
An extended framework for passive asynchronous

testing✩

Robert M. Hierons

Department of Computer Science, Brunel University London, United Kingdom

Mercedes G. Merayo

Dep. de Sistemas Informáticos y Computación

Universidad Complutense de Madrid, Spain

Manuel Núñez

Dep. de Sistemas Informáticos y Computación

Universidad Complutense de Madrid, Spain

Abstract

In passive testing a monitor observes the trace (sequence of inputs and out-
puts) of the system under test (SUT) and checks that this trace satisfies a given
property P , potentially triggering a response if an incorrect behaviour is ob-
served. Recent work has explored a variant of passive testing, in which we have
a required property P of the traces of the SUT and there is a first-in-first-out
(FIFO) network between the SUT and the monitor. The problem here is that
the trace observed by the monitor need not be that produced by the SUT. Pre-
vious work has shown how such asynchronous passive testing can be performed
if the property P is defined by a pair (ρ,Oρ) that represents the requirement
that if trace ρ is produced by the SUT then the next output must be from the
set Oρ. This paper generalises the previous work to the case where the property
P is defined by a finite automaton.

Keywords: Formal approaches to testing; passive testing; asynchronous
testing.

1. Introduction

Software testing [1, 15] is one of the most important forms of verification and
validation and plays a fundamental role in the production of quality software.
Normally, testing involves executing the system under test (SUT) with a set

✩Research partially supported by the Spanish projects ESTuDIo (TIN2012-36812-C02-01)
and DArDOS (TIN2015-65845-C3-1), the Comunidad de Madrid project SICOMORo-CM
(S2013/ICE-3006) and the UCM program to fund research groups (910606).

Preprint submitted to Elsevier October 23, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/42131195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of test cases and then checking that the observed behaviour are acceptable.
Test cases must be carefully selected from the huge, and potentially infinite,
set of available test cases. However, sometimes we cannot apply such an active
approach. This is the case, for example, if the SUT is ‘live’ and the application
of test cases is not allowed since it might corrupt the system state or take
resources away from users. In such situations, one might instead apply passive
testing, which is a process in which the behaviour of the SUT is observed by a
monitor and the monitor checks that the observations satisfy certain required
properties. Typically, these properties are relatively simple and do not form
a complete specification: this allows the monitor to apply checks in real-time
and for the implementation of the monitor to consume relatively few resources.
It is worth mentioning that both active and passive testing can be given a
mathematical basis and that formal approaches to testing is an active research
area [? 8].

Two related terms have been used in the literature: ♣♣ Manuel:added
some new recent references; removed some less relevant, old ones.
Question. If [?] is the extended version of [?] then should we
remove the later? Similar question for [? ?] ♣♣ Rob:I would leave
as is passive testing [2, 3, 4? , 11, 12? ?] and runtime monitoring [? ? ? 6? ?
? , 13]. These terms are used by different communities and both have associated
literature going back well over 10 years. The main difference between these lines
of work is the way in which the property of interest is expressed: in runtime
monitoring the property is usually a linear temporal logic (LTL)1 formula and in
passive testing the property is usually describes by a finite automaton possibly
with data added.

In runtime monitoring (and also passive testing) one observes finite traces.
Thus, it does not make sense to check properties, such as liveness properties,
where counter-examples are defined in terms of infinite traces of the SUT. As
a result, the focus of the runtime monitoring community has been on safety
properties, where every infinite trace that fails a required property has some
finite prefix σ such that all extensions of σ fail the property (see, for example,
[?]). The trace σ thus provides a finite witness to the failure. While runtime
monitoring uses LTL rather than finite automata, and a property is expressed in
terms of a Büchi automaton, it is known that one can use a finite automaton to
recognise the ‘bad’ finite prefixes of a safety property [? ?]. While the gener-
ation of a finite automaton from a safety property can take double exponential
time, this becomes single exponential if the properties are not pathological [?
?]. In addition, it has been found that in practice it is feasible to generate a
finite automaton of reasonable size from a non-pathological safety property [?
]. As a result, we can formulate most approaches to passive testing and runtime
monitoring in terms of checking a property defined by a finite automaton M
and so this is the scenario we consider. Note that in situations in which passive

1The focus is on linear temporal logics since the monitor simply observes a trace and so
there is not scope for branching.

2

testing is applied, we typically do not know when system execution started and
so properties will normally be of the form �P (stating that P is globally true).

In this paper we investigate the situation in which we have a safety property
�P , a finite automaton M that represents the set of finite traces that violate P ,
and there is an asynchronous first-in-first-out (FIFO) channel between the SUT
and the monitor. As a result of the channel being asynchronous, the monitor
observes inputs before they are received by the SUT and observes outputs after
they were produced by the SUT. Thus, the trace produced by the SUT need
not be the one observed by the monitor: outputs may be delayed. While there
has been much work on both passive testing and runtime monitoring, almost
all of this work has considered the synchronous case where we directly observe
the actions in which the SUT participates and so does not make a distinction
between input and output.

This paper generalises our previous work [10] in which we only considered
properties defined by a pair (ρ,Oρ) that states that if the trace ρ is produced
by the SUT then the next output produced by the SUT must be from Oρ.
This previous approach showed how one can generate a property, defined by
a finite automaton, that the trace observed by the monitor must satisfy. In
Section 3 we describe an alternative approach in which we take the trace σ
observed by the monitor and define a finite automaton M(σ) that accepts the
set of traces that the SUT might have produced: those that could have resulted
in the observation of σ. Given finite automaton M that defines the property
of interest, the problem reduces to deciding whether the intersection of the
languages defined by M(σ) and M is empty. This provides a general solution
to the problem but has the disadvantage that the size of M(σ) depends on the
length of the trace σ. In contrast, our previous approach rewrote the property
of interest and so the size of the resultant finite automaton depended on the
size of the property.

Since one would expect a property used to be relatively small, it is desirable
to have approaches that operate on the finite automaton M defining the property
rather than on the observed trace σ. The rest of the paper thus focuses on
generalising our previous approach, in which a property was defined by a pair
(ρ,Oρ). It has previously been proved that if M is a finite automaton then
the language L(M), of observations that might result from traces of M , need
not be regular [10]. As a result, there is no general approach that operates
on the finite automaton M defining the property of interest and so we consider
conditions under which L(M) is regular. In Section 4 we first generalise previous
work to the case where M is acyclic. This is extended in Section 5 to the case
where every cycle in M has either only inputs or only outputs (but there can be
cycles with inputs and also cycles with outputs). Throughout this paper we will
use the term passive testing to refer to the situation in which we have a finite
automaton M that defines the set of finite traces that violate the property of
interest but, as noted above, this also captures a number of scenarios in runtime
monitoring.

The paper is structured as follows. In Section 2 we define terminology and
notation used throughout the paper. Section 3 describes the general approach,

3

Figure 1: Architecture

which operates on the trace σ. In Section 4 we explore the situation in which
M is acyclic. Section 5 then generalises this to the case where every cycle in
M has either only inputs or only outputs. Finally, Section 6 draws conclusions
and discusses possible lines of future work.

2. Preliminaries: systems and observations

In passive testing a monitor observes actions in which the SUT participates.
When interaction is synchronous and the monitor observes the actual sequence
of actions produced by the SUT then there is no need to distinguish between
input and output. However, there might be a network between the monitor
and the SUT (Figure 1) with the communications being asynchronous. There
is then some asymmetry: inputs are observed by the monitor before they are
received by the SUT and outputs are observed by the monitor after they are
produced by the SUT. As a result, we need to distinguish between inputs and
outputs. Throughout this paper we let I denote the set of inputs that the SUT
might received, O denote the set of outputs that it might produce, and we let
Act = I ∪ O be the set of actions. We will assume that I and O are disjoint
and finite. In addition, we will usually precede the name of an input by ? and
the name of an output by !.

We will use finite automata to represent properties that the monitor checks.

Definition 1. A finite automaton (FA) M = (Q,Act, T, qin, F) is a tuple in
which Q is a finite set of states, qin ∈ Q is the initial state, Act is a finite set of
actions, T ⊆ Q× (Act∪{ǫ})×Q is the transition relation, and F ⊆ Q is the set
of final states. A transition (q, a, q′) ∈ T for a ∈ Act means that from state q
it is possible to move to state q′ with action a ∈ Act. A transition (q, ǫ, q′) ∈ T
means that from state q it is possible to move to state q′ with no action (a
hidden transition). We use the following notation concerning the performance
of (sequences of) actions.

