 and Figure 4.13 have

further described the average/best performance of all the algorithms. NS-SPSO, NS-

MJPSO, GPSO and CLPSO have the similar best performance in terms of best evaluation

values. NS-SPSO and NS-MJPSO are relatively faster than the other algorithms.

Table 4.12: (f11) The Penalized 1 Function

Algorithm Mean Best Value Std Dev
NS-SPSO 4.15E-02 1.57E-32 8.86E-02
NS-MJPSO 1.57E-32 1.57E-32 5.76E-02
LPSO 6.97E-15 2.45E-16 1.20E-14
FIPS 1.57E-32 1.57E-32 5.57E-48
DMS-PSO 3.46E-03 1.24E-21 1.89E-02
CLPSO 3.09E-20 9.08E-21 1.56E-20
GPSO 3.46E-03 1.57E-32 1.89E-02

Number of generations: (Population=50,Dimension=30)
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(f11) The Penalized 1 Function

Figure 4.14: The mean fitness of f11 30 dimensional problems

The Penalized 1 function (f11), is a multi-modal function. In Table 4.12 and Figure 4.14

the results of all the algorithms have been described. NS-SPSO, NS-MJPSO, GPSO and

FIPS have the same best performance in terms of best evaluation values. NS-SPSO and

NS-MJPSO are relatively faster than the other algorithms.
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Table 4.13: (f12)The Penalized 2 Function

Algorithm Mean Best Value Std Dev
NS-SPSO 2.20E-03 1.35E-32 4.47E-03
NS-MJPSO 1.35E-32 1.35E-32 3.35E-03
LPSO 8.45E-14 3.36E-15 1.27E-13
FIPS 3.66E-04 1.35E-32 2.01E-03
DMS-PSO 4.76E-03 1.47E-18 8.98E-03
CLPSO 4.17E-19 1.09E-19 2.82E-19
GPSO 1.43E-16 1.35E-32 7.82E-16

Number of generations: (Population=50,Dimension=30)
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(f12) The Penalized 2 Function

Figure 4.15: The mean fitness of f11 30 dimensional problems
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The Penalized 2 function (f12), is a multi-modal function. In Table 4.13 and Figure 4.15 the

evaluation errors and convergence have been demonstrated of all the algorithms. NS-SPSO,

NS-MJPSO, GPSO and FIPS have the same best performance in terms of best evaluation

values. NS-SPSO and NS-MJPSO are relatively faster than the other algorithms.

4.4.2 Computation Time of the Proposed NS-SPSO

In this section we demonstrate the average computation for our proposed NS-SPSO algo-

rithm. All the algorithm are executed with same number of iterations i.e. 2× 105 for the

same 12 functions. The mean time for all the algorithms in shown in Figure 4.16. The

Local PSO (LPSO) has the smaller average computation time. The proposed NS-SPSO al-

gorithm has the second shortest computation time and also having the second average/best

minimum values for most of the uni-modal and multi-modal problems in terms of accuracy.

Figure 4.16: Average computation of the proposed NS-SPSO in comparison

4.5 Summary

In this chapter we have proposed another novel N State Switching Particle Swarm Opti-

mization (NS-SPSO) algorithm. That has combined the evolutionary method for popula-
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tion distribution with particle swarm optimization (PSO) algorithm. The performance of

newly developed NS-SPSO algorithm is described by evaluating 12 benchmark functions.

The benchmark functions include some uni-modal, multi-modal and non-linear type prob-

lems. Some variants of PSO are re-implemented, which are the most common for their

best performance and capabilities. The variants are Globalbest PSO (GPSO), Localbest

PSO(LPSO), Fully-informed PSO (FIPS), Dynamic Multi-Swarm PSO (DMS-PSO) and

Comprehensive-learning PSO (CL-PSO). The newly developed NS-MJPSO is also used

in the tournament for the same objective functions. The significance of proposed work

is described by analysing the statistical results in tables and figures. The proposed NS-

SPSO has produced shortest computation time and second average/best results in terms

of accuracy.
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5.1 Introduction

This chapter has contributed a successful application of two newly developed N State

Markov Jumping Particle Swarm Optimization (NS-MJPSO) and N State Switching Par-

ticle Swarm Optimization (NS-SPSO) in the power system operations. In the power system

operations we have selected Economic Load Dispatch (ELD) as the objective problem for

our consideration. The novel NS-MJPSO algorithm is investigated by applying it to dif-

ferent type of smooth and non-smooth cost functions of ELD problems. The ELD with

smooth function is based on the simplified quadratic function. While the non-smooth func-

tion have some constraints to be satisfied. The ELD with smooth cost function is easy

to solve by mathematical methods. However, the mathematical models are find difficult

to solve the non-smooth functions with non-linear constraints. In this chapter, we have

considered ELD with simplified objective and also ELD with valve-point loading effects.

The remaining work is outlined as follows: In Section 5.2, we summarise some related work

about PSO applications in ELD problems. Section 5.3, we present problem formulation for

the ELD problems. In Section 5.4, the implementation setting and procedure is described.

The newly developed algorithms in thesis, named, NS-MJPSO, and NS-SPSO, alog-with

other well-known variants of PSO are implemented. In Section 5.5, extensive simulations

are carried out and the comparative results are plotted. In Section 5.6 the complete work

in this chapter is summarised.

5.2 Related Work

In power system operations, Economic Load Dispatch (ELD) is considered as the ultimate

topic of optimization. Basically, in essence, the objective of ELD is to decrease the overall

generation cost of power systems, whereas the constraints within the systems are satisfied.

Prior to the current methods the conventional predictable methods have been applied to

solve ELD problems. Due to the exponential increase in power demand has diverted the

interest of researchers to develop some modern optimization methods for power system

operation ELD problems to attain the maximum production of the existing power systems

units. According to the non-linear nature of ELD objective such valve-point loading effects,

non-smooth or convex type of system constraints such as prohibited operating zones, ramp-

rate limits and high-dimensionality. The conventional method are found to be most of the

time infeasible to solve the problem [10; 121]. Numerous efforts have been done to dispatch

power to the loads economically and reliably.

Subsequently, Artificial Intelligence (AI) techniques have been applied to solve ELD
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problems. In [157] Hopfield method is applied to ELD problems with prohibited operating

zones constraints and smooth cost functions. However, the Hopfield method failed to work

because of the large number of computations. Genetic Algorithm (GA) has been applied,

which is a population based evolutionary technique for global optimization [158]. Another

probabilistic and heuristic technique named Simulated Annealing (SA) has been applied

in power system operations [159]. The GA algorithm has been reported as the fastest

technique due to parallel concept of searching. It has widely been used in solving power

system especially for ELD problems. The feasibility of GA has been analysed during solving

the application of ELD considering all the non-linear type of constraints. However, the

main disadvantage is the requirement of excessive iterations [160; 161].

Particle Swarm Optimization (PSO) algorithm has been applied in power system for

reactive power with security constraints in [109]. State estimation is also one of the key

power system practical problems. A variant of PSO algorithm is developed in combination

with the basic selection mechanism of Genetic Algorithm (GA). The resultant variant is

called Hybrid PSO (HPSO) [162]. Another modified version is PSO has been applied for

parameters optimization in power systems stabilizers [40].

PSO has been proposed and applied for practical ELD problems with non-linear con-

straints [10]. The non-linear type constraints includes prohibited operating zones, ramp-

rate limits and non-smooth objective refer to the cost function with valve-point loading

effects. It has been revealed in the results that PSO algorithm performed better than

GA in comparison. In [163] PSO has been employed to solve ELD problem considering

the voltage and line flow constraints with objective. The distinctive best performance of

proposed PSO algorithm has been examined by comparing its results with conventional

methods and GA applied to same problem.

In [164] a new PSO (NPSO) algorithm has been developed with the split-up mechanism

for personal influence or cognitive factor. As in the traditional PSO algorithm the particle

keeps track of the best location found in the history. The proposed NPSO keeps track of

the worst position as well so that to better explore the search space. Furthermore, a Local

Random Search (LRS) technique is also combined with NPSO. Later on, the NPSO-LRS

has been applied for non-smooth ELD problems in power systems. The best performance

has been observed and presented.

PSO algorithm has been modified by incorporating it with the Gaussian Probability

Distribution [122]. The subsequent PSO algorithm is then applied to ELD problem in

power systems. All generator constraints have been considered with the smooth and non-

smooth objective functions. The penalizing method is used to deal with the constraints,

which is required to be zero in all circumstances. The proposed method has produced
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better performance for all objectives. In [165] PSO algorithm has been successfully applied

to power system operation problems.

An Improved version of PSO algorithm (IPSO) has been proposed by [11]. IPSO has

combined the chaotic sequence mechanism to more enhance the influence of inertia weight

ω and control the movement of particle during the search process. Another technique of

crossover has also been used to improve the global exploration of the algorithm. IPSO

has been applied with the modified functionalities to the smooth and non-smooth ELD

problems. The algorithm has been tested on the large-scale case-study and has produced

promising results. In [166] has also used PSO algorithm for various ELD problems such as

ELD with smooth objectives and ELD with non-smooth having multiple-fuels constraints.

The effectiveness of proposed PSO method has been presented.

In [12] a brief survey of literature related to PSO algorithm and its applications in

ELD problems has been presented. Later on, PSO algorithm has been implemented to

solve ELD with convex and non-covex functions. Novel functionalities have been added to

efficiently control the inertia weight and acceleration parameters of PSO algorithm. The

best performance of the proposed work has been presented. In a very recent publication

[167] an improved PSO algorithm (IPSO) has been applied to ELD problems with multi-

area constraints. The case of 40 units has been adopted to validate the performance of the

proposed IPSO algorithm promising results have been reported.

According to the above mentioned literature it has been concluded that ELD is a very

complex, non-differentiable and highly nonlinear problem. It is also very important opti-

mization problem in power system operations. A solution method is always required that

can easy solve the problem by minimize the operating cost and satisfying all constraints.

