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Abstract  

Several neuroimaging studies have revealed that the superior temporal sulcus (STS) is highly implicated in the 

processing of facial motion (see Allison, Puce & McCarthy, 2000). A limitation of these investigations, however, is 

that many of them utilise unnatural stimuli (e.g., morphed videos) or those which contain many confounding 

spatial cues.  As a result, the underlying mechanisms may not be fully engaged during such perception. The aim 

of the current study was to build upon the existing literature by implementing highly detailed and accurate models 

of facial movement (as described in Girges, Spencer & O’Brien, 2015). Accordingly, neurologically healthy 

participants viewed simultaneous sequences of rigid and nonrigid motion that was retargeted onto a standard 

CGI face model. Their task was to discriminate between different facial motion videos in a two-alternative forced 

choice paradigm. Presentations varied between upright and inverted orientations.  In corroboration with previous 

data, the perception of natural facial motion strongly activated a portion of the posterior STS. The analysis also 

revealed engagement of the lingual gyrus, fusiform gyrus, precentral gyrus and cerebellum.  These findings 

therefore suggest that the processing of dynamic facial information is supported by a network of visuo-motor 

substrates.  
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Introduction 

The human visual system has developed highly specialised mechanisms which facilitate the detection and 

interpretation of facial motion (Allison, Puce & McCarthy, 2000). Puce, Allison, Bentin, Gore and McCarthy (1998) 

first described functional activity in the posterior superior temporal sulcus (pSTS) to perceived eye and mouth 

movements. Similarly, Lloyd-Fox and colleagues found a greater haemodynamic response in the STS complex 

when 5-month-old infants viewed video clips of female actors moving specific face parts (Lloyd-Fox, Blasi, 

Everdell, Elwell & Johnson, 2009). Natural video sequences of facial motion also significantly activated the 

pSTS, even when stimulus motion was controlled for (Schultz & Pilz, 2009). More recent studies have reported 

parallel results. Polosecki et al., (2013) found only the STS to show specific sensitivity to videos of actors 

vocalising and generating expressions. Increasing the frame rate and correct frame order of facial motion also 

evoked a greater BOLD response in the STS, indicating its involvement in accessing the fluidity and meaning of 

facial movements (Schultz, Brockhaus, Bülthoff & Pilz, 2013). Chewing gestures or fearful expressions further 

yielded a consistent lateralisation in the right pSTS relative to phase-scrambled stimuli (De Winter et al., 2015). 

These findings suggest that the processing of variant and changeable facial aspects occurs primarily within the 

STS.  

 

While informative, many of the abovementioned investigations have implemented abstract or unnatural 

depictions of facial movement (e.g., implied motion images or morphed videos from static images). These 

representations, however, may not fully engage the underlying mechanisms (Schultz & Pilz, 2009). In a 

previous paper, we addressed this issue by exploiting recent developments in marker-less technology in 

order to generate accurate and realistic models of facial movement (Girges, Spencer & O’Brien, 2015). 

Simultaneous sequences of rigid and nonrigid motion were recorded from human actors and applied to a 

standard CGI face. The purpose of this was to limit interferences from residual spatial (non-motion) cues which 

may confound perception. 

 

With reference to this stimulus set, the aim of the present research was to examine the neural processing of 

facial motion. By doing so, we can validate its use in studies of human face perception and build upon any 

D
ow

nl
oa

de
d 

by
 [

Ju
st

in
 O

B
ri

en
] 

at
 0

2:
37

 1
7 

Ju
ne

 2
01

5 



Acc
ep

ted
 M

an
us

cri
pt

Running head: Facial Motion Perception  
 

4 
 

existing literature which has utilised ecologically invalid presentations. Accordingly, neurotypical observers took 

part in a facial motion discrimination task whereby judgements were based solely on differences in motion 

patterns. The stimuli were also presented in an inverted orientation to form a baseline condition. This 

experimental paradigm affects face recognition by disrupting configural processing and early structural encoding 

(Girges, Wright, Spencer & O’Brien, 2014).  