• A sequence ρ = (q1, a1, q2)(q2, a2, q3) . . . (qk, ak, qk+1) of consecutive tran-
sitions is said to be a walk of M and the label of this walk is a1 . . . ak with
all instances of ǫ removed. If q1 = qk+1 then ρ is a cycle. If all of the qi
are distinct then ρ is a path.

• If (q, a, q′) ∈ T , for a ∈ Act ∪ {ǫ}, then we write q a−−→ q′ and q a−−→ .

• Let us suppose that there exist q0, . . . , qm, q = q0, q′ = qm such that for

all 0 ≤ i < m we have that qi
ai+1

−−−−→ qi+1. Then we write q
σ

==⇒ q′ for the

4

Monitor SUT

?i

!o
?i

msc MSC1

Figure 2: Observation of ?i?i!o despite the SUT producing ?i!o?i

trace σ ∈ Act∗ formed by removing all instances of ǫ from a1 . . . am. Note
that q

ǫ
==⇒ q, where we overload ǫ to also denote an empty sequence.

• If there exists q′ ∈ Q such that qin
σ

==⇒ q′ then we write M
σ

==⇒ .

• If there exists q′ ∈ F such that qin
σ

==⇒ q′ then we say that σ is a trace
of M . We let L(M) denote the set of traces of M .

We will assume that a finite automaton that defines a property does not
have transitions labelled with ǫ; these are included in the above definition since
we will construct FA with ǫ transitions. Note that it is possible to eliminate ǫ
transitions in polynomial time [?].

We assume a framework where communications between entities are asyn-
chronous and first-in-first-out (FIFO). If the SUT produces a trace σ then the
actual trace σ′ observed might be one formed from σ by delaying outputs. Thus,
if a system performs a certain trace then we can observe a variation of this trace
where the outputs appear later than they were actually performed. This is due
to the fact that the monitor observes inputs before they are received by the SUT
and observes outputs after they are produced by the SUT. For example, if the
monitor observes the trace ?i?i!o, in which ?i is an input and !o is an output,
then it is possible that the SUT actually produced either ?i!o?i or !o?i?i and that
the observation of ?i?i!o was due to the delaying of output. The first of these
scenarios is illustrated in Figure 2 in which vertical lines represent processes,
arcs represent messages, and time progresses as we move down a vertical line.
The previous explanation leads to the following definition of the traces that can
be observed by a monitor if the SUT produces σ and also the corresponding
language of possible observations regarding the SUT [10].

Definition 2. Let σ, σ′ ∈ Act∗ be sequences of actions. We say that σ′ is
an observation of σ, denoted by σ σ′, if there exist sequences σ1, σ2 ∈ Act∗,

5

!o ∈ O and ?i ∈ I such that σ = σ1!o?iσ2 and σ′ = σ1?i!oσ2. We let L(σ) denote
the set of traces that can be formed from σ through sequences of transformations
of the form , that is, L(σ) = {σ′|σ ∗ σ′}. We will overload this to say
that given an FA M , L(M) = ∪σ∈L(M)L(σ) is the set of traces that might be
observed when interacting with M through asynchronous FIFO channels.

Given trace σ we therefore have that L(σ) is the set of traces that might be
observed by the monitor if the SUT produces σ. Further, if M recognises a set
of traces that should not occur then L(M) is the set of traces that might be
observed by the monitor if the SUT produces a trace that violates the property
defined by M .

In our previous work [10] we considered properties of the form (ρ,Oρ) that
state that if the trace ρ is produced by the SUT then the next output produced
by the SUT must be from Oρ. We showed how, given ρ2, we can construct a
finite automaton that accepts all elements of L(ρ) and also any trace that could
have resulted from the SUT producing a trace that has ρ as a sub-trace (i.e.
all elements in ∪ρ1,ρ2∈Act∗L(ρ1ρρ2)). This paper generalises our first approach
to consider the case where a property of interest (defining a set of traces that
the SUT should not be able to perform) is written in a more general format.
Ideally, therefore, we would like to translate a finite automaton M , representing
the traces that violate a safety property P , into a finite automaton M ′ such that
σ′ is a possible observation of some trace σ ∈ L(M) (σ ∗ σ′) if and only if
σ′ ∈ L(M ′). However, we have the following impossibility result (a similar result
was presented in our previous work for the case of general finite automata; here
we show also that the result holds if we restrict attention to safety properties).

Proposition 1. Given a safety property P , whose violation is represented by
a finite automaton M , there may be no finite automaton M ′ with finite sets of
states and transitions such that L(M ′) = L(M).

Proof. Let us consider the formula P = �((?i1 −→ ©!o1) ∧ (!o1 −→ ©?i1))
representing the requirement that input and output alternate. This is clearly
a safety property and let M be the associated finite automaton that represents
the minimal traces that violate P . Thus, traces in L(M) have input and output
alternating until some final suffix that has either two consecutive inputs or two
consecutive outputs. We will use proof by contradiction, assuming that L(M) is
a regular language. Thus, since L(M) is regular and {?i1}

∗{!o1}
∗ is regular we

have that L(M) ∩ {?i1}
∗{!o1}

∗ is regular. However, this language contains all
sequences of the form of n occurrences of the input ?i1 followed by m occurrences
of output !o1 such that n and m differ by at most 2 and this is not a regular
language. This provides a contradiction as required.

Thus, we cannot expect to have such an approach that deals with either all
LTL formulae or all finite automata. In the following section we develop an alter-

2In our previous work we used σ to refer to the trace defining a property. In this paper,
we will use σ to refer to a trace of the SUT while ρ will be used for the former meaning

6

native method where we construct finite automata from observed traces. Later,
in Sections 4 and 5, we return to the problem of taking a property P represented
by finite automaton M and generating an appropriated version M ′ that takes
into account asynchronous communications. Since we know that there is no
general solution to this problem, we consider classes of finite automata, starting
with acyclic automata. However, first we describe a more general approach.

3. A general method

Our previously developed approach [10] takes a property P represented by
trace ρ and set Oρ of outputs and generates a finite automaton M ′ such that
L(M ′) = L(ρ(O \ Oρ)). The idea is that if the finite automaton accepts a
sequence of actions, that is, a final state is reached, then it is possible that an
erroneous behaviour was performed by the SUT (one that violated P). We have
already seen that we cannot expect to always be able to apply such an approach
when we use finite automata rather than traces to define properties (Proposition
1). However, there is an alternative general approach that can be applied for
any finite automaton M that is based on defining a set Lr(σ) that is the set of
traces that might have been produced by the SUT if we observe σ. Let us note
that this can be seen as being exactly the opposite of our previous work: instead
of considering traces that might be observed as variations of a trace σ ∈ L(M)
we consider the traces that might lead to the current observation. The challenge
is to define a finite automaton M(σ) such that L(M(σ)) = Lr(σ). If we can
achieve this then the problem is one of deciding whether L(M(σ)) ∩ L(M) is
empty, a problem that can be decided in time that is polynomial in the size of
M and M(σ). First we define Lr(σ).

Definition 3. Given σ ∈ Act∗ we let Lr(σ) = {σ′|σ′

∗ σ} denote the set of
traces that can lead to the observation of σ. We will overload this to say that
given an FA M , Lr(M) = ∪σ∈L(M)Lr(σ).

Our previous approach was based on a finite automaton that recognised all
traces that might be observed if the SUT produced a trace that contains ρ. As
a result, we used to define the set of possible traces that might be observed
if ρ was produced by the SUT (as part of a larger trace) and looked at the set
of traces σ such that ρ ∗ σ. Instead, in this alternative approach, we want
to find the set of traces that explain an observation σ that has been made and
these are the traces of the form σ′ such that σ′

∗ σ (i.e. Lr(σ)).

It might seem that given an observed trace σ we want to find a finite au-
tomaton M ′ such that L(M ′) = Lr(σ). However, we have to take into account
the following factors:

1. It is sufficient for the trace of the SUT to contain a sub-trace σ′ that is in
L(M) (recall that our properties are of the form �P).

2. Output produced by the SUT before such a sub-trace σ′ might follow input
from σ′.

7

3. Input from after the SUT produced such a sub-trace σ′ might precede
some output from σ′.

Thus, we will want M(σ) to denote the set of sequences σ′ such that there
exist σ1, σ2 ∈ Act∗ with σ1σ

′σ2 ∈ Lr(σ).
Let us suppose that we have trace σ = a1 . . . ak that has been observed by

the monitor. Then we define the relation � on the inputs and outputs in σ,
where ai � aj if the action corresponding to ai must have been produced by
the SUT no later than the action corresponding to aj. We will want to be able
to distinguish between two repeated occurrences of an input or an output in a
trace σ and in the following we use E(σ) to do this. The essential idea is that
if σ contains k instances of a letter a then the first of these is represented by
(a, 1), the second by (a, 2) etcetera.

