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Value-at-Risk for fixed income portfolios: A Kalman filterin g approach

We propose a way of measuring the risk of a sovereign debt portfolio by using a simple two-factor short
rate model. The model is calibrated from data and then the changes in the bond prices are simulated by
using a Kalman filter. The bond prices being simulated remainarbitrage-free, in contrast with principal
component analysis based strategies for simulation and risk measurement of debt portfolios. In liquid
sovereign debt markets, a risk measurement methodology which allows the future bond price scenarios
to be arbitrage-free may be seen as a potentially more realistic way of measuring the debt portfolio risk
due to interest rate fluctuations. We demonstrate the performance of this methodology with calibration
and backtesting, both on simulated data as well as on a real portfolio of US government bonds.
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1. Introduction

Financial institutions need to monitor and effectively manage market risk.Quantitative risk measures
have become crucial management instruments for portfolio managers for this purpose.Value-at-Risk
(VaR) has been chosen by the Basel Committee on Banking Supervision in Basel II as the standard
risk measure for financial risk managers, see Basel Committee (2006) and Chen and Gerlach (2011)
for details. VaR has received criticism by Artzner et al. (1999), Acerbi and Tasche (2002) and Szegö
(2002) for not being a coherent measure of risk. A sub-additive alternative to VaR is the conditional
Value-at-Risk (CVaR). Its minimization formula was first developed in Rockafellar and Uryasev (2000).
VaR and CVaR at a levelα arerespectivelygiven by:

VaRα =−q1−α(X ), (1.1)

CVaRα =−E [X |X 6 q1−α(X )] , (1.2)

whereqβ (X ) = inf{x|FX (x)> β} is theβ -quantile ofX .

The purpose of this paper is to measure the risk of fixed incomeportfolios which originates from the
uncertainty in the interest rates, using VaR as a risk measure.

Several mathematical tools have been applied to model the term structure of interest rates. A first
approach is using tools that smooth the yield term structure. This includes the approaches suggested in
McCulloch (1975), Vasicek and Fong (1982) and Fisher et al. (1995), among others.In this article, we
consider exponential affine term structure models, which isa class of models often employed to under-
stand the dynamics of interest rates.Seminal work on this class has been provided by Vasicek (1977),
Cox et al. (1985) where, respectively, Gaussian and non-Gaussian single factor models are proposed. As
pointed out in Brigo and Mercurio (2006) there is evidence that the single factor models fail to explain
accurately some of the features of the term structure and it is necessary to consider extensions to these
models. A generalization of the single-factor models to higher dimensions have been presented e.g.
in Chaplin and Sharp (1993), Chen (1995) and Duffie and Kan (1996), while Jegadeesh and Pennac-
chi (1996) and De Rossi (2004) focused on Gaussian multi-factor models.Babbs and Nowman (1999)
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looked at one, two and three factor models on US data and foundthat the two-factor model performed
better for the term structure of the interest rates in the US bond market. In Dai and Singleton (2000), the
authors provided a classification of affine term structure models into non-nested families and explored
the structural properties of each family of models. In Duffee (2002), an extension to these results was
provided, by allowing the price of risk to vary independently of the interest rate volatility. Later in
Ait-Sahalia and Kimmel (2010), closed-form approximations were provided for likelihood functions of
one, two and three factor models under the framework developed in Dai and Singleton (2000).

The interest rate term structure can be described by single or multiple factors. A three-factor model
is often preferred to describe the behaviour of economic variables. However, when it comes to out-of-
sample prediction, the authors in Date and Wang (2009) statethat a two-factor Gaussian model performs
better than a single-factor model or a three-factor model when comparing out-of-sample one-step ahead
forecasting. A two-factor model seems to offer a good compromise between the difficulty of calibrating
a three factor model and the poor accuracy of a one factor model. Hence a two-factor model has been
chosen for the current analysis.

The computation of Value-at-Risk for fixed income portfolios has attracted a lot of interest and a few
different approaches are available in the literature. In Smith (2009), the author calculates VaR for a
three zero-coupon bond portfolio by focusing on the yield volatilities and correlations. The perfor-
mance of fixed-income Brazilian portfolios are assessed in Carvalhal and Daumas (2010) by computing
several measures including VaR and CVaR, which are calculated assuming a normal distribution of in-
terest rate variations. The authors conclude that the choice criteria based on minimum VaR and CVaR
achieve satisfactory results. In Darbha (2001), VaR for fixed income portfolios is computed using ex-
treme value theory. The VaR estimates so obtained are then compared tothe estimates found using
the variance/covariance method and the historical simulation method, concluding that the extreme value
method provides the best VaR estimates. A methodology oftenemployed to assess VaR for fixed income
portfolios is scenario simulation from principal components of the yield curve. In Jamshidian and Zhu
(1997) the bond prices are modeled using a small number of risk factors, the joint distribution is ap-
proximated using a multivariate discrete distribution andVaR is computed by selecting the appropriate
quantile of the discrete cumulative distribution function. Gibson and Pritsker (2000) pointed out that an
appropriate choice of risk factors is crucial for this methodology, and also advocated using a continuous
distribution to model the extracted risk factors.In Fiori and Iannotti (2007),theauthors apply princi-
pal component analysis (PCA) to Monte Carlo simulation considering the non-normality of historical
observations. Another approach is suggested in Chen et al. (2007) where the authors use independent
component analysis (ICA), a tool utilized in sound engineering, to calculate VaR for foreign exchange
rate portfolios.