Therefore, the research in this area is always encouraged by the research community. In this

thesis we have developed two variants of PSO algorithms namely NS-MJPSO Chapter 3

and NS-SPSO Chapter 4. Extensive mathematical benchmark testing have been carried

out. To further validate the performance of the newly developed algorithms, we have im-

plemented both of the algorithms to ELD problems. These algorithms are completely new,

some existing objectives functions and related test data is taken from the above mentioned

literature [10; 11; 15; 121]. Some other well-known variants of PSO have also been im-

plemented for the same type of problems. The variants are Comprehensive-learning PSO

(CL-PSO) [4] and Social-learning PSO (SL-PSO) [14]. In a nut-shell four new algorithms

have been implemented here ELD problems. Genetic Algorithm (GA) and PSO with con-

striction factor have also been re-implemented and described in [10] to compare the results

of new algorithms. In the next Section 5.3 we formulate the various existing problems and

onwards the simulation results 5.5.
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5.3 Problem Formulation

5.3.1 Smooth / Simplified Cost Function

Economic Load Dispatch (ELD) is measured as the sub-problem of Unit Commitment (UC)

problems in power systems. ELD problem aims to produce the power with the minimum

per unit cost, while all the systems constraints are satisfied. In the smooth or simplified

ELD problems the quadratic function is applied to measure the cost of each generator. The

basic constraint in the simplified cost functions are the equality and inequality constraints.

The mathematical method are also able to find the solution for simplified cost functions

[121].

min(C.F ) =
m∑
j=1

Fj(Pj) =
m∑
j=1

(aj + bjPj + cjP
2
j ) (5.1)

where C represents the total generation cost Fj represents the function of generator j,

aj, bj, cj are the fuel cost coefficients of each generator. Pj is the generated power by unit

j and m represents the total number of generating units. To dispatch the exact amount of

power to the loads it is also important to calculate the possible transmission losses. That

has further two categories of fixed losses and dynamic losses. While here we ignore power

losses for simplicity. The first condition that needs to be satisfied in all cases is the power

balance or equality constraints it means that the generated power must be equal to the

demand from the loads side [10].

m∑
j=1

Pjt = Pload,t (5.2)

Secondly, the minimum and maximum limits are defined before solving the cost function

all generators must be operated within the specified limits. This represents the inequal-

ity type constraints within generating units. As some generators have the large power

production capacity and some have the small capacity given as follows [121]:

Pj,min ≤ Pj ≤ Pj,max (5.3)
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5.3.2 Non-smooth Cost Funtion

The involvement of valve-point loading effects in the cost objective function determines

the problem to be highly non-linear and non-smooth. The simplified cost function is dif-

ferentiable but the cost function including valve-point loading effects is non-differentiable.

Basically, the valve-point loading effects is defined as the superposition of sinusoidal and

quadratic functions [121]. In static ELD problems, we consider static load for a specific

time period during the whole trial of the algorithm. The ELD objective function is a chal-

lenging task because of the multiple local optimum. For instance, in the six unit system

we will have six local optima. We have to find the minimum and optimum setting for each

unit. In the valve-point load effects the input-output curve is totally different than the

smooth cost function. The cost function with valve-point loading effects is given as follows:

Fj(Pj) =
m∑
j=1

(aj + bjPj + cjP
2
j + | ej × sin(fj × (Pj,min − Pj))) (5.4)

Figure 5.1: The smooth and non-smooth cost curves [121]

In the above Equation (5.4), the value of ej and fj represent the fuel coefficients of the
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system unit j and Figure 5.1.

5.3.3 Practical Generator Constraints

(a) Power balance constraints: In Equation (5.2), we have presented the power balance and

equality constraint without transmission losses. Whereas, the Equation (5.5) represent

the equality constraint considering transmission losses. The total generated power must

be equal to the total load in addition to the transmission losses.

m∑
j=1

Pj = Pload + Ploss (5.5)

(b) Power losses: The line losses are calculated as the using B matrix of coefficients as the

unit power output [168]. The equation for losses calculation is given as follows:

Plosses =
m∑
i=1

m∑
j=1

(PiBijPj +
m∑
i=1

B0iPi) +B00 (5.6)

(c) Generating capacity limits: As given in the above equation (5.3) each generator should

be operated according to their minimum and maximum capacity. Whereas, violating

the capacity limit will cause reliability and security problem in the system.

(d) Ramp-rate limits: The operating speed of all connected units is controlled by the ramp-

rate limits specified with each unit [157; 160; 161]. Equation (5.7) is applied when the

generation is increasing while Equation (5.8) is applied when decreasing generation of

the jth unit. The equations of ramp-rate limits are given as follows:

Pj − P 0
j ≤ URj (5.7)

Pj − P 0
j ≤ DRj (5.8)

(e) Prohibited operating zones: Due to the valve-point effects, it is sometimes impossible

to operate the generator for all ranges. Actually, this is sometimes caused by the
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internal mechanical fault in the generator. There may be number of zones in which

the operation should be avoided and constrained. When the unit is operated in the

prohibited zone it causes the trembling and fluctuating effects in the quality of power,

which is dangerous. The prohibited zones are described in the following equations:

Pm
j in ≤ Pj ≤ P l

j,1 (5.9)

Pm
j,k−1in ≤ Pj ≤ P l

j,k (5.10)

P u
j,n ≤ Pj ≤ Pm

j ax (5.11)

Figure 5.2: The prohibited operating zones

where, l and u are the lower and upper points of the prohibited operating zones and

k = 2, 3, ...pzj represents the number of zones.

In forthcoming section 5.4, we present the implementation procedure of the newly

developed NS-MJPSO and NS-SPSO for ELD smooth and non-smooth functions.

5.4 Implementation of Proposed Algorithms

The step-wise implementation procedure of newly developed NS-MJPSO and NS-SPSO is

described as follows:
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1. Initialize the particle’s position and velocity randomly within the boundary of PCmax

and PCmin. PCmax represents the maximum generation cost of all individuals, while

PCmin represents the minimum cost of all individuals. A range of minimum and max-

imum for each individual unit is determined by using Equation 5.1 for the simplified

case and Equation 5.4 for the non-smooth objective with valve-point loading effects.

The decision variables Pj in the cost function of ELD problems represent the power

generated by each unit. Therefore, the population of particles is initialized as follows:

PGi
= [Pi1, Pi2, Pi3, · · · , PiD], i = 1, 2, · · · , n (5.12)

n represents the number of particles and D is the number of units or generators. For

example Pi1 means the power generated by unit 1. In this function the dimensionality

of the problem is described as [Population × Number of systems units]. The relevant

constraints are considered on the case-study bases.

2. The number of N states are assigned and the resultant population is then applied

an evolutionary technique. Population distribution is derived by Chapter 3, Sec-

tion 3.3.1, Equation (3.8). Furthermore, by using Equation (3.9) the evolutionary

factor value is described.

3. The cost function is evaluated for all particles. The evaluation criteria is 1
ft

[165].

The cost function and power generation are both correlative in evaluation function.

A smaller value of evaluation is obtained from the large values of cost and power out

functions.

4. Pbest is updated according to the current evaluation value. gbest is determined as

the best individual in the whole population.

5. In the velocity update equation a stochastic Markov Jumping parameter is intro-

duced. The particle jumps from its current state according the transition probability

0.9 for the initial state and then the next is predicted accordingly. A set of N accel-

eration coefficients are pre-defined and a specific value is selected according to the

current state automatically. Later on getting all parameter values the velocity and

position for all particles are then updated as the follows:
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vij(t+ 1) =ωvi(t) + c1(δ(t))rand1(t)(pbestij(t)− Pij(t))

+ c2(δ(t))rand2(t)(gbestij(t)− Pij(t)),
(5.13)

Pij(t+ 1) =Pij(t) + vij(t+ 1) (5.14)

i = 1, 2, · · · , n, and j = 1, 2, · · · ,m, where n represent the number of particles and

m represents the number of generating units in the system.

Pij(t+ 1) is the new updated position according to the new Pbest and gbest values.

It is essential for newly updated Pbestval to be in the limits of its constraints.

Therefore, the population is initialized according to the boundaries of constraints

and no risk of violation is involved in this case.

6. Pbest and gbest are updated for all particles according to their current values of

evaluations.

7. Repeat step 2 until the maximum number of iterations reach.

8. The gbest obtained in the last iteration is the optimum solution for the problem.

In the implementation of second newly developed NS-SPSO the only difference is the

exclusion of Markov Jumping technique. The rest of the procedure is similar to the im-

plementation of NS-MJPSO algorithm above. Furthermore, the flowchart of NS-SPSO

implementation in ELD problem is given as follows:

5.5 Experimental Setup and Simulation Results

The performance of proposed algorithms is examined by choosing different types of smooth

and non-smooth objective functions along-with several constraints. The case-studies used

in applications of the newly developed algorithm are, six-unit system with considering

transmission losses, thirteen-unit system with non-smooth cost function or valve-point

loading effects. Transmission losses are ignored here. Fifteen-unit system, simplified cost

function with transmission losses and non-smooth constraints, such as, two prohibited

operating zones and ramp-rate limits constraints. 40-unit system cost function with valve-

point loading effects. 140-unit system with valve-point loading effects and non-smooth
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Figure 5.3: The Flowchart of NS-MJPSO Implementation to ELD problem



Chapter 5. 102 ELD using NS-MJPSO and NS-SPSO

Figure 5.4: The Flowchart of NS-SPSO Implementation to ELD problem
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constraints. The data used for simulating the above case-studies is taken from the published

articles. All the experimental work is carried-out in Matlab R2011b, Intel Corei5 3.30GHZ

64bit Windows 7 operating system, with 4GB RAM. The proposed algorithms are compiled

for 30 independent trials. The average/best results are tabulated and plotted in terms of the

minimum cost and convergence time. The parameters setting for the proposed algorithms

and all other variants used in the experimental work are listed in the following Table 5.1.