Definition 4. Let σ = a1 . . . an ∈ Act∗ be a sequence of actions. We let
E(σ) ⊆ Act × IN denote the set of annotated actions of σ, where e = (a, k)
belongs to E(σ) if and only if there are k or more occurrences of a in σ. We
define the function posσ : E(σ) −→ IN such that for all e = (a, k) ∈ E(σ) we
have that posσ(e) = i if a = ai and there are exactly k − 1 occurrences of a in
a1 . . . ai−1. We will refer to the action e such that posσ(e) = i by ei. Abusing
the notation we will write e ∈ I (respectively, e ∈ O) if e = (a, k) and a ∈ I
(respectively a ∈ O).

Given ei, ej ∈ E(σ) we write ei � ej if either i = j or i < j and one of
the following conditions hold: ei and ej are both inputs, or ei and ej are both
outputs, or ei is an output and ej is an input.

It is immediate that � is a partial order relation. The idea here is that we
have ei � ej if the trace produced by the SUT must have had ei before ej . The
first two cases come from communications being FIFO, while the third comes
from the fact that if ei is an output and is observed before an input ej then the
SUT must have produced ei before it received ej.

Throughout this paper we will not distinguish between an action ai ∈ Act
and a corresponding value (ai, k) in which a label has been added to make
an observation (input or output) unique. An alternative would be to define a
function from a labelled pair (ai, k) to the corresponding action ai ∈ Act; we
chose not to do this since it would add little and would complicate the exposition.

Example 1. Let us consider the trace σ =?i1!o1!o2?i2!o1. In order to distin-
guish between different occurrences of the same action, we label actions with
the occurrence of that symbol in the trace. In this case, the corresponding set
of actions is E(σ) = {(?i1, 1), (!o1, 1), (!o2, 1), (?i2, 1), (!o1, 2)}. We have, for
example, that (?i1, 1) � (?i2, 1), (!o2, 1) � (!o1, 2) and (!o1, 1) � (?i2, 1).

We will base the construction of the finite automaton on the ideals of E(σ)
under the partial order �.

Definition 5. Let σ ∈ Act∗ be a sequence of actions. A set I ⊆ E(σ) is an
ideal of (E(σ),�) if for all ei, ej ∈ E(σ), if ei � ej and ej ∈ I then ei ∈ I.

8

Further, E′ ⊆ E(σ) is an anti-chain of (E(σ),�) if no two different elements
of E′ are related under �.

It is straightforward to see that a set I is an ideal if and only if one of the
following conditions holds:

• I contains an output ai and all earlier outputs;

• I contains an input aj and all earlier inputs and outputs; or

• I contains an input ai, an output aj , all inputs and outputs before ai, and
all outputs before aj.

Example 2. Let us consider again the trace σ =?i1!o1!o2?i2!o1. The ideals of
(E(σ),�) can be grouped into the three previously defined categories as follows:

• Output and previous outputs:
{(!o1, 1)}, {(!o1, 1), (!o2, 1)} and {(!o1, 1), (!o2, 1), (!o1, 2)}.

• Input and previous actions:
{(?i1, 1)} and {(?i1, 1), (!o1, 1), (!o2, 1), (?i2, 1)}.

• Input and output; actions previous to the input and outputs previous to
the output:
{(?i1, 1), (!o1, 1)}, {(?i1, 1), (!o1, 1), (!o2, 1)}, {(?i1, 1), (!o1, 1), (!o2, 1), (!o1, 2)}
and {(?i1, 1), (!o1, 1), (!o2, 1), (?i1, 2), (!o1, 2)}.

In addition, we have the empty ideal {}.

Using a classical result [7], relating ideals and anti-chains, we have that the
number of ideals is at worst quadratic in the size of σ. Even though we use a
different partial order, the proof follows the same lines as that in our previous
work [10].

Proposition 2. Let σ ∈ Act∗ be a sequence of actions with length m. There
are O(m2) ideals of (E(σ),�).

Let us note that there exists an interesting connection between the ideals
generated from a trace and the partial order � and the prefixes of the trace.
Actually, each ideal corresponds to a different set of prefixes of the possible
real trace produced by the SUT. For instance, in the previous example, the
ideal {(?i1, 1), (!o1, 1), (!o2, 1), (!o1, 2)} corresponds to the situation where, even
though we observed the trace σ =?i1!o1!o2?i2!o1, the SUT originally produced
a trace such as σ =?i1!o1!o2!o1?i2 but the observation of the last output was
delayed. This relation is explicitly shown in the construction of the desired finite
automaton.

Definition 6. Let σ ∈ Act∗ be a non-empty trace. We let M′(σ) denote the
finite automaton with state set equal to the set of ideals of (E(σ),�), alphabet
Act, initial state {} and the following set of transitions: given ideal I and a ∈
E(σ), there is a transition t = (I, a, I ′) for ideal I ′ if and only if I ′ = I∪{a}. In
addition, M′(σ) has one final state, which is the ideal including all the actions
of the trace, that is, E(σ).

9

Algorithm 1 Producing M(σ)

1: Input σ.
2: Let M(σ) = M′(σ),
3: Let s0 denote the initial state of M(σ). For every state s, add to M(σ) the

transition (s0, ǫ, s).
4: Make every state of M(σ) a final state.
5: Output M(σ).

The following is immediate from the definition of M′(σ).

Proposition 3. Let σ ∈ Act∗ be a non-empty trace observed through interacting
with the SUT via an FIFO asynchronous channel. We have that σ′ is a trace
that the SUT might have actually produced if and only if σ′ ∈ L(M′(σ)).

We now adapt M′(σ) to take into account the points discussed: it is sufficient
that the SUT produced a trace σ1σ

′σ2 for some σ′ in L(M′(σ)). The paths of
M′(σ) define the possible traces that explain the observation of σ and now it
is sufficient to adapt M′(σ) so that the new finite automaton accepts all sub-
traces of the traces of M′(σ). To allow the removal of prefixes we simply add
transitions with label ǫ from the initial state of M′(σ) to each state of M′(σ).
To allow the removal of suffixes of traces of M′(σ) we simply make every state
a final state. Algorithm 1 shows how the finite automaton M(σ) is built. As
explained earlier, we overload ǫ to denote both an empty trace (Definition 1)
and an empty label in a finite automaton (Algorithm 1).

Example 3. Let σ =?i1!o1!o2?i2!o3 be a trace. Figure 3 depicts the finite
automata M′(σ) (left) and M(σ) (right).

The next result shows that our finite automaton satisfies the required prop-
erty.

Proposition 4. Let σ ∈ Act∗ be a sequence of actions. If trace σ is observed
through interacting with the SUT via an FIFO asynchronous channel then σ′ ∈
L(M(σ)) if and only if there exist σ1, σ2 such that σ1σ

′σ2 ∈ L(M′(σ)).

Proof. We first prove the left to right implication. If σ′ ∈ L(M(σ)) then there

exist states s and s′ of M(σ) such that s0
ǫ−−→ s

σ′

==⇒ s′. Given the state s of
M′(σ) there exists a trace σs that leads the finite automaton from its initial
state to s without using transitions with label ǫ because M′(σ) is connected by
construction. We set σ1 = σs. In addition, by the construction of M′(σ), the
final state can be reached from any state of the finite automaton. We can set
σ2 to be a trace that labels a walk from state s′ to the final state of M′(σ).