We present an alternative way tothe extant works on VaR computation for fixed income portfolios.
We model the instantaneous interest rate using a two-factorVasicek model. After calibration of the
model, arbitrage-free future bond prices are simulated by using a Kalman filter and are used to compute
the portfolio loss quantiles of interest. We demonstrate the performance of this methodology with cali-
bration and backtesting on simulated data as well as on a realportfolio of US government bonds.

The Kalman filter, first proposed in Kalman (1960), is a mathematical tool used to estimate the vari-
ables of interest which are not directly observable. It covers a wide range of applications in different
fields including signal processing, weather sciences, econometrics and finance.In particular, in finance
it has proved to be a useful instrument for a variety of purposes, including the estimation of instanta-



neous interest rate implied by the yield curve (see, e.g. Babbs and Nowman (1999) and Bolder (2001)),
the estimation of the spot prices of commodities from the futures prices (see Schwartz (1997) and
Manoliu and Tompaidis (2002)) and updating the uncertain drift parameters in the context of hedging in
incomplete markets (Monoyios (2007)). A review of applications of filtering in financial mathematics
is provided in Date and Ponomareva (2011).

The novelty of the work presented here lies in exploiting thefiltering methodology for simplify-
ing the scenario generation from the point of view of measuring the portfolio risk due to interest rate
uncertainty. To authors’ knowledge, this is the first time that the ability of Kalman filter to generate
one step ahead conditional distribution of the short rate has been exploited for efficient simulation of
arbitrage-free bond prices using a two-factor Gaussian model. The fact that only arbitrage-free scenar-
ios are generated may be seen as an added advantage on some of the existing methods, such as those
based on the principal component analysis. We present comprehensive numerical studies, including for-
mal backtesting based on industry-standard hypothesis tests, with both simulated and real data for VaR
computation on fixed income portfolios using the Kalman filter.

The rest of the paper is structured as follows. Section 2 introduces the recursive equations for the
Kalman filter and some of their features that will be used later. Section 3 providesthepreliminary def-
initions for the term structure of interest rates and presents the two-factor Vasicek model, highlighting
some of the key relationships. Section 4 includes details onthe backtesting tools used for validation of
the VaR model. Sections 5 and 6 report numerical experimentswith simulated data and real data, respec-
tively. In both these sections we compare how our method performs against the historical simulation
method and the variance/covariance method for computing VaR. Section 7 concludes the article.

2. The Kalman filter

Let us consider a discrete time, linear state space system:

rn+1 = Arn+b+wn+1, (2.1)

yn =Crn+d+ zn, (2.2)

wherewn andzn are zero mean, Gaussian and uncorrelated random variables at each timetn. A, b, C,
d, G= E(wnwT

n ) andH = E(znzT
n ) are constants or are known functions of time. The variableyn is the

only observable variable, whilern can not be directly observed and needs to be estimated. Each time-
step∆ t = tn− tn−1 is assumed to be constant. Equations (2.1) and (2.2) are referred to as thetransition
equationand themeasurement equation, respectively.

There are different versions of theKalman filter (KF) equations including the one reported e.g. in
Date and Wang (2009). The KF consists in a set of recursive equations; the one employed in this paper
involves the following:

vn = yn−Cr̂n|n−1−d, (2.3)

Σn =CVn|n−1C
T +H, (2.4)

Kn =Vn|n−1C
TΣ−1

n , (2.5)

r̂n|n = r̂n|n−1+Knvn, (2.6)

r̂n+1|n = Ar̂n|n+b, (2.7)

Vn+1|n = AVn|n−1A
T +G−AVn|n−1C

TΣ−1
n CVn|n−1A

T . (2.8)



The estimation of the variable of interestrn and the conditional variance of the estimateVn based on
information up to timetn−1 are respectively denoted byr̂n|n−1 andVn|n−1. Initial estimateŝr0|0 andV1|0
are assumed to be known or can themselves be parameterized.Theinnovationsvn and their covariance
matrix Σn are expressed by equations (2.3) and (2.4) respectively, while Kn, often referred toas the
Kalman gain, is given by the equation (2.5). Equation (2.6) represents the filtered state vector. The state
vector and the covariance matrix predictions are respectively provided by equations (2.7) and (2.8). The
calibration of the set of parameters which characterize thematricesA, C, G, H and the vectorsb, d
are obtained through maximizing the likelihood of observations. Having the set of observationsY =
{y1,y2, . . . ,yN} and sinceyn+1|n ∼ N (Cr̂n+1|n+d,Σn+1), we can express the log likelihood function,
ignoring the constant terms, as:

logL(Y) =−
1
2

N

∑
i=1

(log|Σi |+ vT
i Σ−1

i vi). (2.9)

The expression (2.9) can be maximized in MATLAB 7.9 using theinbuilt solvers such as fminsearch
over the set of model parameters. Once the optimal parameters are obtained, one can forecastthe
successive values for the latent variabler as long as new observationsy become available. This is
implemented employing the recursive equations (2.3)-(2.8), with A, b, C, d, G and H expressed as
appropriate functions of the optimized parameters.