Table 5.1: Parameter setting of PSO for ELD applications

Algorithms Acceleration ωmax ωmin Cons; Factor (χ) States
NS-MJPSO C = [2, N] 0.9 0.5 N
NS-SPSO C = [2, N] 0.9 0.5 N
MPSO c1, c2 = 2 0.9 0.4 1
SL-PSO α β=0.01
CL-PSO c1, c2 = 1.49445
GA C.R = 0.8 Pmut = 0.01 C.P = 0.5

5.5.1 Case A: 6 Unit System

The six unit system consists of six generation units with individual capacity of power gen-

erations. Each one has its own maximum and minimum generation limit. The parameters

are chosen from Table 5.1. The power load demand is assigned 1263 in the beginning. The

load here is taken from literature [10] the experimental work in cited paper is repeated for

comparison. Power balance, prohibited operating zones, ramp-rate limits constraints are

applied on the objective. Transmission losses are taken into account. In Table 5.2, it is

shown that the proposed NS-MJPSO and NS-SPSO has the average/best minimum value

for the cost function. The tabular values are recorded according to the 500 iterations. In

graphical illustrations all the algorithms have been tested on minimum iteration of 50. It

has been observed that the proposed algorithm converge very quickly for 6 unit system.

The average/best results have been drawn using individual, three and four algorithms for

convergence comparisons.

5.5.2 Case B: 13 Unit System

The 13 unit system consists of 13 generation units with individual capacity of power genera-

tions. Each unit has its own maximum and minimum generation limit. The parameters are

chosen from Table 5.1. The static power load demand is 1500. Power balance, equality and

inequality constraints are taken into account. The non-smooth cost function with valve-

point loading is considered without power losses. In Table 5.3, NS-MJPSO, NS-SPSO,
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Table 5.2: Best Solutions for 6 Unit System

Unit: NSMJPSO NSSPSO SLPSO CLPSO MPSO GA
Load 1263 (MW)

1 436.84 435.40 486.83 469.24 447.84 447.53
2 172.56 186.82 185.32 177.09 172.41 174.62
3 250.96 257.14 203.90 252.22 241.93 264.17
4 144.65 139.25 138.79 133.04 143.27 145.86
5 182.60 164.20 174.05 153.92 172.10 168.27
6 88.00 92.68 86.74 90.06 97.95 75.99

Total Power (MW) 1275.61 1275.48 1275.62 1275.57 1275.50 1276.44

Plosses 12.61 12.48 12.62 12.57 12.96 12.45

Total Cost ($): 15449.78 15447.93 15490.76 15452.98 15450.56 15459.00

No. of Hits to the Global: 30 28 24 15 17 22
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Figure 5.5: Comparison of three new algorithms for six unit system
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Figure 5.6: Convergence of NS-MJPSO for six unit system

0 5 10 15 20 25 30 35 40 45 50

10
4.2

10
4.3

10
4.4

10
4.5

Number of iterations

T
ot

al
 G

en
er

at
io

n 
C

os
t

 

 
NS−SPSO

Figure 5.7: Convergence of NS-SPSO for six unit system
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Figure 5.8: Convergence of SL-PSO for six unit system
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Figure 5.9: Comparison for 6 unit system
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SL-PSO, and MPSO are compared. It has been observed that NS-SPSO has produced

the best value for the non-smooth objective with quick convergence. With the increase

in dimensionality of the large scale ELD case study, we increase the number of states N

for NS-MJPSO and also adjustment other parameters accordingly. The SL-PSO does not

need any parameter adjustment. It is very pleasant to mentioned that the performance of

SL-PSO produce better results when the dimensionality is increased.

Table 5.3: Best Solutions for 13 Unit System

Unit Number: NSMJPSO NSSPSO SLPSO MPSO
Load 1500 (MW)
1 95.79286598 182.2398811 107.6585472 363.112936
2 316.8700731 142.8536507 303.5117626 35.3225141
3 119.0853497 67.27843621 85.55723605 64.9611761
4 74.83152494 167.4491739 158.98175 93.0367954
5 132.0549546 159.5565155 132.5964763 92.6804463
6 111.4418788 115.1790597 65.89578758 106.44491
7 91.21800746 108.4766563 104.1599714 157.293324
8 93.98403194 104.1208493 122.2233338 115.055225
9 115.9471883 129.7844851 61.9532563 155.369062
10 87.17892853 81.58783452 108.1172993 57.2371455
11 70.89015813 61.06157753 101.3004781 83.015422
12 88.7020085 91.57029704 83.34279265 92.6105774
13 102.0030343 88.84154297 64.69932615 83.8606284
Total Power (MW): 1500.000004 1499.99996 1499.998017 1500.00016
Total Cost ($): 16507.91229 16227.5131 16579.41014 16590.2921
No. of Hits to the Global: 30 27 28 20

5.5.3 Case C: 15 Unit System

In the 15 unit system, we have 15 generation units ready to dispatch a scheduled load

to the consumer. Similar to the other systems mentioned earlier each unit of the system

has its own characteristics and limitations with it. The power generation capacity and

fuel type. The power load demand is assigned 1263. The simulation trial consist of NS-

MJPSO, NS-SPSO, SL-PSO and MPSO. Parameters used here are given in Table 5.1. The

load here is taken from literature [10], the experimental work in cited paper is repeated for

comparison. Power balance, prohibited operating zones, ramp-rate limits constraints are

applied on the objective. Transmission losses are taken into account and the smooth cost

function is applied. In Table 5.4 the best value of the proposed NS-MJPSO and NS-SPSO

is presented. SL-PSO has also produced similar best performance. However, the MPSO
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Figure 5.10: Comparison for 13 unit system

results in the violation of power balance constraint and slow convergence is observed for

MPSO.

5.5.4 Case D: 40 Unit System

In this section a large-scale case system having 40 units is considered for ELD optimization.

Similar to the other systems, in 40 unit system each unit has minimum maximum generation

capacity. The fuel type and the quantity consume in a specific time is different for each

unit. Further, to check the performance of proposed methods the non-smooth objective

is applied. The cost function with valve-point loading effect is selected for simulations.

Parameter setting for participant algorithms is given in Table 5.1. A static load demand of

9500 is assigned to the system. Power balance and capacity limit constraints are applied to

the objective with valve-point effects. The transmission losses are not taken into account.

The comparative numerical results for the proposed algorithms NS-MJPSO, NS-SPSO,

SL-PSO, and MPSO are given in Table 5.5 the best performance value of the proposed

NS-MJPSO is attained by adjusting the state parameter N to 8 for Case D. SL-PSO

algorithm has also shown the best performance without any further adjustments in the

parameters.
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Table 5.4: Best Solutions for 15 Unit System

Unit Number: NSMJPSO NSSPSO SLPSO MPSO
Load 2630 (MW)
1 424.36393 454.0291967 442.877078 357.6578001
2 370.9496103 353.815462 377.0892621 379.8616996
3 117.7955535 98.79280078 124.202704 89.31085749
4 106.1453568 123.9648658 90.34432079 95.36506944
5 167.3174254 165.550134 164.6204538 169.9825838
6 408.7033798 457.8002511 421.8109257 364.9406572
7 428.137482 370.0860964 405.7983 429.9920737
8 150.9145779 153.6917196 150.0174873 159.7795769
9 136.1522176 155.5497163 118.8825342 99.10497971
10 141.8635466 87.51145252 134.1305135 143.9408787
11 63.35567612 64.82467187 58.55379154 79.96617673
12 40.57532433 45.81854962 53.24457165 79.81938258
13 38.21741124 58.815408 57.25296578 84.97916389
14 30.40783776 52.22544283 30.50418412 54.79302336
15 44.63332728 24.18195852 37.13601629 54.85357494
Total Power(MW): 2669.532657 2666.657726 2666.465109 2644.347498
Plosses: 39.5326 36.6578 36.4674 37.015
Total Cost ($): 33068.89888 33028.16645 33097.69123 33080.24547
No. of Hits to the Global: 29 26 23 19
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Figure 5.11: Comparison for 15 unit system
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Table 5.5: Best Solutions for 40 Unit System

Unit No: NSMJPSO NSSPSO SLPSO MPSO
Load 9500 (MW)

1 105.2763023 54.36141766 89.65049281 55.60312634
2 106.3272433 114.9336624 88.35001797 96.79075246
3 101.8853216 110.7510351 91.18266616 86.57523343
4 146.4207168 133.7184443 147.0730032 109.7965506
5 72.28923529 30.83815624 71.9111531 91.94879312
6 113.5372156 130.5228112 105.4113329 139.1210506
7 212.6523657 220.4903892 123.5157097 156.1350066
8 236.3301774 241.9206245 262.3924933 238.5438842
9 175.4936283 258.5024445 105.585812 221.4013641
10 255.0672382 167.2667958 210.6693654 188.9100567
11 241.2235223 261.7387391 232.3202098 325.3765072
12 146.943214 347.6314891 278.1612274 343.3659489
13 412.0492832 318.8406414 209.8925082 316.5831051
14 479.4330058 197.1559632 523.5517469 400.3203505
15 463.3283763 339.320376 246.0998479 243.243218
16 273.1399991 278.3131924 312.2950008 468.4193495
17 330.8347718 382.0060741 411.9934604 306.3856416
18 445.0723037 518.2093144 406.7828501 364.5669838
19 335.7462825 354.2196252 381.2570696 434.6341982
20 471.7224498 373.6855338 516.1914945 395.2450412
21 329.5018117 487.4487746 524.3624865 462.5189282
22 444.6256026 392.1304961 493.4815864 470.2142561
23 388.2858889 584.0682993 379.5160824 296.576965
24 417.6786353 386.8222065 446.4244823 468.2384674
25 383.6836977 539.6608024 498.7724283 476.1219453
26 396.8553993 334.244159 334.9644342 466.1826276
27 33.86628426 138.293121 46.42394982 118.7365872
28 134.2877497 95.30784823 117.8705716 120.2070402
29 61.72047685 -0.809802387 113.0544898 82.65821346
30 97.37006223 128.9600513 69.96853767 68.93778027
31 173.7900058 106.7782538 200.7194844 112.3820918
32 166.7008562 149.7104347 152.864569 71.40280654
33 127.8047764 49.04857412 94.9008432 189.9070338
34 128.1455848 128.4972193 130.0616722 170.7904678
35 144.2376887 167.5767652 152.109724 123.822739
36 141.0150155 134.4474218 155.6138718 175.7119654
37 96.89331476 80.68636174 36.45839472 102.3998883
38 82.27939162 85.59712427 70.73042044 100.7943437
39 55.16845168 112.9105634 94.37739063 62.29715242
40 571.3167124 564.1945561 572.5411988 377.1325409