Now we will prove the right to left implication. Since σ1σ
′σ2 ∈ L(M′(σ))

there exist states s, s′ such that s0
σ1

==⇒ s
σ′

==⇒ s′. By the construction of M(σ)
there exists a transition labelled by ǫ that can reach state s from the initial state
of M(σ). Next, since the states of M(σ) and M′(σ) are the same, the trace σ′

10

I0 I2 I4 I6

I1 I3 I5 I7

I8 If

?i1 ?i1 ?i1

!o1 !o2 !o3

!o1 !o2 !o3

!o3

?i1

?i2 ?i2

s0 I2 I4 I6

I1 I3 I5 I7

I8 sf

ǫ

?i1 ?i1 ?i1

!o1 !o2 !o3

!o1 !o2 !o3

!o3

?i1

?i2 ?i2

ǫ

ǫ

ǫ

I0 = {}
I1 = {?i1}
I2 = {!o1}
I3 = {?i1, !o1}
I4 = {!o1, !o2}

I5 = {?i1, !o1, !o2}
I6 = {!o1, !o2, !o3}
I7 = {?i1, !o1, !o2, !o3}
I8 = {?i1, !o1, !o2, ?i2}
I9 = {?i1, !o1, !o2, ?i2, !o3}

Figure 3: Finite automata M′(σ) (left) and M(σ) (right) for the trace σ =?i1!o1!o2?i2!o3

can be performed in M(σ) from the state s and we reach a final state because
all the states of M(σ) are final. Therefore, σ′ ∈ L(M(σ)).

The following gives corresponding computational complexity results.

Proposition 5. Let σ ∈ Act∗ be a sequence of actions. The number of states
of the finite automaton M(σ) is of O(|σ|2). In addition, the process of checking
whether a trace σ′ is accepted by M(σ) is of O(|σ|2 · |σ′|).

Proof. The first part is immediate from Proposition 2 and the definition of
M(σ).

Now consider the problem of deciding whether σ′ is accepted by M(σ). For
each state s of M(σ) we have a corresponding membership problem: that of
deciding whether σ′ is in the language defined by the deterministic finite au-
tomaton formed from M(σ) by making s the initial state and removing all of
the ε transition. We therefore have O(|σ|2) membership problems for determin-
istic finite automata. But the membership problem for a deterministic finite
automaton can be solved in time that is linear in terms of the length of the
sequence σ′. Thus, the problem of deciding whether σ′ is accepted by M(σ) is
of O(|σ|2 · |σ′|).

The outlined approach takes low-order polynomial time. However, it is poly-
nomial in terms of the length of the trace σ observed and this may be relatively
large. The effect can be reduced by building M(σ) in an incremental manner:
we build M(σa) from M(σ). We now explain how this can be achieved.

Let us suppose that we observed trace σ, have built M(σ), and have now
made an additional observation a. There are two cases to consider.

11

Algorithm 2 Producing M(σa)

1: Input M(σ) = (S,Act, T r, s0, S) and action a.
2: Let M(σa) = M′(σ).
3: Let sf ∈ S be the state in M(σ) representing E(σ).
4: If a ∈ I, add a state s representing E(σa) and the transitions (sf , a, s) and

(s0, ǫ, s).
5: If a ∈ O, for every state sI that represents an ideal I that contains all of the

outputs from σ, add a state s′ representing ideal I ∪ {a} and a transition
(sI , a, s

′). In addition, for every action a′ labeling a transition outgoing from
sI we add a transition (s′, a′, s′′) where s′′ represents the ideal I ∪ {a, a′}.

6: Make all the new states final.

1. Action a is an input. Then a will be received after all actions from σ and
so we simply add a new state s representing E(σa), make this a final state,
add a transition from the state representing E(σ) to s with label a, and
add the transition (s0, ǫ, s).

2. Action a is an output. Then a was produced after all outputs from σ but
might have been produced before inputs that appear in σ. For each state
s1 represented by an ideal I that contains all outputs from σ we add a
state s′1 representing ideal I ∪ {a} and a transition from s1 to s′1. For all
a′ such that there is a state with ideal I ∪ {a′} we add a transition from
s′1 with action a′ to the state representing I ∪ {a, a′}. We make all states
final states and add transitions with label ǫ from s0 to the new states.

Proposition 6. Let σ ∈ Act∗ be a sequence of actions and a ∈ Act. Given the
finite automaton M(σ), the process of generating the finite automaton M(σa)
is of O(|σ|) time.

Proof. If a is an input then we simply add a new state. If a is an output, then
the algorithm includes as many new states as ideals containing all the outputs
in σ, that is, in the worst case we add |σ| states. In addition, a new transition is
included in the finite automaton for each new state. Finally, for each transition
outgoing from ideals containing all the outputs in σ, a new transition is added.
By the construction of the finite automaton, there is at most one transition
(labelled by an input action) from each of these states. Therefore, in the worst
case the algorithm performs 3 · |σ| operations and the overall time complexity
is therefore of O(|σ|).

♣♣ Rob:Should step 5 of Algorithm 2 also add the transition
(s0, ǫ, s

′)?

Example 4. Let us consider the observation of the trace σ =?i1!o1!o2?i2!o3.
Figure 4 shows how the finite automaton M(σ) is built in an incremental way.
We present with dashed circles/lines the states/transitions that are added at each
step. Let us assume that we have built the finite automaton M(?i1!o1!o2) and
the action ?i2 is observed. In this case, the algorithm only adds a new state

12

s0

ǫ

(a) ǫ

s0

sf

ǫ

?i1 ǫ

(b) ?i1

s0 I2

I1 sf

ǫ

?i1 ǫ ?i1

!o1

!o1

ǫ

ǫ

(c) ?i1!o1

s0 I2 I4

I1 I3 sf

ǫ
!o1

?i1 ?i1

!o1

ǫǫ ?i1

!o2

!o2

ǫ

ǫ

(d) ?i1!o1!o2

s0 I2 I4

I1 I3 I5

sf

ǫ

?i1 ?i1 ?i1

!o1 !o2

!o1 !o2

?i2

ǫ

ǫ

ǫ

(e) ?i1!o1!o2?i2

s0 I2 I4 I6

I1 I3 I5 I7

I8 sf

ǫ

?i1 ?i1 ?i1

!o1 !o2 !o3

!o1 !o2 !o3

!o3

?i1

?i2 ?i2

ǫ

ǫ

ǫ

(f) ?i1!o1!o2?i2!o3

Figure 4: Construction of finite automaton M(σ) by Algorithm 2 for the trace σ =
?i1!o1!o2?i2!o3

and a transition labelled with the action ?i2. It is not possible for an input to
be received by the SUT before it has been observed or before the actions that
have been observed previously. Therefore, it must be the last action in any trace
produced by the SUT that can lead to the observation of ?i1!o1!o2?i2. The last
transformation of the finite automaton corresponds to the observation of the ac-
tion !o3. Due to the fact that we are considering an FIFO asynchronous setting,
!o3 must have been produced after all the outputs observed before it. However,
it is possible that the observation was produced by the SUT before some of the
input actions observed earlier and it has been observed later due to a delay.
Thus, the algorithm extends the finite automaton with new states and transi-
tions that reflect those issues. First, new transitions and states that capture
the observation of !o3 after the outputs !o1 and !o2 are included in the finite
automaton: (I4, !o3, I6), (I5, !o3, I7) and (I8, !o3, sf). Second, new transitions
are added to reflect a possible delay in the observation of !o3 with respect to the
inputs observed previously: (I6, ?i1, I7), (I7, ?i2, sf).

13

Finally, we have the following result that the overall process takes polynomial
time. The the result follows immediately from it being possible to construct
Lr(σ) in polynomial time and it is possible to decide whether the intersection
of two finite automata defines a non-empty language in polynomial time.

Theorem 1. Let σ ∈ Act∗ be the observed trace and M be a finite automaton
representing a property that we are checking. It is possible to decide in time that
is polynomial in the sizes of σ and M whether an erroneous behaviour might have
occurred.

The approach described in this section has the advantages that it is a polyno-
mial time method that works with any property expressed as a finite automaton.
This represents significant progress with respect to our previous work where we
were restricted to properties of the form “if we observe a particular sequence of
actions then the next observed output must belong to a certain set of outputs”.
However, the disadvantage is that it generates a finite automaton M(σ) whose
size is quadratic in the length of σ. In contrast, the space required by our pre-
vious approach did not depend on the length of the observed trace. In practice,
one expects σ to be much larger than the finite automaton M representing the
violation of the property of interest and so it is desirable to have approaches
whose space complexity does not depend on σ. However, there may be situa-
tions in which dependence on the size of σ is not so problematic since there are
frequent actions such as a session ending or a disconnect that effectively reset
the trace. We now consider conditions under which it is possible to devise an
approach that rewrites M rather than σ.

4. Acyclic finite automata

In this section we consider the case where the property of interest can be
represented by an acyclic finite automaton M . The problem then is to transform
M into a finite automaton M ′ such that (there exists σ ∈ L(M) such that
σ ∗ σ′) if and only if σ′ ∈ L(M ′). We show how this can be done in a manner
that can take space and time that is exponential in the size of M before showing
that it is not generally possible to avoid a combinatorial explosion.