3. Preliminary definitions for the term structure and the two-factor Vasicek model

The relationship between the interest rates andthe correspondingtime to maturity is called the term
structure of interest rates. For clarity, some essential definitions are henceforth briefly introduced. A
zero-coupon bond is a contract that pays at its maturity,T, one unit of its currency. Its value at timet
is denoted byP(t,T), with t < T. Given the price of a pure discount bond having maturityT, the bond
yield (or spot rate or zero-coupon yield) associated to a particular datet is given by:

y(t,T) =−
lnP(t,T)

T − t
, (3.1)

while the instantaneous interest rate is defined by taking the limit as the time to maturity tends to zero:

r(t) =−
∂ lnP(t,T)

∂ t
. (3.2)

The price of a zero-coupon bond with maturityT at timet can be obtained by inverting this equation as:

P(t,T) = EQ

[
e−

∫ T
t r(u)du

∣∣Ft
]
,

whereFt is the natural filtration for the process and the expectationis taken underthe risk neutral
measureQ. Hence modeling the variation of the instantaneous interest rater(t) over time affects the
evolution of bond prices and other derivative prices, and ultimately the bond yields. The bond yields are
observable quantities, whiler(t) is a latent variable. We need to predictr(t) if we want arbitrage-free
forecasts of bond yields. In exponential affine models,the yields depend affinely on the latent vari-
abler(t). In such cases, it is possible to estimatethe latent variables recursively, in a computationally
tractable fashion, from the observable bond yields using the Kalman filter, which was described earlier
in section 2.



The key assumption of the two-factor Vasicek model is that the short term interest rates are given by the
sum of two state variables, each of them following an Ornstein-Uhlenbeck process. Let us consider two
independent state variables that follow linear, mean reverting Gaussian process under the risk neutral
measureQ:

r(t) = r1(t)+ r2(t), (3.3)

dri(t) = ki(θi − r i(t))dt+σidWi(t), r i(0) = r i 0 i = 1,2, (3.4)

wherer i0, ki , θi andσi are positive constants, andWi(t) are uncorrelatedQ-Wiener processes. Eachr i(t)
conditional toFs is normally distributed with mean and variance (see, e.g. Brigo and Mercurio (2006)):

E[r i(t)|Fs] = r i(s)e
−ki (t−s)+θi(1−e−ki(t−s)), i = 1,2, (3.5)

Var(r i(t)|Fs) =
σ2

i

2ki
(1−e−2ki(t−s)), i = 1,2. (3.6)

We discretize the two equations (3.5) and (3.6) consideringevenly spaced observation timest1 6 t2 6
. . . 6 tN, with tn+1− tn = ∆ t, obtaining (see, e.g. Bolder (2001)) the following transition equations in
the same form as expressed in (2.1):

[
r1n+1

r2n+1

]
=

[
e−k1∆ t 0

0 e−k2∆ t

][
r1n

r2n

]
+

[
θ1(1−e−k1∆ t)
θ2(1−e−k2∆ t)

]
+

[
w1n+1

w2n+1

]
, (3.7)

wherewn+1|n ∼ N (0,G), with:

G=




σ2

1
2k1

(1−e−2k1∆ t) 0

0
σ2

2
2k2

(1−e−2k2∆ t)



 . (3.8)

This discretisation preserves the exact conditional meanE[r i(t+∆ t)|Ft ] and the exact conditional vari-
ancevar[r i(t +∆ t)|Ft ]. Let us assume that each state variable that makes up the short interest rate
follows a linear, mean reverting Gaussian process with the same volatility but a different drift function
under measureP:

dri(t) = ki(θ̃i − r i(t))dt+σidW̃i(t), r i(0) = r i 0, i = 1,2, (3.9)

whereW̃i(t) is aP-Wiener process. Our assumption of an arbitrage-free market indirectly implies the
existence of processesλi(t) such thatθ̃i −θi = σiλi(t) for i = 1,2 holds. It is common practice (see, e.g.
De Rossi (2004) or Vasicek (1977)) to assumeλi(t) = λi to be constants, independent oft andr i(t).

The bond price function for the two-factor Vasicek model hasthe following analytical form:

P(t,T, r1(t), r2(t)) = eE(t,T)−F1(t,T) r1(t)−F2(t,T) r2(t),

where

E(t,T) =
2

∑
i=1

(
k2

i (θi −
σiλi
ki

)−
σ2

i
2

)
(Fi(t,T)− (T − t))

k2
i

−
σ2

i F2
i (t,T)
4ki

, (3.10)

Fi(t,T) =
1
ki
(1−e−ki(T−t)), i = 1,2, (3.11)



whereλi is the market price of risk for theith factor.
Note that it is quite straightforward to use correlated Wiener processes in this framework, at the

risk of complicating the notation as well as the calibrationprocedure; see,e.g. Date and Wang (2009)
for a treatment with correlated factors. However, in authors’ experience, adding correlation tends to
induce numerical difficulties in likelihood maximisation,without a compensatory improvement in out-
of-sample performance. Besides, even thoughr1(t) and r2(t) are themselves uncorrelated, the bond
prices (and the yields) are (imperfectly) correlated sincethey are functions ofr1(t) andr2(t). Hence we
will continue with the use of uncorrelated random factors.

The measurement system we used involves the following relationship between zero-coupon yields
and the price of zero-coupon bonds:

y(t,T) =−
lnP(t,T)

T − t
=

−E(t,T)+∑2
i=1Fi(t,T) r i(t)

T − t
. (3.12)

Using this equation at eachtn, for a set ofm bonds with maturitiesT1, . . . ,Tm leads to the following
vector valued equation:




y(tn,T1)
y(tn,T2)

...
y(tn,Tm)


=




F1(tn,T1)
T1−tn

F2(tn,T1)
T1−tn

F1(tn,T2)
T2−tn

F2(tn,T2)
T2−tn

...
...

F1(tn,Tm)
Tm−tn

F2(tn,Tm)
Tm−tn




[
r1(tn)
r2(tn)

]
+




−E(tn,T1)
T1−tn

−E(tn,T2)
T2−tn
...