Total Power(MW): 9500.000059 9499.99996 9499.50408 9500.000003
Total Cost($): 130437.6804 132347.9273 131601.8147 136512.9625

No. of Hits to the Global: 30 28 27 21
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Figure 5.12: Comparison for 40 unit system

5.5.5 Case E: 140 Unit System

In this section a very large-scale power system having 140 units is selected. Similar to

the other case studies, each unit has minimum maximum generation capacity. The fuel

type and the fuel quantity consumed in a specific time differs for each unit. Henceforth,

to calculate the minimum cost for such a large-scale power system, the cost function with

valve-point loading effect is selected for simulations. Parameter setting for participant

algorithms is given in Table 5.1. A static load demand of 40300 is assigned to the system.

Power balance, capacity limit, prohibited operating zones and ramp-rate limits constraints

are applied to the objective with valve-point effects. The transmission losses are not taken

into account. Due to the extremely large scale study, the performance of NS-MJPSO

and NS-SPSO is unstable. Therefore, we ignore the results produced by the proposed

algorithms for this system. However, a newly developed SL-PSO is applied here. The best

result produced for this case study in terms of minimum cost and shortest computation time

for SL-PSO are given in Table 5.6 and the individual results of SL-PSO is also illustrated

in the following Figure 5.13.
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Table 5.6: SL-PSO application in 140 Unit system

SL-PSO Load: 40300MW
Unit Power(MW) Cost($) Unit Power(MW) Cost($) Unit Power(MW) Cost($) Unit Power(MW) Cost($)

1 106.3064272 8102.732357 36 285.0850769 5439.116 71 189.3874209 17459.86 106 822.9381303 2585.4259
2 130.4682043 6817.65062 37 147.0341701 2904.849 72 174.9194906 18710.52 107 822.1824487 2661.8001
3 143.4745052 7597.823745 38 141.6777152 2811.681 73 236.5526015 17804.59 108 858.4983643 2955.2097
4 140.8891301 7475.265291 39 428.5571003 8549.729 74 238.2972573 18071.73 109 818.0271658 2851.3838
5 132.6004792 9915.694239 40 450.3218768 8878.702 75 228.6611969 17387.77 110 813.1462769 2694.8031
6 122.9443232 9090.732419 41 7.995005235 1361.002 76 213.9848218 16407.4 111 828.2801694 3043.7575
7 334.6401009 6552.295786 42 22.69600339 3131.489 77 279.8830949 20964 112 139.6477469 14093.633
8 300.2106396 5931.148451 43 215.129273 16740.58 78 352.0874189 27163.52 113 114.3312484 11727.151
9 341.3521402 6425.306665 44 191.6632019 15259.06 79 229.7994213 9505.859 114 189.3189539 18790.161

10 389.4170115 7238.847111 45 204.7229737 16158.33 80 204.0741278 8558.099 115 285.6488397 25751.918
11 306.5397423 5850.683597 46 169.8179526 13711.11 81 297.0261489 22618.7 116 263.9373866 23998.528
12 336.1759195 6381.844093 47 191.838857 15062.98 82 90.73864168 10179.1 117 270.4512179 24521.58
13 305.4463903 6015.552602 48 178.3518984 14350.81 83 173.019782 18331.18 118 104.8177393 10486.834
14 381.3856455 7331.605088 49 216.1355331 16893.68 84 131.0066572 14333.43 119 127.4516076 12742.225
15 292.5349754 5796.268678 50 206.3234466 16286.4 85 163.1292488 17404.24 120 131.2324344 12710.252
16 278.7282698 5563.218418 51 216.8140654 17420.9 86 214.1265928 23954.98 121 214.3405187 20274.296
17 319.7694639 6272.563986 52 235.9497167 18791.09 87 266.0234949 29348.29 122 9.679993326 1242.7654
18 290.9491558 5778.859149 53 272.4875642 21407.43 88 285.4455397 24131.91 123 43.28525657 6095.0053
19 317.4251798 6252.50965 54 213.8011546 17205.17 89 239.4686209 20662.51 124 47.68719974 5952.9208
20 302.3612007 5997.336495 55 194.4194815 19117.93 90 240.5571466 20592.4 125 31.12943153 4034.651
21 269.6812448 5449.509179 56 185.8756783 19084.18 91 199.1672546 17681.18 126 22.69641832 3107.2287
22 287.1378884 5741.162939 57 177.5811607 18190.16 92 542.8415537 1788.414 127 11.51001947 1822.9028
23 285.4491007 5698.33185 58 232.3390069 22091.22 93 515.2107672 1967.634 128 130.6622738 13361.17
24 325.5791952 6391.330361 59 168.9087685 16422.27 94 815.6556347 2696.893 129 19.87954784 2646.6346
25 363.8227756 7106.350347 60 399.7066936 34902.14 95 797.1593412 2591.829 130 25.81708567 3110.6754
26 345.1572333 6750.830946 61 230.7725147 21816.85 96 642.6320654 1514.926 131 7.583154762 1070.2056
27 462.6566133 8813.623503 62 150.3075408 13977.36 97 647.8504883 1490.316 132 77.38882207 7385.0689
28 313.0470969 6124.650704 63 189.3540505 16390.51 98 662.9955471 1625.911 133 2.184185275 479.53046
29 404.0164382 7486.146092 64 203.7028865 17397.13 99 630.6121107 1581.625 134 53.82287424 6018.2775
30 287.2842633 5490.910849 65 214.5425766 18654.86 100 885.0191434 2934.108 135 47.25816378 5336.0456
31 305.2790406 5994.167544 66 217.167896 18108.18 101 905.9780517 3003.896 136 58.99052487 10908.959
32 371.886665 7155.239743 67 328.5301844 25501.47 102 878.0288656 2702.312 137 27.06282749 8860.5017
33 310.1960199 6078.803571 68 234.1009531 19794.86 103 873.093209 2835.928 138 16.2108959 1496.9667
34 282.1412967 5598.196459 69 144.4333727 14609.04 104 921.8730302 2935.53 139 8.67895188 812.94704
35 289.1630468 5586.312369 70 179.3800683 20551.89 105 842.7744356 2556.324 140 25.23894645 2372.7271

Total: 40303.73929 1482328.7
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Figure 5.13: SL-PSO performance for 140 unit system
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5.6 Summary of Applications

In this chapter, we have introduced three algorithms for the applications in ELD prob-

lems. Two of them namely N State Markov Jumping Particle Swarm Optimization (NS-

MJPSO) and N State Switching Particle Swarm Optimization (NS-SPSO) are two brand

new algorithms developed in this thesis. NS-MJPSO is a stochastic search technique and

NS-SPSO combines an evolutionary concept with traditional PSO. While the third one

is Social-learning (SL-PSO) taken from the recently published article [14] developed for

high-dimensional problems. In the mentioned paper, SL-PSO has been tested for up to

thousand dimension. Therefore, we have contributed an application of the SL-PSO in this

chapter. Five different case studies are considered here. The data and objectives used here

are downloaded from the http://www.ntu.edu.sg/home/epnsugan.

We have summarised that in the practical simulations environment, especially in Case

A, Case B, Case C and Case D the proposed algorithms NS-MJPSO and NS-SPSO has

produced promising results. The SL-PSO has performed very well in the large-scale and

high-dimensional problems. Therefore, we conclude here that the proposed NS-MJPSO,

NS-SPSO has the capability to perform well in the real-world environment of different

types.
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6.1 Introduction

In this chapter, the newly developed algorithms N State Markov Jumping Particle Swarm

Optimization (NS-MJPSO) and N State Switching Particle Swarm Optimization (NS-

SPSO) are proposed for the Dynamic Economic Load Dispatch (DELD). DELD determines

the core objective of power system operation. A DELD describes the optimal combination

of generating power with all constraints at the minimum cost, while meeting the scheduled

load demand for the whole day. Time base power load demand is predicted for dispatch.

Basically, DELD is the complex form of the static Economic Load Dispatch (ELD). As in

static ELD, a fixed value of load is followed for the whole period. However, DELD is a

high dimension problem. For instance, if we consider the 24 hours dispatch we will have

24 different loads for dispatch. Hence, the DELD problem is 24 times higher than ELD in

dimensionality. Technically, the power systems units are committed to dispatch power by

the dynamic variation in demand with time. The settings of each unit are adjusted for each

load in each hour (time). It is a challenging task to dispatch power dynamically, control

and operate the system according to increase and decrease in the load demand within the

practical constraints of generating units.