Our previous approach [10] defined a partial order ≪ on the set E(σ) of
actions in a trace σ = a1 . . . an, where E(σ) = {e(a1), . . . , e(an)} is the set of
actions in σ labelled in order to make them unique. This was defined by the
following.

Definition 7. Let σ = a1 . . . an ∈ Act∗ be a sequence of actions. Given two
actions ei = (ai, ki) and ej = (aj , kj) belonging to E(σ), we write ei ≪ ej if
either i = j or i < j and one of the following conditions holds: ai and aj are
inputs, or ai and aj are outputs, or ai is an input and aj is an output.

The idea is that if ai ≪ aj then in any σ′ with σ ∗ σ′ we have that ai
must appear before aj in σ′. Then we have that σ ∗ σ′ if and only if the
ordering of the actions in E(σ′) satisfies the partial order ≪ and so L(σ) is the

14

/.-,()*+

/.-,()*+

!o1

??⑧⑧⑧⑧⑧⑧⑧⑧

!o2
��
❄❄

❄❄
❄❄

❄❄

/.-,()*+

/.-,()*+
!o3

��
❄❄

❄❄
❄❄

❄❄

/.-,()*+

!o1

??⑧⑧⑧⑧⑧⑧⑧⑧

!o2
��
❄❄

❄❄
❄❄

❄❄
/.-,()*+ !o5

///.-,()*+

/.-,()*+
!o4

??⑧⑧⑧⑧⑧⑧⑧⑧

Figure 5: An FA where an ideal of ≪ does not define a trace (left) and an FA where a trace
does not define an ideal of ≪ (right)

set of linearisations of E(σ) under partial order ≪ (once labels are removed from
actions). We then defined a finite automaton in terms of the ideals of E(σ).

In this section we consider the case where M is defined by an acyclic fi-
nite automaton rather than a single trace σ. The following defines a natural
extension of the partial order on actions.

Definition 8. Let M = (Q,Act, T, qin, F) be an acyclic FA, with actions on
transitions relabelled to make them unique if necessary, and let E(M) denote
the set of actions of M . Given two actions ai, aj of M we write ai ≪M aj if
M contains a walk whose label starts with ai and ends with aj and one of the
following conditions hold: ai and aj are inputs, or ai and aj are outputs, or ai
is an input and aj is an output.

The following example shows that, in contrast to our previous work, in this
more complex setting it is not sufficient to consider ideals of ≪M .

Example 5. Let us consider the acyclic FA M shown in Figure 5 (left), in
which all states are final states. There are two actions, both with outputs, and
clearly these would be unrelated under ≪M if we based ≪M on the traces. Thus,
the set {!o1, !o2} is an ideal but clearly no trace of M contains these actions.

This shows that an ideal need not correspond to a trace of M and the
following shows that the set of actions in a trace of M need not form an ideal.

Example 6. Consider the acyclic FA M shown in Figure 5 (right), in which all
states are final states, and the trace σ =!o1!o3!o5. Then it is straightforward to
see that the set E(σ) of actions in this trace does not form an ideal under ≪M

since E(σ) contains !o5, we have that !o2 ≪M !o5, but E(σ) does not contain
!o2.

Thus, it appears that our previous approach cannot be extended in the
natural way and we have to look for an alternative solution.

Since M is acyclic, L(M) is finite. Thus, we can produce all traces from
L(M), for each such trace σ produce a finite automaton MO(σ) (using our
previous approach [10]), and define a finite automaton that accepts the union,
over σ ∈ L(M), of the MO(σ). This approach is summarised in Algorithm 3.

15

Algorithm 3 Producing MO(σ)

1: Input M .
2: Let M ′ denote a finite automaton defining the empty language.
3: for all σ ∈ L(M) do
4: Produce MO(σ)
5: Update M ′ by taking the disjoint union with MO(σ) and then identifying

their initial states.
6: end for
7: Output M ′.

Correctness immediately follows from the previously defined construction
(for a trace σ) being correct [10].

Theorem 2. Given acyclic finite automaton M , if M ′ is the finite automaton
returned by Algorithm 3 then L(M ′) = L(M).

We know from previous work [10] that given trace σ, we can devise MO(σ)
in time of O(|σ|2) and this has at most |σ|2 states. In addition, since M is
acyclic we have that the length of σ is bounded above by the number of states
of M minus 1 and so MO(σ) can be devised in time that is polynomial in the
size of M . Given σ, σ′ ∈ L(M) we can define a finite automaton that accepts
L(MO(σ)) ∪ L(MO(σ

′)) by merging the initial states of MO(σ) and MO(σ
′)

and so the overall complexity of the approach is polynomial in the size of M and
linear in the number of traces in L(M). This is summarised by the following.

Proposition 7. Given acyclic finite automaton M with n states, the time com-
plexity of Algorithm 3 is of O(|L(M)|n2). In addition, if M ′ is the finite au-
tomaton returned by Algorithm 3 then M ′ has at most |L(M)|(n− 1)2 states.

However, the number of traces in L(M) can grow exponentially as the num-
ber of states of M increases and so the overall approach can take space that
is exponential in terms of the size of M . The following result shows that we
cannot avoid a combinatorial explosion.

Proposition 8. There exists a class of acyclic finite automata M1,M2, . . . such
that the number of states required by a finite automaton that represents L(Mk)
is exponential in k.

Proof. For k > 0 consider the FA Mk shown in Figure 6 in which the state with
no outgoing transitions is the unique final state. Let us suppose that M ′

k is an
FA such that L(M ′

k) = L(Mk). Let I1 and I2 denote two different subsets of
{?i1, . . . , ?ik} and let us consider traces σ1 and σ2 such that σ1 (respectively σ2)
contains exactly the actions in I1 (respectively I2) and in the order specified in
Mk. Then σ1 and σ2 are clearly prefixes of traces of L(Mk); traces in which the
outputs have been delayed past these initial inputs. In addition, since I1 6= I2,
the set of traces that can follow σ1 and σ2 in L(Mk) differ. Thus, we must
have that σ1 and σ2 reach different states of M ′

k. However, this holds for any

16

/.-,()*+

?i1

��

!o1

AA

/.-,()*+

?i2

��

!o2

AA

/.-,()*+ · · · /.-,()*+

?ik

��

!ok

AA

/.-,()*+

Figure 6: An FA Mk such that L(M) requires exponentially many states

distinct subsets I1 and I2 of {?i1, . . . , ?ik} and so each subset of {?i1, . . . , ?ik}
must map to a corresponding state of M ′

k. As a result, since there are 2k subsets
of {?i1, . . . , ?ik}, M

′
k must have at least 2k states.

While the complexity is exponential in terms of the number of states of
M , this is exponential in terms of the size of the property. Having generated
M ′, the process of monitoring is linear in terms of the length of the trace σ
observed. Since M will typically be much smaller than σ, in some cases this
may be preferable to the approach outlined in Section 3 in which the complexity
is polynomial in terms of the sizes of M and σ but is quadratic in terms of the
size of σ. Future work will consider conditions under which it is possible to
produce a finite automaton that recognises L(M) in polynomial time.

5. Allowing cycles

In this section we consider the case where a property is defined by a finite
automaton that contains cycles. Mazurkiewicz trace theory uses the notion
of a partial commutation, which is based on an independence relation Ind.
Under this, actions a and b being independent ((a, b) ∈ Ind) denotes them
commuting and so ab and ba being equivalent (see, for example, [14]). The
independence relation in partial commutations is symmetric but in exploring
asynchronous communications we require a notion of independence that is asym-
metric, since output can be delayed but input cannot. This corresponds to a
semi-commutation in which there is an independence relation Ind on pairs of
actions from Act: (a, b) ∈ Ind if and only if a ∈ O and b ∈ I. Given an indepen-
dence relation Ind we also have a dependence relation D defined by (a, b) ∈ D
if and only if (a, b) 6∈ Ind. In the context of the work in this paper, an input
cannot be delayed. In addition, since communications are FIFO, one output
cannot be delayed beyond a previous output. Thus, the dependence relation is:
D = {(a, b) ∈ Act×Act|a ∈ I ∨ (a ∈ O ∧ b ∈ O)}.

Let us suppose that we have a semi-commutation with dependence relation
D. Given trace σ we can define a directed graph Gσ,D on the letters in σ as
follows: if a and b both appear in σ then there is an edge from a to b if and
only if (a, b) ∈ D. A trace σ is said to be strongly-connected if the directed
graph Gσ,D is strongly connected (for every ordered pair (v, v′) of vertices of

17

Gσ,D there is a path in Gσ,D from v to v′) [5]. The following is immediate from
the definition of independence for FIFO communications.