−E(tn,Tm)
Tm−tn



+




z1(tn)
z2(tn)

...
zm(tn)


 (3.13)

wherezi(tn) ∼ N (0,H) are noise variables which reflect the deviation of bond prices from the model
prices andH = diag(h2

1,h
2
2, . . . ,h

2
m), wherehi are positive constants. Equation (3.7) provides the tran-

sition equation as in (2.1) and the equation (3.13) supply the measurement equation as in (2.2). Hence
these equations form a linear state space system with bond yields as observable variables, so that Kalman
filtering can be applied for model calibration and forecasting. These forecasts will then be used for pre-
dicting the tail losses of bond portfolios.

4. Backtesting for VaR models: methodology

In the case of VaR models, backtesting consists of checking whether the actual losses are in line with
projected ones.Several authors recommend backtesting VaR models, including Jorion (2007), Kupiec
(1995) and Christoffersen (2003).The most common method to test a VaR model has been suggested
in Kupiec (1995), where the author developed a 95% confidenceregion forunconditional coverage test.
The unconditional coverage test is the standard tool for backtesting models and is also recommended
(see, e.g. Chen and Gerlach (2011)) by Basel II. Hence we decided to employ it throughout the numer-
ical experiments in this paper,in addition to the conditional coverage tests which are described later
in this section. According to the procedure for the unconditional coveragetest, a model is correctly
calibrated when the number of exceptions (i.e. the portfolio losses exceeding VaR) is in line with the
confidence level. If backtesting reveals too many exceptions, then the risk is underestimated by the
current model. Hence one might reserve an insufficient required capital and suffer critical losses under
extreme market movements. On the other hand, too few exceptions signals an overestimated risk and
that would lead to an inefficient allocation of capital, which is also not ideal for institutions that look for



maximising profits. Let us define an indicator variableIn as:

In =

{
0 if Ln 6VaRα ,n|n−1
1 if Ln >VaRα ,n|n−1

whereLn =−∆Πn andVaRα ,n|n−1 represent respectively the loss at timetn and theα confidence level
Value-at-Risk computed at timetn given the information at timetn−1. The number of exceptions is given
by U = ∑N

n=1In, whereN is the total number of observations. Since each weekly outcome could lead
to an exception or not, the random variableU follows a binomial distribution:

fU (u) =

(
N
u

)
pu(1− p)N−u,

wherep= 1−α, andα is the level for the selected VaR. Let us consider the number of exceptions in the
sample, ˜u, and define the failure rate as ˜u/N. Null and alternative hypothesis inKupiec’s test(Kupiec
(1995)) are as follows: {

H0 : p= ũ
N

H1 : p 6= ũ
N

We test whether the observed failure rate differs significantly from the given confidence levelp. The
test statistic used is:

LRuc =−2ln

(
(1− p)N−ũpũ

[
1− ũ

N

]N−ũ( ũ
N

)ũ

)
∼ χ2

1. (4.1)

Using a 95% confidence interval this likelihood ratio test rejects the null hypothesis ifLRuc > 3.841.
The unconditional coverage test, on its own, focusses on thenumber of exceptions, but it does

not consider whether they are clustered. The independence test, developed in Christoffersen (2003),
is capable to reject a VaR with clustered exceptions.In terms of the indicator variableIn, define the
transition probabilitiesπi j = P(In = i andIn+1 = j), e.g., π01 provides the probability of having an
exception tomorrow given that today there were no exception. If the exceptions sequence is independent
over time, the probability of an exception tomorrow does notdepend on today’s outcome, i.e.π01 =
π11 = π . In this case, the null and the alternative hypothesis are:

{
H0 : π01 = π11

H1 : π01 6= π11
.

To test this hypothesis, we use the following likelihood ratio test:

LRind =−2ln

(
(1− π̂)N00+N10π̂N01+N11

(1− π̂01)N00π̂N01
01 (1− π̂11)N10π̂N11

11

)
∼ χ2

1, (4.2)

whereπ̂ = N01+N11
N00+N01+N10+N11

, π̂01=
N01

N00+N01
andπ̂11 =

N11
N10+N11

. Ni j represents the number of days when
statej follows statei, andi, j can only assume values 0 and 1. Since we are interested in understanding
whether simultaneously the number of exceptions is correctand VaR exceptions are independent, we
can test jointly these two features using the conditional coverage test:

LRcc = LRuc+LRind ∼ χ2
2. (4.3)

Using a 95% confidence interval this likelihood ratio test rejects the null hypothesis ifLRcc > 5.991.
Hence, the 95% level critical values forLRuc, LRind andLRcc are 3.841, 3.841 and 5.991 respectively.



VaR estimates are considered inadequate if at least one betweenLRuc andLRind are above their critical
value or ifLRcc is above its critical value.

In section 5 we simulate a weekly path for the interest rate using ‘typical’ values for a two-factor
Vasicek model. Then we select a bond portfolio and compute weekly estimates of 95% and 99% VaR
using the Monte Carlo method, historical simulation andthe variance/covariance method. Next, we
backtest these estimates against the series of simulated weekly lossesLn = −∆Πn = −(Πn−Πn−1).
Section 6 will present a similar analysis employing real weekly US bond prices.

5. Numerical experiments with simulated data

In this section we assess and compare the computation of Value-at-Risk for a bond portfolio computed
through Monte Carlo (MC) simulation using the Kalman filter,the historical simulation (HS) method
and the variance/covariance (VC) method using simulated data. This will help to gain some insight
about the performances of the three considered methods. In subsection 5.1 we present the three methods
involved in our comparisonand then the actual experiments are described along with their results in the
next subsection.