 

Methods  

Participants 

Ethical approval was acquired from Brunel University. Eight adults (2 males, 6 females, age: M = 24.75, SD = 

3.92, Range = 21 – 32 years old) with normal or corrected-to-normal vision participated in the current study. 

None of the sample reported any history of neurological or psychological disorders. Participants were given a 

description of the study and written informed consent was obtained. They were debriefed after the experiment 

was terminated.  

 

Stimuli  

Dynamic face stimuli were taken from a video database developed by Girges, Spencer and O’Brien (2015). The 

movement of 15 non-professional human actors, as they recited a range of poems, was captured and retargeted 

onto a standard avatar. Final animations exhibited both rigid (head rotations and translations) and nonrigid 

(expressional changes) motion patterns, as well as natural speech and eye-gaze movements. Individual 

differences in facial form were limited by all animations sharing the same appearance. To form the baseline 

condition, each stimulus was inverted by rotating the original video file along an 180o axis (see Girges, Spencer 

& O’Brien (2015) for full details concerning the stimuli method).  

 

Functional MRI Task and Design 

Conditions were configured in MATLAB and presented using an LCD display with a resolution of 1024 x 768 and 

60Hz refresh rate. The experiment comprised 40 interleaved blocks of either upright or inverted facial motion. 

Within each block, two successive videos (separated by a 1-second interstimulus interval) were displayed. Using 
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a two-alternative forced-choice procedure, participants were required to judge whether the videos were identical 

to each other. Responses were made via a button press (left = identical, right = different) and response timeout 

was set to 5 seconds. Each video was presented for 8 seconds and the task took approximately 16 minutes to 

complete.  See Figure 1.  

 

Image Acquisition and Analysis 

Images were acquired on a 3.0 Tesla Siemens Magnetom Trio scanner with a 32 channel array head coil. 

Functional MRI was performed using a standard gradient echoplanar imaging (EPI) sequence (TR 3000ms, TE 

30ms, flip angle 90o, 3mm slice thickness, 64 x 64 matrix, 160 contiguous axial slices, bandwidth 1396 Hz/pixel). 

Functional scanning runs comprised up to 320 volumes lasting 16 minutes. Anatomical T1-weighted MPRAGE 

3D MRI sequence images were also acquired during the scanning session (TR 1830ms, TE 4.43ms, flip angle 

11o, 160 axial slices, 1mm isotropic voxels, 256 x 256 matrix, bandwidth = 130 Hz/pixel). Visual stimuli were 

projected onto a screen (via a Sanyo LCD projector, PLC-XP1000L, native resolution = 1024 x 768) in the bore 

of the magnet and viewed through an angled mirror above the head coil. All stimuli were shown within a window 

measuring 420 x 420 pixels on the screen. At the effective total viewing distance (from projection screen to the 

coil mirror to the participants' eyes) of approximately 82cm, this corresponded to 12.0o x 12.0o. 

 

The data were pre-processed and analysed by using Statistical Parametric Mapping (SPM8, Wellcome Institute 

of Cognitive Neuroscience, London, UK) in MATLAB. For individual data sets, the images were corrected for 

head movement by realigning each EPI volume to match the volume in the first scan. The resulting images were 

then normalised to sterotaxic MNI coordinates using trilinear interpolation. As a final pre-processing step, the 

normalised images were smoothed using a Gaussian filter with a full-width at half maximum parameter set to 

8mm.  

 

The analysis was based on a regular whole-brain SPM approach. Statistics were performed separately at each 

voxel and modelled using a box-car function convolved with a canonical hemodynamic response function. 

Contrasts were defined to compare the neural difference between upright and inverted facial motion by 
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subtracting one beta from the other. Group averages of these first-level analyses are reported below. A random-

effects (RFX) analysis was also conducted across the group based on individual statistical parameter maps to 

allow for population inference. Regions of interest (ROI) were limited to the occipital and temporal lobes 

(conducted via the WFU PickAtlas toolbox in SPM8).  