Proposition 9. A trace σ ∈ Act∗ is strongly-connected if and only if either it
only contains inputs or it only contains outputs.

It is known ([5], Proposition 6.17) that if every cycle of a finite automaton
M is strongly-connected then the corresponding language L(M) is regular. We
therefore obtain the following.

Proposition 10. Given a finite automaton M , if every cycle of M either con-
tains only inputs or contains only outputs then L(M) is a regular language.

Thus, this provides a sufficient condition for there to be a finite automaton
M ′ such that L(M ′) = L(M). The following defines this class of finite automata.

Definition 9. An FA M is a Consistent FA if whenever σ is the label of a cycle
of M we have that either σ ∈ I∗ or σ ∈ O∗.

In order to represent the language L(M) by a finite automaton M ′ we require
that this language is regular. Thus, an FA M being a Consistent FA is a
condition under which there must be such a finite automaton M ′. Throughout
this section we assume that the FA M considered has the following properties.

Assumption 1.

M is a Consistent FA.

All states of M can be reached from the initial state of M and for every state s
of M there is a path from s to a final state of M .

The first of these assumptions is simply the condition above. Making the
second assumption will simplify the analysis in this section but does not affect
the generality of the work: if M does not satisfy this second condition then we
can rewrite it to form an equivalent FA that does satisfy this condition. It is
straightforward to check whether FA M satisfies these conditions.

Proposition 11. Given a finite automaton M with k transitions, it is possible
to check whether M satisfies Assumption 1 in time of O(k3).

Proof. First consider the problem of deciding whether M is a Consistent FA. For
this, it is sufficient to check whether there is a cycle that contains both inputs
and outputs. To decide this, for every pair t, t′ of transitions of M such that
the action in t is an input and the action in a′ is an output, we check whether
M has a cycle that contains t and t′. There is such a cycle if and only if there
is a path from the end state of t to the start state of t′ and also a path from the
end state of t′ to the start state of t. Thus, it is sufficient to check the O(k2)
such pairs of transitions and each check can be achieved in O(k) time using a
depth-first search. It is therefore possible to check that M is a Consistent FA
in time of O(k3).

18

To check the second condition, for each state s it is sufficient to determine
whether s can be reached from the initial state and also whether there is a path
from s to some final state. For a state s the first part can be solved in O(k) time
using a depth-first search and the second part can also be solved in O(k) time
using a depth-first search. Since there are O(k) states, it is possible to check
the second condition in O(k2) time.

The challenge now is to devise an algorithm for constructing a finite automa-
ton whose language is L(M), where M is a Consistent FA.

First we will consider the structure of a Consistent FA M . Every walk of M
to a final state is in the form of a path ρ with cycles attached. As a result, it is
sufficient to consider each (acyclic) path ρ that takes M to a final state and all
cycles that can be taken from states of ρ; such a path ρ and its associated cycles
will form an FA Mρ. Later we will see how we can construct a FA MC(Mρ)
such that L(MC(Mρ)) = L(Mρ); the FA used will be formed by combining the
MC(Mρ).

In order to find such a path ρ and associated transitions we can employ the
following approach. This leads to a set of finite automata of the form Mρ.

1. We take each path ρ to a final state s of M (ρ might contain both inputs
and outputs but might also contain only inputs or only outputs). This is
the same as the process described for the acyclic case.

2. Given ρ, we add every transition t that is in a cycle with a state of ρ. To
achieve this, for state s of ρ and a transition t of M with start state s′

and end state s′′, we determine whether there is a path from s to s′ and
a path from s′′ to s.

Proposition 12. Given a finite automaton M with k transitions and path ρ
that takes M to a final state, it is possible to devise Mρ in time of O(k3).

Proof. Given state s and transition t it is sufficient to decide whether there is a
cycle that contains s and t. There is a such a cycle if and only if there is a path
from the end state of t to s and also a path from s to the start state of t. Thus,
it is sufficient to check the O(k) such transitions and, for a given transition t,
this can be achieved in O(k) time using a depth-first search. This process, for
state s, thus takes time of O(k2). Finally, observe that since ρ is a path it has
no repeated states and so it has O(k) states. The result therefore follows.

We now consider how one can reason about such a finite automaton Mρ.
The proposed approach will be based on the following steps.

1. Make the inputs and outputs unique; as before we add unique labels.

2. We use pairs of the form (a, b) to represent states of the new FA that
recognises L(Mρ) where a is a labelled input and b is a labelled output.
The pair (a, b) denotes the situation in which the most recently observed
input was a and the most recently observed output was b.

3. We carefully construct the transitions between these states by determining
what inputs and outputs can next be observed.

19

In order to uniquely label an action in the automaton, we will simply use the
name of the corresponding transition (Definition 10). Next, we define a relation
that determines the pairs of transitions that may correspond to the last observed
input and last observed output. In this we need to take into account the nature
of communications and the resultant possibility of delaying an output. We also
include a transition (sin, ǫ, sin) to represent the (initial) situation in which no
observations have been made.

Definition 10. Let M be a Consistent FA and let ρ be a path that takes M
to a final state. We let Tr(Mρ) denote the set of transitions of Mρ, where
tr = (sa, a, s

′
a) belongs to Tr(Mρ) if and only if there exists a transition in

Mρ with start state sa, end state s′a and label a. We will write tr ∈ TrI(Mρ)
(respectively, tr ∈ TrO(Mρ)) if tr = (sa, a, s

′
a) and a ∈ I (respectively a ∈ O).

We will include (sin, ǫ, sin) in Tr(Mρ), where sin is the initial state of M .
We define the observational relation between transitions as follows. Let trα =

(sα, a, s
′
α) and trβ = (sβ , b, s

′
β) belong to Tr(Mρ). We write trα ⊲⊳Mρ

trβ if and
only if a ∈ I ∪ {ǫ} and b ∈ O ∪ {ǫ} and one of the following conditions hold:

• s′α = sβ ∨ s′β = sα. This is simply the case where we have two consecutive
transitions.

• There exists a path (s′α, a1, s1) . . . (sn−1, an, sβ) of Mρ with n > 0 and for
all 1 ≤ k ≤ n we have that ak ∈ O. In this case, even though the two
transitions trα and trβ are not consecutive, there are no additional inputs
between trα and trβ in the path and so when trβ has been executed we
have that trα is still the most recently executed transition whose label is
an input.

• There exists a path (s′β , a1, s1) . . . (sn−1, an, sα) in Mρ with n > 0. This is
a possible pair of most recent input/output transitions since it is possible
for all output after that from (sβ , b, s

′
β) to be delayed beyond the observa-

tion of a.

We denote by Obs(Mρ) the set of pairs (a, b) such that a ⊲⊳Mρ
b.

Figure 7 illustrates the observational relation between an input and an out-
put action with respect to the depicted automaton. The dotted arcs represent
the possible observations of output b. We have that a ⊲⊳Mρ

b, a ⊲⊳Mρ
b′ a′ ⊲⊳Mρ

b,
a′ ⊲⊳Mρ

b′ and a′ ⊲⊳Mρ
b′′ while a ⊲⊳Mρ

b′′ does not hold. This is because all the
paths from the initial state to state s3 all traverse transition (s2, a

′, s3) and so
it is not possible to be in the situation in which we have observed action b′′ and
action a′ has not been received by the SUT. Therefore, if the last observed out-
put is b′′ then we must have that the last observed input is a′. The second case
in the definition of the relation captures this situation. The fact that outputs
can be delayed leads to output b being related to input a′.

We have that the number of pairs is at worst quadratic in the number of
transitions of Mρ.

20

sin s1 s2 s3 s4

b

a b′ a′ b′′

SUT

Monitor a a′

bb b′ b′′

Figure 7: Observational relation

b b b b b b b

!o1 !o k
2

?i1 ?i k
2

Figure 8: Finite automaton such that |Obs(Mρ)| =
k2

4
elements.

Proposition 13. Let M be a Consistent FA and ρ a path of M that takes M
to a final state. If Mρ has k transitions then there are O(k2) pairs in Obs(Mρ).

Proof. This follows from each pair in Obs(Mρ) representing a pair of transitions
of Mρ and their being O(k2) such pairs.