5.1 Monte Carlo, HS and VC

A short term interest rate path is generated using a two risk factor model as specified by formulae (3.3)
and (3.4). As mentioned earlier in sections 2 and 3, at any timetn the simulated bond yieldsyn are given
by:

yn =Crn+d+ zn,

wherezn ∼ N (0,H) andH = E(znzT
n ) = diag(h2

1,h
2
2, . . . ,h

2
m), while C andd are explicitly expanded

in equation (3.13). The measurement data are given by simulating a set ofm bonds having different
maturities whose prices are driven by the generated interest rate. The KF recursive equations (2.3)
to (2.8) are used to compute the state vector and the covariance matrix predictionŝrn+1|n andVn+1|n,
according to the measurement datayn provided at timetn. Then VaR can be obtained for a specified
bond portfolio by Monte Carlo simulation, using the fact that rn+1 is normally distributed, with its mean
and covariance matrix specified bythe KF predictions. The bond portfolio under study consists ofJ
bonds having each maturityTj and pricePn, j at timetn for j = 1,2, . . . ,J. The portfolio composition is
not changing during the period considered. At timen+1 the value of the bond portfolio is given by:

Πn+1 =
J

∑
j=1

wjPn+1, j ,

=
J

∑
j=1

wj exp
(
En+1, j −F1n+1, j r1n+1−F2n+1, j r2n+1

)
, (5.1)

wherePn+1, j andΠn+1 are, respectively, the price of thejth bond and the portfolio net worth at time
tn+1 andwj is the quantity of thejth bond held.r1 andr2 are the factors andE, F1 andF2 are the known
functions depending onTj − tn+1 as specified in (3.10) and (3.11). Sincern+1|n ∼ N (r̂n+1|n,Vn+1|n),
one can perform a full Monte Carlo simulation to obtain an approximate distribution of the predicted
lossΠn+1−Πn and obtain the Value-at-Risk at a specific confidence level. Once 95% and 99% VaR
are computed, it is possible to obtain their nonparametric confidence intervals based on finite sample



theory1. Table 1 displays the index of ordered statistics to obtain 95% confidence intervals for 95%
and 99% VaR using 10,000 draws, which is the number of draws used in all individualMonte Carlo
simulation experiments in this paper.

Table 1. Nonparametric 95% confidence intervals for 95% and 99% VaR using 10,000 Monte Carlo simulations.

Number of Draws
95% VaR 99% VaR

Lower Bound Upper Bound Lower Bound Upper Bound
10,000 457 544 81 120

The historical simulation (HS) is a nonparametric procedure for computingtheValue-at-Risk where no
specific assumptions about the distribution of risk factorsare made. It considers the lower quantile of
the distribution of the actual historical returns and assumes that history will repeat itself. Let us consider
the time series of rates of returnRn =

Πn−Πn−1
Πn−1

at any timetn, for n = 1,2, . . . ,N1. Let now beR the
random variable gathering all the computed rates of returns. We assume that the lower quantiles ofR

will remain constant in future samples ofRn for n= N1+1,N1+2, . . . ,N2. Hence we can write:

Pr[Πn−Πn−1 > q1−αΠn−1] = α.

q1−α is thus a number such that the historic portfolio return exceeds that number with probabilityα.

Similar to the HS method, the variance/covariance (VC) method considers the lower quantile of the
distribution of the actual historical returns and assumes that history will repeat itself. However, VC
method assumes that rates of return are normally distributed with its mean and variance being the his-
torical sample mean and sample variance:R ∼ N (µR ,σ2

R
). Hence we have

Pr
[
R > µR −qN

1−ασR

]
= α, (5.2)

whereqN
1−α represents the(1−α) quantile of the normal random variableR (i.e. 1.645 and 2.326 for

the 95% and 99% VaR, respectively), andα represents the level of confidence of VaR. Again, we assume
that the lower quantiles ofR will remain constant in future samples ofRn for n= N1+1,N1+2, . . . ,N2.
Hence we can write:

Pr
[
Πn−Πn−1 > (µR −qN

1−ασR)Πn−1

]
= α.

Thus the mean and the variance of the portfolio return completely specify the VaR at all confidence
levels for the VC method.

5.2 Simulation experiments

In this subsection, we consider an interest rate path, compute bond portfolio values and assess the
reliability of 95% and 99% VaR estimates for the MC method,the HS method andthe VC method
using the backtesting procedure reported in section 4. The simulation has been run choosing ‘typical’
values for the parameters (see Castellanos Pinzon (2008)) and it involves computing a weekly interest
rate using the Euler discretization of stochastic differential equations (3.3) and (3.4). The procedure for
computingtheVaR using Monte Carlo simulation consists of the following four steps:

1See Pritsker (1997) for more details on finite sample theory.



• Considering five yields obtained by simulating five batches of bonds, each having a different
maturity;

• Estimating the KF parameters using an in-sample subset, by implementing the equations (2.3)-
(2.8) and maximising the likelihood function as described earlier;

• Computing 95% and 99% VaR using Monte Carlo simulation as described in subsection 5.1.