Here we propose new algorithms to solve this challenging problem and obtain optimal

best results in comparison to the others already applied. The performance of the new

algorithm is tested by applying it to two case studies of DELD. First one is Case Study

A, which represents 5 unit system with prohibited operating zones, ramp-rate limits and

considering power losses as well. The main objective is non-smooth and cost function

with valve-point effects. Second, is the Case Study B, that represents the 10 unit system

having non-smooth objective function with valve-point loading effects. Power losses and

prohibited operating zones are ignored in this case study. In the experimental work we

illustrate the best performance of the newly developed algorithms in comparison to the

existing methods presented in the literature. In the remaining part of the chapter, we

organise the work section-wise. In Section 6.2, some background work about applications

methods for DELD is summarised. Section 6.3 the problem formulation of DELD is de-

scribed. Section 6.4 implementation procedure of the proposed methods is demonstrated.

In Section 6.5 simulations and experimental work is presented. In the last Section 6.6 we

summarise the whole work in the chapter.
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6.2 Related Work

The problem of Dynamic Economic Load Dispatch (DELD) is a non-smooth problem,

which represents the discretization of system. DELD is solved continuously in discrete

number of intervals or states. Due to the non-linear appearances of the system structure

such as prohibited operating zones constraint on generation unit and also the ramp-rate

limits for variation of load. The conventional methods are very infeasible and inefficient

due to this non-linearity and huge dimensionality.

Subsequently, to find a suitable and convenient approach for solving DELD problems

enormous efforts have been made. Artificial intelligence methods have been tested and

evaluated. Especially, Genetic Algorithm (GA) in [160], Tabu Search (TS) algorithm

[169], Simulated Annealing (SA) [17], Evolutionary Programming (EP) [170] have been

widely used. However, GA has been applied commonly because of the efficient technique

of parallel type search. In the new multi-modal real-world problems, the weak performance

of GA has been reported by several researchers. The main disadvantage of GA that has

been observed in many cases is the premature convergence, which has negatively effected

its reputation.

Furthermore, GA has been thoroughly and critically studied. In [17] has proposed

simulating annealing (SA) for DELD problems. SA is also a global optimization technique.

To solve the main objective of DELD which is a non-smooth function with non-linear

type constraints, ramp-rate limits, prohibited operating zones, power balance have been

applied. The transmission losses have also been calculated. SA method performance has

been evaluated on a 5 unit system for the period of 24 hours. The only problem that

has been magnified by the authors is computation time required. However, the overall

performance in terms of the best evaluation of the cost function was good.

PSO algorithm [36] has been introduced as the successor of GA. The promising charac-

teristics of PSO algorithm has largely diverted the attention of researchers. In [15] Particle

Swarm Optimization (PSO) is used to solve the constrained DELD problem. Generator

constraints such as ramp-rate limit and prohibited operating zones were applied on the

objective function. Transmission losses have also been considered. Actually, this is the ex-

tension of the author’s previous work [10] in which the traditional or static ELD has been

solved by using Particle Swarm Optimization (PSO) algorithm. The performance has been

compared for two cases of 6 and 15 units in terms of best values with other conventional

and stochastic methods. PSO has performed well in comparison to other algorithms for

the same objective.

In [18] an adaptive PSO (APSO) has been proposed for ELD and DELD problems.
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According to APSO, an adaptive procedure for inertia weight ω has been introduced.

A ranking strategy is defined for each particle and the top rank is assigned to the best

particle, where the inertia ω is very small. While in contrary, the particle with the worst

fitness takes the larger value for its inertia ω. Various case studies for ELD and DELD

have been selected for evaluating the performance of proposed APSO. Smooth and non-

smooth objective with non-linear constraints have been used. The results of proposed

APSO method have been compared with the existing method. The best performance in

terms of the best solutions have been presented by proposed APSO for the said objectives.

A hybrid swarm algorithm [171] has been proposed for solving DELD problem. A

combination of Harmony Search (HS) and PSO has been developed as a hybrid technique

for solving DELD non-smooth objectives. These type of methods are normally developed to

help an existing method working efficiently in complex and dynamic environment. In three

different cases the performance of proposed hybrid algorithm has been described. The non-

smooth constraints such as, ramp-rate limits and power balance are considered here with

transmission losses as well. It has been concluded by analysing the results that proposed

hybrid method is capable of producing the best solution in such dynamic environment.

Recently, in [16] a new variant of PSO algorithm named Lbest-PSO has been used for

solving DELD problems. All the system and generator constraints have been considered

with objective function of the problem. The Lbest-PSO applied here has been developed

in [172] it has been described by solving some case studies that Lbest with neighbourhood

topology has shown the best performance in complex and multi-modal problems.

According to the above mentioned studies, it has been concluded that DELD is highly

complex, non-linear and non-smooth problem. Solving the optimization problem with a

static objective function is relatively simple. On the other hand, the dynamic problems

have the objective that changes dynamically with time is very challenging task for all

classical and heuristic methods. As mentioned above, many algorithms have been modified

and applied for solving such dynamic type problems. However, there is still a need for

improvement. This chapter presents an application of the newly developed NS-MJPSO and

NS-SPSO in DELD problems. These algorithms have been developed and briefly evaluated

for some mathematical benchmark functions. In the previous Chapter 5 both of the new

algorithms have been applied to the static ELD problems for various case studies. The

promising results in the static environment has encouraged to apply the same in dynamic

environment DELD problems. We will consider the sample case study 5 unit system with

non-smooth cost function considering ramp-rate limit, prohibited operating zones and also

considering transmission losses.
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6.3 Problem Formulation

Dynamic Economic Load Dispatch (DELD) is measured as the sub-problem of Unit Com-

mitment (UC) problems in power systems. DELD problem aims to produce the power

with minimum per unit cost, while all the systems constraints are fulfilled for the whole

period of dispatch. In the smooth or simplified DELD problems, the quadratic function

is used to measure the cost of each generator. The basic constraint in the simplified cost

functions are the equality and inequality constraints. The classical methods are unable to

find the solution for the non-smooth cost functions of DELD [15].

min(C.F )t =
T∑
t=1

m∑
j=1

Fj(Pj) =
T∑
t=1

m∑
j=1

(aj + bjPjt + cjP
2
jt) (6.1)

where C represents the total generation cost Fjt represents the function of generator in t

time j, aj, bj, cj are the fuel cost coefficients of each generator. Pjt is the generated power

in t time by unit j, T is the total number of hours and m represents the total number of

generating units. To dispatch the exact amount of power to the loads, it is also important

to calculate the possible transmission losses. That has further two categories of fixed losses

and dynamic losses. While here we ignore power losses for simplicity. The first condition

that needs to be satisfied in all cases is the power balance or equality constraints It means

that the generated power must be equal to the demand from the loads side [15].

m∑
j=1

Pjt = Pload,t (6.2)

Furthermore, the minimum and maximum limits are defined before solving the cost

function and all the generators must be operated within the specified limits. This represents

the inequality type constraints within generating units. As some generators have the large

power production capacity and some have the small capacity given as follows: [121]:

Pj,min ≤ Pjt ≤ Pj,max (6.3)
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6.3.1 Cost Funtion with Valve-point Loading

The engagement of valve-point loading effects in the cost objective function determines

the problem as a highly non-linear and non-smooth. The simplified cost function is dif-

ferentiable, but the cost function including valve-point loading effects is non-differentiable.

Basically, the valve-point loading effects is defined as the superposition of sinusoidal and

quadratic functions [121]. In static DELD problems, we consider different load for each

time period during the whole trial of the algorithm. The DELD objective function is a

challenging task because of the multiple local optimum and time varying constraints. We

have to find the minimum and optimum setting for each unit. In the valve-point load

effects, the input-output curve is totally non-identical to the non-smooth cost function.

The cost function with valve-point loading effects is given as follows:

Fjt(Pjt) =
T∑
t=1

m∑
j=1

(aj + bjPjt + cjP
2
jt+ | ej × sin(fj × (Pj,min − Pjt))) (6.4)

In the above Equation (6.4), the value of ej and fj represent the fuel coefficients of the

system unit j and Figure 5.1.

6.3.2 Practical Generator Constraints

(a) Power balance constraints: In Equation (6.2), we have presented the power balance and

equality constraint without transmission losses. While the Equation (6.5) represents

the equality constraint with consideration of transmission losses. The total generated

power must be equal to the total load in addition to the transmission losses.

m∑
j=1

Pjt = Pload,t + Ploss,t (6.5)

(b) Power losses: The line losses are calculated as the using B matrix of coefficients as the

unit power output [168]. The equation for losses calculation is given as follows:

Plosses,t =
m∑
i=1

m∑
j=1

(Pi,tBij,tPj,t +
m∑
i=1

B0iPi,t) +B00,t (6.6)
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(c) Generating capacity limits: As given in the above Equation (6.3) each generator should

be operated according to their minimum and maximum capacity and violating the

capacity limit will cause reliability and security problem in the system.

(d) Ramp-rate limits: The operating speed of all connected units is controlled by the ramp-

rate limits specified with each unit [15; 17; 18]. Equation (6.7) is applied when the

generation is increasing, while Equation (6.8) is applied when decreasing generation of

the jth unit. The equations of ramp-rate limits are given as follows:

Pj − P t−1
j ≤ URj (6.7)

P t−1
j − Pj ≤ DRj (6.8)

max(Pmin
j , P 0

j,t −DRi) ≤ Pj,t ≤ min(Pmax
j , P 0

j,t + URi) (6.9)

(e) Prohibited operating zones: Due to the valve-point effects, it is sometimes impossible

to operate the generator for all ranges. Actually, this is because of the internal fault

in the generator. There may be number of zones in which the operation in a certain

range is restricted. When the unit is operated in the prohibited zone, it causes the

trembling and fluctuating effects in the quality of power, which may cause problem

to the system. The following equations describe prohibited zones and their minimum

maximum point:


Pm
j in ≤ Pj,t ≤ P l

j,1

Pj,t ∈ Pm
j,k−1in ≤ Pj,t ≤ P l

j,k

P u
j,n ≤ Pj,t ≤ Pm

j ax

(6.10)

where l and u are the lower and upper points of the prohibited operating zones and

k = 2, 3, ...pzj represents the number of zones.
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In the following Section 6.4 we demonstrate the implementation process of the newly

developed NS-MJPSO and NS-SPSO for DELD cost functions.