Consider now the finite automaton depicted in Figure 8. In this case all tran-
sitions labelled with an input action are related to all transitions labelled with

an output action and so we have k2

4 elements in Obs(Mρ). This demonstrates
that the complexity cannot be reduced below quadratic. We now consider the
complexity of finding the relation ⊲⊳Mρ

.

Proposition 14. Let M be a Consistent FA and ρ a path of M that takes M
to a final state. If Mρ has k transitions then the process of finding the pairs of
transitions related under ⊲⊳Mρ

is of O(k2).

Proof. Given transition t it is sufficient to find every transition t′ such that
there exists a path from the end state of t to the initial state of t′ fulfilling the
conditions imposed in Definition 10. This can be achieved in O(k) time using
a depth-first search [17]. Since there are k transitions in Mρ, the process of
generating Obs(Mρ) is of O(k2) time. The result therefore follows.

In the following, we show how the pairs in Obs(Mρ) can be used to construct
an appropriate automaton. Specifically, we will use the pairs of Obs(Mρ) to
represent states of a finite automaton that accepts the set of sequences in L(Mρ).
Recall that in computing Obs(Mρ) we include the transition (sin, ǫ, sin), which
allows us to have states that represent the situation where no inputs and/or
outputs have been observed.

21

Definition 11. Given Consistent FA M and path ρ of M that takes M to a
final state, we let MC(Mρ) denote the finite automaton with state set S that is
equal to the set Obs(Mρ), alphabet Act, initial state (ǫ, ǫ) and the following set
of transitions:

• Given a ∈ I ∪ {ǫ}, a′ ∈ I and a state st = ((sα, a, s
′
α), b) ∈ S, for all

st′ = ((s′α, a
′, s′′α), b) ∈ S there is a transition (st, a′, st′).

• Given b ∈ O ∪ {ǫ}, b′ ∈ O and a state st = (a, (sα, b, s
′
α)) ∈ S, for all

st′ = (a, (s′α, b
′, s′′α)) ∈ S there is a transition (st, b′, st′).

• Given a ∈ I ∪ {ǫ}, a′ ∈ I and a state st = ((sα, a, s
′
α), b) ∈ S, for all

st′ = ((sβ , a
′, s′β), b) there is a transition (st, a′, st′) if and only if there

exists a path from s′α to sβ labelled only with outputs.

• Given b ∈ O ∪ {ǫ}, b′ ∈ O and a state st = (a, (sα, b, s
′
α)) ∈ S, for all

st′ = (a, (sβ , b
′, s′β)) ∈ S there is a transition (st, b′, st′) if and only if there

exists a path from s′α to sβ labelled only with inputs.

In addition, MC(Mρ) has a set of final states. A state ((sα, a, s
′
α), (sβ , b, s

′
β)) ∈

S is final if there exists a walk (s0, a0, s1) . . . (sn−1, an−1, sn) with sn a final state
of Mρ such that for some 0 ≤ k, k′ < n we have that (sk, ak, sk+1) = (sα, a, s

′
α),

(sk′ , ak′ , sk′+1) = (sβ , b, s
′
β) and for all k < i < n, k′ < j < n, (si, ai, si+1) /∈ I

and (sj , aj , sj+1) /∈ O.

An important point is that we only consider a pair st′ = (a, b) if st′ is in
Obs(Mρ) and this requires that a ⊲⊳Mρ

b. Thus, for example, the definition of
⊲⊳Mρ

ensures that we cannot have a state (a, b) if a is before b and they are
separated only by inputs.

The final states are the states (a, b) such that a and b are the last input and
output actions for some trace that reaches a final state of Mρ.

Example 7. Let us consider the finite automata Mρ in Figure 9. The set of
actions related under the observational relation for this automaton is

Obs(Mρ) = {(ǫ, !x), (?a, ǫ), (?b, ǫ), (?c, ǫ), (?d, ǫ), (?e, ǫ), (?g, ǫ),
(?a, !x), (?b, !x), (?c, !x), (?d, !x), (?e, !x), (?g, !x),
(?a, !y), (?d, !y), (?e, !y), (?g, !y), (?g, !z), (?g, !w)}

Figure 9 also depicts the automaton MC(Mρ).

Proposition 15. Let M be a Consistent FA and ρ a path of M that takes
M to a final state. Given Mρ with k transitions, the number of transitions of
the automaton MC(Mρ) is of O(k3). In addition, the process of generating
MC(Mρ) takes O(k3) time.

Proof. We know, by Proposition 13, that the number of states in MC(Mρ) is
of O(k2). Given a state s there are at most k − 1 transitions outgoing from s.
Therefore, MC(Mρ) has O(k3) transitions.

22

Given Mρ with k transitions, by Proposition 14, we can construct the set
of states of MC(Mρ) in O(k2) time. In addition, in order to determine the
transitions outgoing from a state (a, b) in MC(Mρ) it is sufficient to find each
state (a′, b′) such that there exists a path in Mρ between either a and a′ or
b and b′ that satisfies the conditions imposed in Definition 11. This can be
achieved in O(k) time using two depth-first searches (one starting with a, the
other starting with b). Therefore, the process of determining the transitions
outgoing from a state (a, b) in MC(Mρ) takes time of O(k). Since there are
O(k2) states in MC(Mρ), the process of generating the transitions in MC(Mρ)
is of O(k3) time.

We now prove that MC(Mρ) is the finite automaton we require. In the proof
of the following we use the notion of a transition x being before a transition x′

where either x has an input label and x′ has an output label or x has an output
label and x′ has an input label. This property (x is before x′) simply refers to
there being a path in Mρ from the end state of x to the start state of x′. This
defines a partial order on such pairs (x, x′) of transitions since no cycle contains
both inputs and outputs.

Proposition 16. Given Consistent FA M and path ρ of M that takes M to a
final state we have that L(MC(Mρ)) = L(Mρ).

Proof. We will prove a slightly stronger result, which is that ρ′ labels a walk
from the initial state of MC(Mρ) if and only if ρ′ is a prefix of a sequence in
L(Mρ).

We first prove the left to right implication by induction on the length of ρ′.
The result clearly holds for the base case in which ρ′ is the empty sequence.
Now assume that the result holds for all sequences of length less than k, k ≥ 1,
and ρ′ has length k. Thus, ρ′ = ρ1x for some x ∈ I ∪ O. By the inductive
hypothesis we have that ρ1 is a prefix of a sequence in L(Mρ). By the definition
of MC(Mρ), we have that there exists a transition labelled with x from the
state (a, b) reached by ρ1 to a state (a′, b′) such that either a′ = x ∧ b′ = b or
a′ = a∧ b′ = x. In the first case, we have that x ∈ I and, by the construction of
MC(Mρ), there exists a path in Mρ from the final state of the transition a to
the initial state of the transition a′(= x) labelled only by outputs. Therefore, by
the definition of L(Mρ), we have that ρ1 can be followed by x since it is possible
that all the outputs between a and a′ are delayed. In the second case, we have
that x ∈ O and, by the construction of MC(Mρ), there exists a path in Mρ

from b to b′ labelled only with inputs. Since (a, b′) ∈ Obs(Mρ) we have that, in
Mρ, either b′ is before a (there is a path from b′ to a) or b′ is immediately after
a (ab′ is a path in Mρ). In both situations, by the definition of L(Mρ) we have
that ρ1 can be followed by x since the observation of b′ can be delayed. This
completes the proof by induction.

We now prove the right to left implication, again, by induction on the length
of ρ′. The result clearly holds for the base case in which ρ′ is the empty sequence.
Now assume that the result holds for all sequences of length less than k, k ≥ 1,
and ρ′ has length k. Thus, ρ′ = ρ1x for some x ∈ I ∪ O. By the inductive

23

Algorithm 4 Producing MC(A)

1: Input M .
2: Let M ′ denote a finite automaton defining the empty language.
3: for all paths ρ of M that start in the initial state and end in a final state

do
4: Construct Mρ

5: Produce MC(Mρ)
6: Update M ′ by taking the disjoint union with MC(Mρ) and then identi-

fying their initial states.
7: end for
8: Output M ′.

hypothesis we have that ρ1 is the label of a walk of MC(Mρ) and so this walk
reaches a state representing a pair (a, b). First consider the case where x ∈ I.
By the definition of L(Mρ) there is a path of Mρ from the last input a in ρ1 to
x that contains only outputs and also we have that b is before x in Mρ. Thus,
(x, b) ∈ ObsMρ and, by the definition of MC(Mρ), ρ

′ = ρ1x is the label of a
walk of MC(Mρ) as required. Now consider the case where x ∈ O. By the
definition of L(Mρ) there is a path of Mρ from the last output b in ρ1 to x
that contains only inputs and also x is either before the last input a in ρ1 or
immediately follows a. As a result, (a, x) ∈ ObsMρ. Further, by the definition
of MC(Mρ) we have that ρ′ = ρ1x is the label of a walk of MC(Mρ) as required.
This completes the proof by induction.