The choice of the dataset is related to the standard of its desired backtesting. To achieve an adequate
level of reliability, one requires to consider a sufficiently large number of values. We opted for 250
values. The procedure adopted considers an in-sample subset consisting of 200 yields for each of the
five batches of simulated bonds to estimate the vector of parameters and then uses the estimated values
to calculate 50 one-step ahead yield predictions, that willbe compared with the corresponding out-
of-sample actual values. The choice of employing 50 one-step ahead yield predictions comes from
empirical evidence suggesting that out-of-sample fitting using real data is rather good for a number of
time steps in a range of 50–75 data, while outside this range results of fitting are poorer. Repeating this
procedure five times, shifting both the in-sample and the out-of-sample by 50 values as explained next,
allow us to compute the required 250 non-overlapping values:
In-sample Out-of-sample
1−200 201−250
51−250 251−300
101−300 301−350
151−350 351−400
201−400 401−450

The time-step∆ t = 1
52 (i.e. weekly data is used), while the whole interest rate path generated con-

sists of 450 simulations.

The procedure for the HS method and the VC method involves using the in-sample subsets to obtain the
quantilesq1−α andqN

1−α , respectively, that will be employed to compute 95% and 99% VaR in the out-
of-sample subsets. Bond prices included in the considered portfolio to calculate the relevant statistics
q1−α andqN

1−α are computed using the formula:

Pn, j = e−yn, j (Tj−tn), j = 1,2, . . . ,J,

whereyn, j represents the realization of thejth bond yield simulated at timetn. The values to simulate
the two-factor Vasicek model described by equations (3.3) and (3.4) are reported in table 2:

Table 2. Coefficients used for the simulation of the two-factor Vasicek model.

i xi0 ki θi σi λi

1 0.015 0.375 0.044 0.015 -0.18
2 0.025 0.02 0.014 0.01 -0.0001

The starting values set for the initialization of the KF algorithm are:

r̂0|0 =

[
0.02
0.02

]
and V1|0 = 5×10−3

[
1 0
0 1

]
.

Note that changes in the initial values do not change the qualitative aspects of results.The observable
measurements are supplied by five bonds whose features are reported in table 3:



Table 3. Features of the bonds providing the measurement values.

j Tj(years) h2
j

1 0.5 0.00092

2 1 0.00112

3 1.5 0.00102

4 2 0.00122

5 5 0.00062

Tj andh2
j represent the maturity and the variance of the zero mean noise term that perturbs the measured

jth bond yield, respectively. The goodness of fit reached for both the in-sample subset and the out-of-
sample subset was assessed considering the relative absolute error (RAE), defined as:

RAE=
|simulated rate - predicted rate|

simulated rate
.

The features of the bonds included in the portfolio under study are reported in table 4:

Table 4. Features of the bonds included in the simulated portfolio.

j Tj(years) wj

1 1 15,000
2 2 35,000
3 5 30,000

whereTj are the maturities andwj is the initial number of units of thejth bond held. Table 5 reports
the parameter estimates,along with the standard errors for the estimates given in brackets, for the five
in-sample subset considered, and their corresponding meanof the RAE for both the in-sample (indicated
asMRAE) and the out-of-sample (indicated asMRAE∗). The standard errors are computed using the
Hessian matrix of the log likelihood function; see Bolder (2001), for example. The true values of the
parameters used in simulation were listed earlier in this section in table 2.



Table 5. Estimated parameters for the subset considered, and their correspondingMRAEandMRAE∗.

Subset 1 2 3 4 5
k1 0.3127 0.2987 0.2942 0.3025 0.3211

(0.0219) (0.0212) (0.0204) (0.0264) (0.0178)

θ1 0.0551 0.0335 0.0005 0.0229 0.0536
(0.0016) (0.0016) (0.0024) (0.0037) (0.0012)

σ1 0.0161 0.0176 0.0177 0.0166 0.0145
(0.0014) (0.0013) (0.0019) (0.0022) (0.0016)

λ1 -0.2821 -0.5838 -0.9375 -0.6707 -0.0944
(0.0351) (0.0298) (0.0305) (0.0319) (0.0323)

k2 0.0586 0.0452 0.0222 0.0105 0.0733
(0.0325) (0.0297) (0.0295) (0.0329) (0.0201)

θ2 0.0131 0.0005 0.0083 0.0062 0.0076
(0.0043) (0.0045) (0.0057) (0.0039) (0.0021)

σ2 0.0109 0.0100 0.0093 0.0082 0.0110
(0.0019) (0.0022) (0.0029) (0.0026) (0.0015)

λ2 -0.0002 -0.0014 -0.0014 -0.0001 -0.0014
(3.11e-04) (5.60e-04) (2.99e-04) (3.10e-04) (1.92e-04)

h1 0.0006 0.0006 0.0007 0.0007 0.0007
(6.93e-05) (5.78e-05) (5.91e-05) (3.61e-05) (5.20e-05)

h2 0.0011 0.0011 0.0010 0.0010 0.0011
(6.05e-05) (2.99e-05) (6.67e-05) (5.56e-05) (5.56e-05)

h3 0.0009 0.0009 0.0009 0.0008 0.0008
(6.30e-05) (5.88e-05) (6.01e-05) (5.51e-05) (6.89e-05)

h4 0.0011 0.0011 0.0011 0.0011 0.0011
(6.46e-05) (4.92e-05) (3.96e-05) (7.23e-05) (5.47e-05)

h5 0.0009 0.0009 0.0010 0.0010 0.0010
(6.13e-05) (4.80e-05) (5.33e-05) (4.98e-05) (7.22e-05)

MRAE(%) 0.89 0.91 1.13 1.36 1.40
MRAE∗(%) 1.28 1.46 1.15 1.09 0.83

Local modeling oftheinterest rate allows to obtain an overall good fit, as highlighted by lowMRAEand
MRAE∗ values reported in table 5. We used the estimated parametersto perform a Monte Carlo simu-
lation as described in subsection 5.1 to obtain the estimates of one-step ahead 95% and 99% VaR. We
also computed the 95% and 99% VaR using the HS method and the VCmethod which were previously



described.