 

Results  

Group Average 

When discriminating between different videos of facial motion, the upright > inverted contrast revealed significant 

activations in the bilateral pSTS, extending into the middle temporal cortex (Figure 1). Activity was also observed 

in the bilateral lingual gyrus (LG), right fusiform gyrus (FG), left cerebellum and a region of the right precentral 

gyrus known to contain the dorsal premotor cortex (dPMC; Table 1). The reverse contrast (inverted > upright) is 

presented in Table 1.  

 

Figure 1 about here   

Table 1 about here  

 

RFX Analysis 

Greater neural activity for observing upright versus inverted facial motion was seen in the bilateral STS. Activity 

extended to the middle temporal cortex, but only on the left hemisphere. Regions within the left calcarine sulcus, 

FG and precuneus also appeared responsive to upright facial motion (Table 1). These results support those 

reported in the group average analysis. 

 

Discussion 

Discriminating upright videos of facial motion evoked the greatest activity in the STS compared to discriminations 

with inverted types. Specifically, a large cluster was observed in the right posterior limb (pSTS). These findings 

corroborate previous studies which report the STS to be the region most strongly associated with the analysis of 

variant facial aspects (Puce et al., 1998; Lloyd fox et al., 2009; Schultz & Pilz 2009; Polosecki et al., 2013; 
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Schultz et al., 2013). For example, Pelphrey, Morris, Michelich, Allison & McCarthy (2005) found that the mid-

posterior and right pSTS were sensitive to mouth and eye movements respectively. Similarly, there is evidence 

that the event-related N170 response to averted eye-gaze and mouth opening movements reflects the 

engagement of the STS (Rossi, Parada, Kolchinsky & Puce, 2014).  

 

The perception of facial motion evoked a response in part of the medial visual occipital cortex known as the 

lingual gyrus. Those who have examined the neural correlates of dynamic emotion recognition have reported 

similar activities occurring within portions of this substrate (Trautmann-Lengsfeld, Domínguez-Borràs, Escera, 

Herrmann & Fehr, 2013). By contrast, studies which implement computer-generated displays of nonrigid motion 

suggest that the lingual gyrus may only process categorical information. Indeed, Sarkheil, Goebel, Schneider and 

Mathiak (2013) observed a greater engagement of the lingual gyrus when participants were instructed to indicate 

the gender of a face compared to emotional ratings. However, it is possible that discrepant data is related to the 

subtype of motion viewed. For example, nonrigid motion appears to facilitate gender discriminations specifically 

because such facial aspects are functionally related to speech and expression which differ significantly between 

the sexes (Hill & Johnston, 2001). Nonetheless, the neural encoding of facial motion seems to be supported by 

early visual mechanisms. 

 

There is also evidence to suggest that the lingual gyrus is influenced by the face-selective fusiform gyrus in a 

feedforward and re-entrant manner (McKay et al., 2012). While this cannot be fully commented on in the current 

study, small significant activities in regions corresponding to the fusiform face area (FFA) did emerge from the 

analysis. Such engagement could actually reflect the processing of facial form rather than of the motion 

contained within in it. In support of this claim, Schultz et al., (2013) reported that the FFA was sensitive to 

manipulations which distorted the frame rate but not frame order of dynamic facial stimuli. The authors explain 

such finding by suggesting that this ventral temporal region is receptive to the increase in static information 

available from moving faces, rather than to the motion per se.  
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The analysis of facial movement also involves regions outside of the cerebral cortex. Large active voxels were 

seen in the left cerebellum during the discrimination of upright facial motion. It is widely acknowledged that the 

cerebellum has a role in motor functions, but there is evidence of this extending to sensory processing as well 

(Baumann & Mattingley, 2014). Lesions to this region can cause impairments on tasks detecting visual motion 

signals in noise, suggesting that it interacts with the dorsal stream (Jokisch, Troje, Koch, Schwarz & Daum, 

2005). To our current knowledge, no study investigating facial motion processing has found this response. 