6.4 Implementation of the Proposed NS-MJPSO and

NS-SPSO

The implementation of the proposed NS-MJPSO and NS-SPSO are quite similar. The

only difference is the auxiliary parameter in the velocity update equation, which is based

on Markovian Jumping in NS-MJPSO and in NS-SPSO velocity update is based on Evo-

lutionary factor.

Here a particle represents the power output of generation unit; each particle represents

a candidate solution at time t in dynamic environment. For instance, in the case of m

unit system the power is dispatched to the loads, where Pgi,t represents the ith particle

described as bellow:

Pgi,t = [Pgi,1, Pgi,2, Pgi,3, · · · , Pgi,m]t, i = 1, 2, 3, · · · , n (6.11)

where Pgi,m is the power output of ith particle, m represents the number of units and

n represents population of particles in the time interval t. The population comprises

dimensionality n×m.

Step 1: In case of N State Markovian Jumping Particle Swarm Optimization (NS-MJPSO)

the number of N states are pre-defined and the resultant population is then applied

an evolutionary technique. Population distribution is derived by Chapter 3, Sec-

tion 3.3.1, Equation (3.8). Furthermore, by using Equation (3.9) the evolutionary

factor value is described.

Step 2: The required data for the objective function is initialized in this step for each time

interval t. Such as the minimum and maximum power generating boundary for each

unit is defined. The FMax and FMin are calculated. The population is randomly

generated in the boundary of FMin and FMax. The constraints are applied to the

initial population and all the particles have feasible values.

Step 3: Calculate transmission losses by the given Equation (6.6), Ploss,t, for each unit at

time t.
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Step 4: The following equation determines the evaluation function of DELD cost functions

Basically, the evaluation function is the sum of total cost of generated power produced

by all units plus the penalty factors λ1 for power balance λ2 for ramp-rate limit

constraints, λ3 for prohibited operating zones [171]. The violation of constraints is

described by penalty factors λ added to the sum of total generation cost.

Fk =
T∑
t=1

m∑
i=1

Fi,t(Pi,t) + λ1

T∑
t=1

m∑
i=1

(Pi,t − PD,t)2 + λ2

T∑
t=1

m∑
i=1

(Pi,t − Pramp)2

+ λ3

T∑
t=1

m∑
i=1

(Pi,t − Pzone)2
(6.12)

The fitness is evaluated for each unit in each time interval of dispatch. The output

produced by each unit is compared with power demand in that specific time or hour.

The constraint violation is also analysed here in each time interval. A large penalty

value is added to the cost function in case of violation of any type constraint.

Step 5: Pbest is updated, if the current evaluation value is better than Pbest. gbest is

determined as the best individual in the whole population. It is also updated as the

best individual in the entire swarm.

Step 6: In the velocity update equation a stochastic Markov Jumping parameter is intro-

duced. The particle jumps from its current state according the transition probability

0.9 for the initial current state and then the next state is predicted. A set of accel-

eration coefficients are pre-defined and a specific value is selected according to the

current state automatically. Later on, getting all parameter values the velocity and

position for all particles are then updated as the follows:

vij(t+ 1) =ωvi(t) + c1(δ(t))rand1(t)(pbestij(t)− Pij(t))

+ c2(δ(t))rand2(t)(gbestij(t)− Pij(t)),
(6.13)

Pij(t+ 1) =Pij(t) + vij(t+ 1) (6.14)

i = 1, 2, · · · , n, and j = 1, 2, · · · ,m, where n represent the number of particles and

m represents the number of generating units in the system.
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Pij(t+ 1) is the new updated position according to the new Pbest and gbest values.

It is essential for newly updated Pbestval to be in the limits of its constraints. The

population is initialized according to the constraints boundaries. Therefore, no risk

of violation is involved in this case.

Step 7: Pbest and gbest are updated for all particles. The gbest obtained in the last iteration

is the optimum solution for the problem.

Step 8: Repeat step 3 until the maximum number of iterations reach.

Step 9: go to Step 1: when T ≤ Hourst. Stop otherwise.

6.5 Experimental Setup and Simulation Results

The performance of proposed algorithms is examined for their applications in DELD non-

smooth cost functions with also having non-linear constraints. The case-studies adopted in

applications of the newly developed algorithm are 5-unit system with considering transmis-

sion losses having non-smooth cost function or valve-point loading effects, power balance

constraints, ramp-rate limits and prohibited operating zones. The second case study used

here is the 10 unit system with valve-point loading, power balance constraints and ramp-

rate limits. The data used for simulating the above case-studies is taken from the published

articles. All the experimental work is carried-out in Matlab R2015a, Intel Corei5 3.30GHZ

64bit Windows 10 operating system, with 8GB RAM. The proposed algorithms are com-

piled for 30 independent trials. The average/best results in terms of minimum cost values

are tabulated and plotted. The parameters setting for the proposed algorithms and all

other variants used in the experimental work are listed in the following Table 6.1. For

comparison purposes we have re-implemented 10 widely used PSO variants, namely PSO

with constriction factor (PSO-CF) [48], Comprehensive Learning (CLPSO) [4], Dynamic

Multi-swarm PSO (DMS-PSO) [60], Combinatorial PSO (CPSO) [173], Genetic Algorithm

(GA) [158], traditional PSO (PSO) [58], Unified Particle Swarm Optimization (UPSO)

[174], Fully-informed PSO (FIPS) [59]. Fitness distance ratio based PSO algorithm (FDR-

PSO), [175], PSO with constriction factor and local-best version (PSO-CF-Local) [56] and

also the newly developed NS-SPSO. All the above mentioned PSO variants and GA algo-

rithm were tested and evaluated by applying to the above mentioned two case studies of

DELD problems. Due to the limitation of space we only plot the variants with the best

performances in comparison to the proposed algorithms.
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Figure 6.1: The Flowchart of NS-MJPSO Implementation to DELD problem
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Table 6.1: Parameter settings of PSO for DELD applications

Algortihms Acceleration ωmax ωmin Cons; Factor (χ) States
NS-MJPSO C = [2, N] 0.9 0.5 φ = 0.9 N = [4,8]
NS-SPSO C = [2, N] 0.9 0.5 N = [4,8]
MPSO c1, c2 = 2 0.9 0.4 1
CPSO c1, c2 = 1.49 0.9 0.7
CL-PSO c1, c2 = 1.49445
FDR-PSO φ1,2,3 = [1, 1, 2] 0.9 0.5

6.5.1 Sketch of Test Cases for simulations

6.5.1.1 Case 1: 5-Unit System

Table 6.2: Generating Units limits and cost coefficients

Unit Pmin Pmax α($) β($) γ($) e f Ur Dr Pzmin,1 Pzmax,1 Pzmin,2 Pzmax,2
1 10 75 0.008 2 25 100 0.042 30 30 10 10 10 10
2 20 125 0.003 1.8 60 140 0.04 30 30 20 20 20 20
3 30 175 0.0012 2.1 100 160 0.038 40 40 30 30 30 30
4 40 250 0.001 2 120 180 0.037 50 50 40 40 40 40
5 50 300 0.0015 1.8 40 200 0.035 50 50 50 50 50 50

Table 6.3: 24-Hours Load Demand (MW) for the 5-Units System

Hour 1 2 3 4 5 6 7 8 9 10 11 12
Load 410 435 475 530 558 608 626 654 690 704 720 740

Hour 13 14 15 16 17 18 19 20 21 22 23 24
Load 704 690 654 580 558 608 654 704 680 605 527 463

6.5.1.2 Case 2: 10-Unit System

6.5.2 Performance of Proposed NS-MJPSO and NS-SPSO

In this chapter, we present an application of the newly developed NS-MJPSO and NS-

SPSO algorithms in DELD problem. As we have explained in detailed about the DELD

that it is a non-smooth, non-linear, high dimension and complex multi-modal problem. To

find the optimal solution of this problem is a challenging task. Basically, for comparison

purposes we have re-implemented about 10 variants for the same problem. Each variant

has its own advantages and disadvantages. Whereas, according to our analysis, the variants

with having local search or neighbourhood topological structures and multi-swarms have

the best performance for DELD. The DELD is a multi-modal problem having multiple
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Table 6.4: NS-MJPSO solution for DELD 5 Unit System with transmission losses

Hour Pg1 Pg2 Pg3 Pg4 Pg5 Total Gen Load
1 43.01 60.61 127.71 97.32 84.78 413.44 410
2 47.46 54.04 101.00 107.63 128.75 438.87 435
3 19.88 76.61 115.52 94.70 173.02 479.72 475
4 46.80 58.93 84.87 143.36 202.00 535.96 530
5 43.46 75.30 88.63 134.59 222.67 564.66 558
6 48.12 88.34 126.63 165.34 187.26 615.70 608
7 40.38 84.77 155.17 134.88 218.97 634.16 626
8 36.90 81.58 119.25 179.90 245.45 663.09 654
9 33.21 86.99 125.37 205.23 249.35 700.15 690
10 37.97 86.01 146.65 190.91 252.90 714.44 704
11 38.29 80.21 131.39 207.03 274.14 731.06 720
12 42.52 70.23 156.25 231.58 250.96 751.55 740
13 43.29 89.74 160.66 189.68 230.99 714.35 704
14 60.60 85.59 129.75 162.33 261.80 700.07 690
15 65.08 71.37 124.70 166.14 235.70 662.98 654
16 53.02 94.54 112.08 139.81 187.60 587.04 580
17 40.83 75.91 108.98 154.03 184.76 564.51 558
18 34.67 90.37 139.81 151.46 199.39 615.70 608
19 45.80 87.67 118.69 183.99 226.89 663.04 654
20 35.82 92.86 152.84 233.54 199.40 714.47 704
21 45.79 84.27 135.37 209.49 214.81 689.73 680
22 32.11 89.41 149.08 170.69 171.32 612.61 605
23 40.68 74.04 115.38 155.33 147.33 532.76 527
24 37.24 62.91 138.34 109.08 119.81 467.38 463
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Figure 6.2: NS-SPSO convergence in the feasible boundaries for 24 hours dispatch
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Table 6.5: NS-SPSO solution for DELD 5 Unit System with transmission losses