Table 6. Summary of test results for the considered simulation.

Method α x̃ N00 N01 N10 N11 LRuc LRind LRcc A/R

MC
95% 12 228 10 10 2 0.0213 2.5109 2.5322 A
99% 4 242 4 4 0 0.7691 0.1301 0.8992 A

HS
95% 13 225 12 12 1 0.0208 0.1528 0.1736 A
99% 7 236 7 7 0 5.4970 0.4033 5.9003 R

VC
95% 15 221 14 14 1 0.4961 0.0122 0.5082 A
99% 9 232 9 9 0 10.2290 0.6724 10.9014 R

Table 6 reports the 95% and 99% VaR backtesting outcomes for an instance of the process described by
equations (3.3) and (3.4), having values reported in table 2. Here,x̃ is the number of exceptions over
out-of-sample data (i.e. the total number of exceptions over five non-overlapping out-of-sample data
subsets) and the rest of the notation is the same as in section4. The values in bold represents either
the values outside the non-rejection confidence intervals or the values above the corresponding critical
value. In particular, the last column of the table indicateswhether the VaR, at the specified level of con-
fidence, estimated using either the MC simulation, the HS method or the VC method is accepted (A) or
rejected (R). While 95% and 99% VaR estimates obtained usingthe MC simulation are both accepted,
95% VaR estimates using the HS method and the VC method are accepted but the 99% VaR estimates
using the HS and the VC estimates are both rejected.

Other instances of parameter values (not reported here) of the considered interest rate simulation lead
to the conclusion that HS and VC methods, at least in this context, are not reliable for the estimation
of 95% and especially of 99% VaR since, as reported here, their backtesting occasionally fails to be
accepted. The assumption that the past provides a fair representation of the immediate future seems
to be not always true. The ability to estimate VaR using HS andVC methods seems to depend on the
specific path simulated. This might also depend on the (implicit) assumption of portfolio returns being
independent and identically distributed, which appears tobe unrealistic. Furthermore all the rates of
returns are given equal weights, where it might be more appropriate to assign different weights accord-
ing to the fact that data further away from the present have a lower predicting influence compared to
the closer ones. Monte Carlo simulation, provided that the calibration is sufficiently accurate, seems
reliable independently from the single path realization and leads to VaR estimates that are not rejected
by the unconditional and conditional tests. Varying the coefficients for the simulation of the interest rate
and/or varying the features of the bonds included in the considered portfolio leads to similar conclusions
and are not reported here for brevity.

One can also carry out CVaR tests on the same data using equation (1.2). The expectation in the
CVaR definition can be approximately evaluated as a tail probability weighted summation of VaRs for
the MC and the HS methods and is given in closed-form for the VCmethod. CVaR, being coherent, is
mathematically a far better measure of loss. However, thereare no rigorous hypothesis tests available
to validate a CVaR model, nor are there any measures, such as the number of exceptions in the case
of VaR, with which to compare different models. Finding VaR at multiple confidence levels can give
a qualitative idea of whether the model is suitable to evaluate CVaR as well;e.g. a model which is
accepted for 95%, 97.5% and 99% VaR through backtesting is likely to be acceptablefor 95% CVaR
as well. Since reporting the CVaR will not lead to any additional information about the quality of the



models, we have restricted the comparison to finding the VaR and testing it via tests based on the number
and the clustering of exceptions.

Having seen the performance of our method with a simulated portfolio, we carry out the same tests
using real bond prices.

6. Numerical experiments with real data

The aim of this section is to compute 95% and 99% VaR using the Monte Carlo simulation for an
actual portfolio of bonds and to compare its performance against the HS method and the VC method, as
described in the section 5. This is achieved in three steps:

1. Calibrating a two-factor Vasicek term structure model using the Kalman filter for the chosen
dataset;

2. Computing the VaR at the required confidence level, as described in section 5;

3. Backtesting the one-step ahead forecasting, as described in subsection 4.

Unlike in the simulation experiments, the interest rate values are unknown. Hence we need to compare
the bond yields to judge the accuracy of calibration. The goodness of fit can be assessed considering the
RAE, which is defined for the experiments using real data as:

RAE=
|observed yield - predicted yield|

observed yield
.

Subsection 6.1 introduces the data employed and explains how it is used to calibrate the parameters,
while subsection 6.2 reports the results of backtesting theestimates obtained with the proposed method.

6.1 Data

The dataset employed for this experiment consists of 450 weekly yields computed on three groups of
US government bonds from 28/06/2001 to 11/10/2012: three batches of very short term bonds (5 to 7
months maturity), two batches of short term bonds (4.5 to 5.5 years maturity) and one batch of medium
term bonds (10 years maturity). All the data was retrieved from Datastream. This data was split into
five in-sample and five out-of-sample data sets using exactlythe same procedure as used in section
5.2 for the simulated data set of the same size. We calibratedfive two-factor Vasicek models on the
five different in-sample yield data-sets mentioned above, with each model having 14 parameters. Each
in-sample estimation is used to produce one-step ahead forecasting of yields. The procedure adopted
for the experiment using real data is similar to the one chosen for the experiment using simulated data.
We used five in-sample subsets and follow the four steps described in subsection 5.2. Computation of
statisticsq1−α andµR − qN

1−ασR to obtain VaR through the HS and the VC methods are calculated
using the actual bond values.