However, previous investigations which implement point-light walker stimuli have reported cerebellar activity 

(Sokolov, Erb, Grodd & Pavlova, 2014). For example, lobules Crus I and VIIB of the left lateral cerebellum 

exhibited an increased BOLD response during body motion perception (Sokolov et al., 2012). The authors further 

noted a bi-directional communication between the left lobule Crus 1 and right pSTS. Evidently, the STS acquires 

many multimodal associations which are not limited to cortico-cortical connections.  

 

Conclusion 

Viewing upright facial motion strongly engaged the STS, further highlighting its role in biological motion 

processing. Portions of the primary visual cortex, ventral temporal cortex and cerebellum were also responsive to 

upright facial motion. Such finding suggests that the function of the STS is supported by multiple visuo-motor 

inputs. These data are therefore consistent with previous studies and builds upon existing literature employing 

ecologically invalid stimuli (e.g., morphed videos). The animations implemented here were highly reminiscent of 

real life facial motion, giving rise to a much more accurate neural representation.  
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Tables 
 
Table 1. The coordinates of the foci of activation in MNI space, their T-values and the cluster size* are shown (k 

= 10 voxels). 

 
Group Average Analysis 
Anatomy Upright > Inverted (p < .05, FWE) Inverted > Upright (p < .05, FWE) 
 BA Coordinates T-

value 
Size BA Coordinates T-

value 
Size 

  x y z    x y z   
R. STS 22 52 -36 8 7.61 858       
R. STS 48 68 -36 22 5.72        
R. STS 42 60 -36 20 5.57        
L. LG 17 -2 -72 -4 7.25 899       
R. LG 18 6 -86 -6 6.49        
L. Cerebellum 18 -8 -82 -14 6.08        
L. Middle temporal 37 -62 -56 10 6.36 402       
L. Middle temporal 21 -62 -48 8 6.18        
R. FG 37 42 -44 -24 5.65 38       
L. Cerebellum 37 -42 -54 -24 5.53 50       
L. Cerebellum 37 -40 -44 -26 5.07        
R. Precentral 6 56 4 42 5.20 57       
R. Middle occipital       18 36 -82 8 9.25 572 
L. Middle occipital       18 -34 -90 6 6.35 182 
RFX Analysis 
 Upright > Inverted (p < .05, FWE) Inverted > Upright (p < .001, 

uncorrected) 
L. Calcarine sulcus  17 -6 -78 6 13.80 101       
L. Calcarine sulcus  17 -10 -86 0 11.88        
L. Middle temporal  20 -52 -14 -12 11.37 62       
L. Middle temporal  22 -60 -38 8 11.04 193       
L. Middle temporal  22 -56 -46 12 9.03        
L. Middle temporal  22 -68 -34 6 6.91        
R. STS  22 60 -34 14 8.96 47       
L. Calcarine sulcus  17 0 -70 16 7.53 31       
L. Precuneus  18 2 -78 18 7.42        
L. FG 37 -36 -38 -24 7.29 22       
L. Middle occipital       18 -28 -96 22 8.46 56 
L. Middle occipital       18 -36 -86 20 7.60  
R. Middle occipital       18 32 -80 40 5.99 14 
L. Middle occipital       18 44 -84 10 5.68 19 

 
*Missing values in the size column indicate an activation peak that is part of the cluster listed immediately above.  
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Figure Captions 

Fig 1.  (A) Example experimental trial; (B) activity in the right pSTS; (C) right lingual gyrus; and (D) left middle 

temporal cortex (extending into the STS) for upright > inverted facial motion. The image on which activity is 

overlaid is the mean of the structural images from all participants. 
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