Hour Pg1 Pg2 Pg3 Pg4 Pg5 Total Gen Load
1 44.81 56.18 52.20 79.38 181.11 413.67 410
2 23.09 64.10 81.00 48.49 222.57 439.25 435
3 10.00 93.46 83.55 97.57 195.33 479.90 475
4 36.77 64.17 44.36 146.09 244.95 536.34 530
5 40.89 93.72 83.51 137.74 208.82 564.68 558
6 65.59 122.19 113.07 115.58 199.41 615.84 608
7 54.87 101.42 119.42 163.20 195.31 634.22 626
8 72.80 116.02 142.88 147.23 183.99 662.91 654
9 69.91 119.58 159.16 166.04 185.22 699.91 690
10 66.09 121.09 149.19 146.81 231.24 714.41 704
11 45.27 120.05 156.25 165.23 244.12 730.92 720
12 71.98 119.20 165.06 200.24 194.94 751.43 740
13 73.51 90.70 138.89 227.76 183.56 714.42 704
14 75.00 108.41 147.29 192.80 176.43 699.93 690
15 49.66 78.66 122.82 229.59 182.37 663.08 654
16 62.72 64.89 85.15 189.95 184.46 587.18 580
17 37.13 51.55 74.11 168.83 233.17 564.79 558
18 65.59 77.90 108.03 132.05 232.26 615.83 608
19 68.03 107.78 140.82 160.09 186.19 662.90 654
20 75.00 125.00 132.56 155.99 225.92 714.46 704
21 62.78 109.75 92.67 152.84 272.01 690.06 680
22 56.42 96.36 122.94 109.10 227.93 612.74 605
23 71.19 81.03 95.99 105.45 179.17 532.83 527
24 53.85 86.70 56.08 139.57 131.41 467.61 463

Table 6.6: Best Results for Case 1

Method Minimum Cost ($ per 24 hr) Comp; time No. of Hits to the Global
NS-MJPSO 47312.3425 75 28
NS-SPSO 47833.9157 67 25
MPSO 47356.786 110 15
CPSO 46265.875 112 24
CL-PSO 48545.995 85 15
FDR-PSO 52377.896 105 23
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Table 6.7: NS-MJPSO solution for DELD 10 Unit System

Load Pg1 Pg2 Pg3 Pg4 Pg5 Pg6 Pg7 Pg8 Pg9 Pg10 Total Gen Load

1 191.96 176.21 139.25 128.04 91.26 93.30 39.29 90.12 31.57 55.00 1036.00 1036
2 251.35 143.55 115.82 175.20 125.85 78.32 59.03 64.42 41.46 55.00 1110.00 1110
3 271.75 192.44 170.54 192.74 106.29 98.93 37.98 63.83 68.50 55.00 1258.00 1258
4 350.20 249.79 183.56 166.22 117.24 96.99 49.06 90.46 47.48 55.00 1406.00 1406
5 373.54 264.41 194.18 199.50 129.60 86.62 60.84 74.53 41.77 55.00 1480.00 1480
6 332.63 335.96 264.07 187.13 121.82 108.05 89.77 88.81 44.77 55.00 1628.00 1628
7 366.23 407.20 203.06 188.39 150.62 113.37 79.75 74.15 64.22 55.00 1702.00 1702
8 314.42 453.94 276.79 153.14 160.30 103.58 109.15 103.35 46.32 55.00 1776.00 1776
9 379.29 439.70 262.64 193.19 176.63 141.38 99.59 107.51 69.06 55.00 1924.00 1924
10 458.11 446.13 314.30 208.61 197.93 124.06 104.77 116.60 46.49 55.00 2072.00 2072
11 453.81 437.36 327.76 258.61 169.59 143.23 113.92 113.88 72.84 55.00 2146.00 2146
12 463.43 452.07 321.81 298.92 213.35 127.87 128.59 99.32 59.64 55.00 2220.00 2220
13 443.03 386.81 319.72 257.50 221.06 114.91 106.71 94.51 72.76 55.00 2072.00 2072
14 380.94 328.14 320.14 244.26 223.34 105.62 112.38 110.73 43.45 55.00 1924.00 1924
15 353.51 339.54 294.66 208.83 180.98 139.57 95.04 80.81 28.06 55.00 1776.00 1776
16 339.08 309.68 214.68 195.38 157.14 91.77 73.58 68.13 49.56 55.00 1554.00 1554
17 273.50 351.29 155.11 188.21 131.01 116.37 83.55 77.06 48.90 55.00 1480.00 1480
18 301.00 426.68 209.87 168.12 130.88 86.99 90.29 83.27 75.89 55.00 1628.00 1628
19 376.45 397.62 274.84 185.48 115.09 111.09 116.85 77.98 65.59 55.00 1776.00 1776
20 447.89 454.01 333.67 232.81 161.99 149.41 92.30 98.39 46.53 55.00 2072.00 2072
21 413.60 382.81 297.08 236.63 203.33 108.62 64.20 105.06 57.68 55.00 1924.00 1924
22 337.59 307.70 243.57 190.38 155.86 137.50 50.52 89.53 60.35 55.00 1628.00 1628
23 270.16 241.31 163.82 141.49 158.34 94.08 78.38 69.72 59.71 55.00 1332.00 1332
24 282.32 204.37 110.24 102.15 139.23 110.21 53.02 83.84 43.63 55.00 1184.00 1184

0 50 100 150 200 250

P
ow

er
 G

en
er

at
io

n 
in

 th
e 

fe
as

ib
le

 r
an

ge

0

50

100

150

200

250

300

350

400

450

500
10 Unit System with Valve-point effects

NS-MJPSO

Figure 6.3: NS-MJPSO convergence in the feasible boundaries for 24 hours dispatch
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Table 6.8: NS-SPSO solution for DELD 10 Unit System

Load Pg1 Pg2 Pg3 Pg4 Pg5 Pg6 Pg7 Pg8 Pg9 Pg10 Total Gen Load

1 159.62 147.03 82.39 155.11 140.16 101.74 74.98 66.71 53.25 55.00 1036.00 1036
2 168.62 226.52 76.65 105.14 168.30 58.12 98.35 88.83 64.48 55.00 1110.00 1110
3 167.28 293.87 135.72 96.58 191.57 106.71 99.64 76.97 34.66 55.00 1258.00 1258
4 247.24 352.01 104.32 109.64 177.24 89.60 126.96 106.80 37.19 55.00 1406.00 1406
5 307.07 307.70 182.82 93.11 130.18 134.82 97.60 106.64 65.08 55.00 1480.00 1480
6 263.25 380.82 221.37 138.94 180.18 156.62 104.85 76.96 50.02 55.00 1628.00 1628
7 343.15 460.00 230.14 90.43 139.07 125.63 129.33 70.60 58.65 55.00 1702.00 1702
8 278.70 457.12 294.74 140.41 175.41 117.34 99.78 100.26 57.24 55.00 1776.00 1776
9 333.69 452.86 340.00 188.29 148.40 159.84 82.36 119.34 44.23 55.00 1924.00 1924
10 413.55 460.00 318.22 209.93 194.87 160.00 91.53 117.40 51.49 55.00 2072.00 2072
11 470.00 448.08 340.00 246.70 175.71 139.83 99.66 113.61 57.41 55.00 2146.00 2146
12 470.00 448.36 340.00 296.59 225.71 116.11 127.57 89.15 51.51 55.00 2220.00 2220
13 391.88 378.76 339.90 258.79 217.91 156.15 125.07 116.74 31.82 55.00 2072.00 2072
14 347.12 299.76 296.86 294.73 235.04 125.01 95.13 113.55 61.80 55.00 1924.00 1924
15 410.16 307.37 216.86 244.74 210.17 134.71 69.57 83.92 43.49 55.00 1776.00 1776
16 330.23 307.04 194.15 188.79 160.23 121.18 61.51 100.19 35.68 55.00 1554.00 1554
17 250.40 331.75 273.97 138.81 131.14 102.97 87.64 70.66 37.67 55.00 1480.00 1480
18 286.89 381.74 218.09 134.60 174.47 152.55 61.63 99.55 63.50 55.00 1628.00 1628
19 281.94 424.83 297.17 184.51 216.49 154.97 56.15 71.41 33.55 55.00 1776.00 1776
20 361.94 460.00 340.00 234.51 238.42 131.15 86.15 101.23 63.55 55.00 2071.94 2072
21 351.75 439.12 323.83 215.01 188.42 112.28 96.10 71.25 71.24 55.00 1924.00 1924
22 271.79 359.14 259.99 241.10 141.63 95.00 90.09 72.48 41.79 55.00 1628.00 1628
23 242.25 243.66 180.04 197.33 126.28 59.53 82.58 92.81 52.51 55.00 1332.00 1332
24 162.78 163.64 106.50 214.54 176.27 59.75 108.47 63.15 73.90 55.00 1184.00 1184

Table 6.9: Best Results for Case 2

Method Minimum cost ($ per 24 hr) Comp; time No. of Hits to the Global
NS-SPSO 1047553.394 60 27
NS-MJPSO 1036140.586 62 28
MPSO 1046725.908 85 18
CPSO 1132533.786 89 17
CL-PSO 1052866.956 69 14
FDR-PSO 1049055.566 72 20
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local optimum. The second reason for selecting these variants is their best performance in

constrained problems. DELD is highly constrained problem.