6.2 Results

Table 7 displays the estimated parametersalong with their standard errors, using the five in-sample data
subsets mentioned.



Table 7. Estimated parameters for the considered financial data.

Subset 1 2 3 4 5
k1 0.7030 0.7118 0.7095 0.7023 0.6891

(0.0341) (0.0351) (0.0277) (0.0186) (0.0213)

θ1 0.0056 0.0047 0.0049 0.0048 0.0045
(9.37e-04) (0.0013) (0.0019) (0.0015) (0.0012)

σ1 0.0321 0.0314 0.0332 0.0327 0.0288
(0.0076) (0.0084) (0.0058) (0.0079) (0.0052)

λ1 -0.4591 -0.4606 -0.4842 -0.4751 -0.4553
(0.0924) (0.0790) (0.1315) (0.0819) (0.0518)

k2 0.0255 0.0275 0.0231 0.0241 0.0219
(0.0116) (0.0091) (0.0137) (0.0104) (0.0085)

θ2 0.0035 0.0035 0.0028 0.0030 0.0029
(0.0015) (5.88e-04) (0.0012) (0.0018) (0.0011)

σ2 0.0142 0.0154 0.0138 0.0144 0.0127
(5.98e-04) (1.07e-04) (3.05e-04) ( 5.24e-04) (5.72e-04)

λ2 -0.2652 -0.2639 -0.2528 -0.2509 -0.2629
(0.0510) (0.0225) (0.0131) (0.0337) (0.0794)

h1 0.0009 0.0011 0.0010 0.0009 0.0013
(8.84e-05) (7.02e-05) (6.46e-05) (9.03e-05) (8.30e-05)

h2 0.0012 0.0006 0.0011 0.0011 0.0011
(1.03e-04) (9.38e-05) (6.33e-05) (9.98e-05) (7.13e-05)

h3 0.0013 0.0010 0.0006 0.0009 0.0009
(1.22e-04) (1.27e-04) (1.11e-04) (1.19e-04) (7.38e-05)

h4 0.0007 0.0010 0.0007 0.0011 0.0007
(9.13e-05) (9.08e-05) (5.33e-05) (1.08e-04) (4.92e-05)

h5 0.0009 0.0004 0.0012 0.0011 0.0009
(1.21e-04) (9.77e-05) (1.06e-04 ) (9.23e-05) (9.04e-05)

h6 0.0010 0.0008 0.0009 0.0008 0.0009
(6.95e-05) (5.54e-05) (7.44e-05) (1.64e-04) (8.06e-05)

MRAE(%) 1.22 1.34 1.18 1.36 1.15
MRAE∗(%) 1.16 1.09 1.29 1.12 1.20



The estimated values were used to calculate 50 one-step ahead interest rate predictions, and used to carry
out the Monte Carlo simulation as described in subsection 5.1. The portfolio considered includes an
initial number of 50,000 of each of the six bonds. Table 8 reports the conditional and the unconditional
tests for the Monte Carlo simulation, the HS method and the VCmethod.

Table 8. Summary of test results for the experiment with realdata.

Method α x̃ N00 N01 N10 N11 LRuc LRind LRcc A/R

MC
95% 16 219 15 15 1 0.9514 0.0006 0.9520 A
99% 5 240 5 5 0 1.9568 0.2041 2.1609 A

HS
95% 17 218 15 15 2 1.5403 0.5996 2.1399 A
99% 7 237 6 6 1 5.4970 1.8520 7.3490 R

VC
95% 16 220 14 14 2 0.9514 1.6762 2.6276 A
99% 6 238 6 6 0 3.5554 0.2952 3.8506 A

The Monte Carlo simulation and the VC method provide acceptable estimations of both 95% and 99%
VaR, while the HS method just provides an acceptable 95% VaR but fails to provide a valid 99% VaR.
As highlighted in the previous section, the assumption thatthe past provides a fair representation of the
immediate future might be not realistic. In this instance the HS method produces too many exceptions
in estimates of 99% VaR, therefore the evaluation of 99% VaR is rejected. The calibrated model seems
accurate enough for the purpose of estimating the quantiles, since the conditional and unconditional tests
are non-rejected for both 95% and 99% VaR estimates.The distribution of the portfolio returns seems to
be close enough to normality in this particular case for the VC method to be deemed acceptable, although
this is not always the case (as seen in the simulation experiments in the previous section). Further, note
that VC method does not provide any intuition about the riskiness of the individual components of the
portfolio. It is easy in our KF based methodology to carry outsuch exploratory analysis,e.g. it is quite
straightforward to find the VaR estimates for hypothetical short-dated and long dated portfolios, from
the results of the same Monte Carlo experiment as above, and assess whether the short end or the long
end of the yield curve currently poses more risk.

7. Conclusions

In this article, we propose a way of measuring the Value-at-Risk of fixed income portfolios and we
backtest it for both simulated and real data. Our method provides scenarios which are arbitrage-free and
which (arguably) better reflect the market conditions for highly liquid government securities. The KF-
based method requires simulating only a vector of two randomvariables for one-step ahead forecasts
and is hence computationally cheaper as compared to principal components analysis using more than
two principal components. Numerical experiments with simulated data as well as real treasuries data
confirm the utility of our method in measuring the tail risk.

The focus of this paper is limited to compute the Value-at-Risk for a bond portfolio. A possible fu-
ture research direction could be to extend the portfolio composition to include other nonlinear interest
instruments, such as interest rate caps and floors.
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