Thus, for each path ρ to a final state we can obtain the automaton Mρ from
M . Then, we produce the finite automaton MC(Mρ) and define a finite au-
tomaton that accepts the union of the MC(Mρ). This approach is summarised
in Algorithm 4. Since the approach takes as input an automaton it might seem
that we could directly apply it to M but the following example shows that this
need not work.

Example 8. Let us consider the acyclic FA shown in Figure 6. In this case,
for all 1 ≤ j, j′ ≤ k, j 6= j′, we have that (?ij , !oj′), (ǫ, !oj) and (?ij , ǫ) be-
long to Obs(M). Then, by the construction of the automaton MC(M) we will
have that for all 1 ≤ k′ < k′′ ≤ k and for all 1 ≤ j ≤ k with j 6= k′ and
j 6= k′′ we have that ((?ik′ , !oj), ?ik′′ , (?ik′′ , !oj)), ((?ij , !ok′), !ok′′ , (?ij , !ok′′)),
((?ik′ , ǫ), ?ik′′ , (?ik′′ , ǫ)) and ((ǫ, !ok′), !ok′′ , (ǫ, !ok′′)) belong to the set of transi-
tions of the automaton. Due to this fact, we have that for all 1 ≤ j < k the traces
?ijij+1 . . .?ik−1?ik and !oj !oj+1 . . .!ok−1!ok are accepted by MC(M). However,
they do not belong to L(M). Thus, the set of traces accepted by MC(M) do not
correspond to the set of possible observations of the automaton M .

This section has developed a method that deals with a class of cyclic au-
tomata. It would be interesting to look for more general conditions under which

24

L(M) is regular (and we can construct a finite automaton that recognises it)
and maybe also conditions under which the process takes polynomial time.

6. Conclusions

This paper explored the situation in which we have a finite automaton M
defining traces that the SUT should not have and the interactions between the
SUT and the monitor are asynchronous and FIFO. Previous work showed how
one can construct a finite automaton to be used by the monitor in the case
where M is defined by a pair (ρ,Oρ) that states that if the SUT produces trace
ρ then the next output should be from Oρ. The aim was to extend this approach
to allow more general properties.

We first investigated an alternative approach, which is to operate on the
trace σ observed rather than the finite automaton M that defines the property.
We showed how one can construct a finite automaton M(σ) that defines the
set of explanations for σ: the set of traces that the SUT might have produced
given that σ has been observed. The problem then reduces to deciding whether
the languages defined by M and M(σ) have a non-empty intersection. The
main advantages of this approach are that it is general (it does not depend on
the form of M) and also takes polynomial time. However, it has a potentially
significant disadvantage: the size of M(σ) is of O(|σ|2) and so grows as more
actions are observed. One would typically expect σ to become much larger than
M and so one might prefer approaches that operate on M .

We then explored conditions under which the languageL(M), of observations
that might result from the SUT producing traces of M , is regular. First we
constructed an approach that works if M is acyclic. In the worst case this can
lead to a finite automaton M ′ whose size is exponential in terms of the size of M
and we proved that this exponential growth cannot be avoided. We expect that,
in practice, an exponential growth in the size of the (typically small) property
M is preferable to a polynomial growth in the size of the (typically much larger)
trace σ. However, this might not always be the case. We then generalised this
approach to the case where every cycle of M has either only inputs or only
outputs (but there might be cycles with inputs and others with outputs).

There are several possible lines of future work. First, there is the problem
of finding weaker conditions under which we can generate a finite automaton
to recognise L(M). It may also be possible to use a more general formalism
than finite automata to represent L(M); we require a formalism for which the
membership problem can be solved in low-order polynomial time. In practice, it
may sometimes be possible to bound aspects of the problem such as the channel
size and this might make the problem more tractable. We are working with the
possibility of having probabilities associated with swapping the order of actions
and reasoning in a probabilistic testing framework [16]. A further improvement
would be to consider stochastic information regarding delays, that is, probability
distributions, rather than fix bounds, would be used to represent fault models [9].
Finally, we are developing a prototype tool to support the approach outlined in

25

this paper and intend to carry out case studies. We will take as starting point
our tool [?] dealing with our previous basic framework [10].

References

[1] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge
University Press, 2008.

[2] C. Andrés, M. G. Merayo, and M. Núñez. Formal passive testing of timed
systems: Theory and tools. Software Testing, Verification and Reliability,
22(6):365–405, 2012.

[3] J.A. Arnedo, A. Cavalli, and M. Núñez. Fast testing of critical properties
through passive testing. In 15th Int. Conf. on Testing Communicating
Systems, TestCom’03, LNCS 2644, pages 295–310. Springer, 2003.

[4] E. Bayse, A. Cavalli, M. Núñez, and F. Zaïdi. A passive testing ap-
proach based on invariants: Application to the WAP. Computer Networks,
48(2):247–266, 2005.

[5] M. Clerbout and M. Latteux. Semi-commutations. Information and Com-
putation, 73(1):59–74, 1987.

[6] C. Colombo, G. J. Pace, and P. Abela. Safer asynchronous runtime moni-
toring using compensations. Formal Methods in System Design, 41(3):269–
294, 2012.

[7] R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals
of Mathematics, 51(1):161166, 1950.

[8] R. M. Hierons, K. Bogdanov, J.P. Bowen, R. Cleaveland, J. Derrick, J. Dick,
M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Luettgen, A.J.H Si-
mons, S. Vilkomir, M.R. Woodward, and H. Zedan. Using formal specifi-
cations to support testing. ACM Computing Surveys, 41(2), 2009.

[9] R. M. Hierons, M. G. Merayo, and M. Núñez. Testing from a stochastic
timed system with a fault model. Journal of Logic and Algebraic Program-
ming, 78(2):98–115, 2009.

[10] R. M. Hierons, M. G. Merayo, and M. Núñez. Passive testing with asyn-
chronous communications. In IFIP 33rd Int. Conf. on Formal Techniques
for Distributed Systems, FMOODS/FORTE’13, LNCS 7892, pages 99–113.
Springer, 2013.

[11] D. Lee, D. Chen, R. Hao, R.E. Miller, J. Wu, and X. Yin. Network protocol
system monitoring: a formal approach with passive testing. IEEE/ACM
Transactions on Networking, 14:424–437, 2006.

26

[12] D. Lee, A.N. Netravali, K.K. Sabnani, B. Sugla, and A. John. Passive
testing and applications to network management. In 5th IEEE Int. Conf.
on Network Protocols, ICNP’97, pages 113–122. IEEE Computer Society,
1997.

[13] M. Leucker and C. Schallhart. A brief account of runtime verification.
Journal of Logic and Algebraic Programming, 78(5):293–303, 2009.

[14] A. Mazurkiewicz. Trace theory. In Petri Nets: Applications and Relation-
ships to Other Models of Concurrency, LNCS 255, pages 278–324. Springer,
1987.

[15] G.J. Myers. The Art of Software Testing. John Wiley and Sons, 2nd edition,
2004.

[16] M. Núñez. Algebraic theory of probabilistic processes. Journal of Logic
and Algebraic Programming, 56(1–2):117–177, 2003.

[17] R.E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal
of Computing, 1(2):146–160, 1972.

27

s6 s7

s0 s1 s2 s3 s4 s5
!x ?a !y ?e ?g

?b ?d !z !w

?c

(a) Mρ

(ǫ, ǫ) (ǫ, !x)

(?a, ǫ) (?a, !x) (?a, !y)

(?b, ǫ) (?b, !x)

(?c, ǫ) (?c, !x)

(?d, ǫ) (?d, !x) (?d, !y)

(?e, ǫ) (?e, !x) (?e, !y)

(?g, ǫ) (?g, !x) (?g, !y) (?g,z) (?g, !w)

?a

?b

?c

?d

?e

?g

?a

?b

?c

?d

?e

?g

?e

?g

!x

!x

!x

!x

!x

!x

!x

!y

!y

!y

!y !z !w

?e?e ?b ?b

!z

?c

(b) MC(Mρ)

Figure 9: Finite automata Mρ and MC(Mρ)

28