The emphasis in this study is the development of the best algorithm with good perfor-

mance in the real-world environment. Due to the limitation of space we have presented the

performance of the newly developed algorithm and the best results in terms of minimum

cost of the existing methods have been taken for comparison. In Table 6.6 and Table 6.9

the comparative results of for Case Study 1 and Case Study 2 are given. The Minimum

cost values illustrate the best performance of the participant methods. In both cases, the

proposed NS-MJPSO has produced best results in terms of solution quality or accuracy

and NS-SPSO has produced the best performance in terms of the shortest computation

burden. The proposed methods have the ability of adaptation and robustness in complex,

nonlinear real-world environment.

6.6 Summary of the Chapter

This chapter presents the basic knowledge about the Dynamic Economic Load Dispatch

(DELD) problem. The analytical and heuristic methods that have already been used for

the solution of DELD objective are summarised. The main objective of DELD problem

is to minimize the total generation cost of the power system in the manner to satisfy the

constraints applied to the system and generators. The problem is dynamic and changes

the required load demand dynamically with time. The system has the line flow constraints

and ramp-rate limits. The generator has prohibited operating zones and capacity limits

constraints. These constraints make the problem more complex.

In Chapter 3 and Chapter 4, we have developed two new algorithms with the assumption

of the best performance in real-world problems. In Chapter 5, we have examined the

performance of both the algorithms in static ELD problem. While in this chapter, a

more complex problem has been applied the proposed algorithms. The numerical results

illustrate the average/best performance in terms of minimum cost value of the proposed

algorithms. The proposed algorithms have the evolutionary adaptation strategy involved

in the main process. We conclude this chapter with the contribution of a desirable solution

to complex problem by using two new algorithms.
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7.1 Conclusions

The present research is motivated by the wide use and satisfactory performance of the PSO

algorithms that contribute substantially to the development of the evolutionary computa-

tion. As is well known, the PSO algorithms have their own advantages of light computation

burden, simple implementation procedure and sub-optimal solutions for complex optimi-

sation problems. In addition, the convergence of PSO algorithms has no dependency on

the initialization. Owing to their computational merits, the PSO algorithms have been

applied to a variety of practical problems.

Nevertheless, there are certain limitations with PSO algorithms that have been widely

recognized. For example, a typical PSO algorithm has social, asocial (cognitive) and inertia

weight parameters, and the control of the whole algorithm is totally dependent on these

parameters. As such, the performance of the PSO algorithm is heavily dependent on the

tuning of the parameters, which means that the overall performance could be extremely

sensitive to the parameters which, in turn, will lead to certain limitations such as lack of

diversity, premature convergence or stagnation of the particles in the local optimum as

well as parameter adjustments. In this case, there appears to be an urgent need to look

for some more robust, less sensitive yet more accurate modified PSO algorithms, and this

is the main motivation of our research.

In this thesis, to improve the robustness as accuracy, we have proposed two novel

algorithms, namely, N State Markov Jumping Particle Swarm Optimization (NS-MJPSO)

and N State Switching Particle Swarm Optimization (NS-SPSO). Both the novel NS-

MJPSO and NS-SPSO algorithms have, to some extent, addressed the previously identified

limitations through theoretical analysis and numerical simulations. It has been shown

that the present algorithms are indeed efficient, accurate and robust as compared to the

traditional PSO algorithms.

Let us now summarise the advantages and applications of the proposed algorithms as

follows.

• In the first proposed NS-MJPSO algorithm, a novel N -state Markov chain is intro-

duced to the velocity update equation with hope to increase the accuracy as well

as the robustness, where the parameter N plays an important role in dividing the

state space based on the domain knowledge. Obviously, the bigger the N , the more

accurate the results and the heavier the computation burden. Therefore, a proper

choice of the parameter N is vitally critical.

At each iteration, the particle is evaluated to determine the most adequate state it



Chapter 7. 133 Conclusions & Future Work

is associated, and then a Markovian jumping probability is enforced to decide which

is the next state according to the quantified evolutionary factor. After a series of

empirical experiments, we assign the initial transition probability as 0.9 which gives

us a good trade-off between the accuracy and the running time. During the state

jumping or switching, according to the evaluated evolutionary factor at each step,

the current state will jump to the next possible state with a given probability.

The performance of our proposed PSO algorithm is then examined by applying it to

some benchmark functions. The results produced by NS-MJPSO are then compared

with the existing state-of-the-art algorithms. For the benefits of the comparison, the

average/best evaluation values of each algorithms are given both in tables and in

graphical illustration for each benchmark function. It is shown that our proposed

PSO algorithm has produced the best results in terms of the large improvement of the

accuracy and at least the same level (sometimes much shorter) of the computation

time.

• The proposed NS-MJPSO algorithm is shown to be successful based on the assump-

tions that 1) we know how to determine the jumping probability according to the

a prior knowledge and 2) we don’t really care about the computational burden in-

duced by the extra stage of the Markovian state jumping. In practice, however, it

is quite often that we have less domain knowledge about the optimization problem

and the computational burden is a concern. In this case, we have proposed another

novel PSO algorithm, which is the NS-SPSO algorithm. For NS-SPSO algorithm,

we update the velocity purely based on the evolutionary factors where the state

switches from one to another according to the evaluation of its evolutionary factor.

In other words, the possibility for the state switching or staying is determined by

how large the evolutionary factor is. Our proposed NS-SPSO algorithm is then ex-

amined through applications to some benchmark functions. The results produced by

NS-SPSO are then compared with NS-MJPSO and other popular PSO algorithms.

The average/best evaluation values of the algorithms are given in tables and also

visualised in the graphical illustration for each function. The proposed algorithm has

consumed the shortest computation time and the second best results in terms of the

accuracy (NS-MJPSO is the best) in comparison to all other variants.

• To further demonstrate the application potential of our proposed PSO algorithms,

in this thesis, we propose the power system operation problems as the application

domain. The power system operation describes Unit Commitment (UC). In the UC

problem, we further extract our objective to static and dynamic Economic Load
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Dispatch (ELD) and (DELD) problems. These problems are complex, multi-modal

and highly nonlinear with multi-local optimum. Several non-smooth constraints are

applied with the objective functions. Both of our newly proposed algorithms are

applied first to the simple static ELD problem whose aim is to find the solution

for a single load. The proposed algorithms have produced promising results. Then,

both our proposed algorithms are applied to the DELD problems, which are dynamic

problems whose cost functions are dependent on time. The dispatch for 24 hours is

selected. In a single trial the algorithm finds the optimal/economical solution for

all the loads that optimizes all units satisfying constraints. The best performance is

presented for both the algorithms in both the applications. It is concluded that the

milestones of this research are achieved.

7.2 Limitations of this Thesis

The research of PSO development is classified into five categories by [14], where one cat-

egory stands for the simplification of PSO algorithm. In other words, the basic aim with

doing further improvement in PSO algorithm is to maintain it’s simplicity. However, the

main concern of this thesis is to work out the instability and inconsistency problem by

producing a robust algorithm. We have achieved the objective of accuracy by introduc-

ing additional parameters to the structure of PSO algorithm. Subsequently, it causes the

following limitation.

• Increasing complexity by involving additional parameters like number of states N ,

evolutionary factor, transition probabilities and population distribution. The ac-

curacy increases by increasing the number of states and the complexity increases

consequentially.

• As mentioned in the previous section, the performance of NS-MJPSO is based on the

adequate assignment of jumping probability and number of states N . This required

some prior knowledge of the domain to determine the values of parameters, which is

not quite often the case in real-world problems.

• The newly developed are very flexible in terms of parameter changes because we have

many values of each parameter. So, a small changes does not effect the performance of

the algorithm. However, the problem is tuning and adjusting the parameter manually

in the initialisation time. An automatic and adaptive mechanism is needed to make

the process more easier and simpler.
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7.3 Future Work

The future work for this thesis is classified into two sub-sections as follows:

7.3.1 Future Milestones for Algorithms

1. The first future milestone is to extend the work further starting from the existing

stage. As we have proposed the N -state concept in both of the algorithms, there are

certain parameters that have to be tuned manually, for example, the size N for both

algorithms and the jumping probability for the NS-MJPSO algorithm, which would

rely on the domain knowledge we have in hand. Obviously, there is a need to develop

a mechanism to automatically or adaptively determine the size N and the jumping

probability matrix that could be extracted from the problem-specific knowledge base

for.

2. Some more efficient artificial learning mechanism is required to train the social and

asocial (cognitive) parameters in order to understand the nature and dimensionality

better. Again, an automated training scheme would be a great addition to make the

developed new PSO algorithms even more efficient.

3. Some other state-of-the-art algorithms could be combined with our proposed ones

in order to solve more complicated problems. For example, the deep learning algo-

rithms could be applied first to learn the attributes/structure/classes of the problems

addressed before they are converted to the optimization problems that can then be

solved by the proposed PSO algorithms.

4. The next milestone for the future work is to deal with the many-objective optimiza-

tion problems that usually refer to those problems with more than three competing

objectives. The challenges would be 1) how to provide a new (decent) solution

quickly; 2) how to make sure that the after-change solution is not very different from

the before-change solution; 3) how to make sure that the new solutions are as close

to a reference solution as possible; and 4) how to make sure that the future solutions

must be in certain bounds? These are fundamental challenges that have not been

adequately investigated in the computer science community yet.
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7.3.2 Future Milestones for Applications

1. Power system is not the main emphasis of this thesis, but is purely used as a test bed.

However, from the current studies we have some milestones for future research. For

example, the current application is about single objective ELD and DELD problems.

In the future, we intend to extend the work to multi-objective and many-objective

problems, which can better reflect the environmental practice such as emission dis-

patch with combined ELD and emission objectives.

2. The second future target for applications is to apply the developed algorithms to other

more sophisticated engineering problems such as the dynamic optimization problems

for ship design process where the issues of ship routing and scheduling, inventory

management, trajectory planning, vibration control and inner shell optimization have

gained particular research interest.
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