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biases in portfolio choice under uncertainty is studied. The main results of this work are developed
heuristic approaches for the prospect theory model proposed by Kahneman and Tversky in 1979 as
well as an empirical comparative analysis of this model and the index tracking model. The crucial as-
sumption is that behavioural features of the prospect theory model provide better downside protection
than traditional approaches to the portfolio selection problem.

In this research the large scale computational results for the prospect theory model have been
obtained for real financial market data with up to 225 assets. Previously, as far as we aware, only
small laboratory tests (2-3 artificial assets) have been presented in the literature. In order to investigate
empirically the performance of the behaviourally based model, a differential evolution algorithm and
a genetic algorithm which are capable to deal with large universe of assets have been developed. The
specific breeding and mutation as well as normalisation have been implemented in the algorithms. A
tabulated comparative analysis of the algorithms’ parameter choice is presented.

The prospect theory model with the reference point being the index is compared to the index
tracking model. A cardinality constraint has been implemented to the basic index tracking and the
prospect theory models. The portfolio diversification benefit has been found. The aggressive behaviour
in terms of returns of the prospect theory model with the reference point being the index leads to better
performance of this model in the bullish market. However, it performed worse in a bearish market
compared to the index tracking model. The tabulated comparative analysis of the performance of
two studied models is provided in this paper for in-sample and out-of-sample tests. The performance
of the studied models have been tested out-of-sample in different conditions using simulation of the
distribution of a growing market and simulation of the t-distribution with fat tails which characterises
the dynamics of a decreasing or crisis market.
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1. Introduction

The portfolio optimisation problem is a question of how to determine an amount (proportion,
weight) of money to invest in each type of asset within the portfolio in order to receive the highest
possible return (or utility) subject to an appropriate level of risk by the end of the investment
period.

Modern Portfolio Theory (MPT) began with a paper (Markowitz 1952) and a book (Markowitz
1959) written by the Nobel laureate Harry Markowitz. Many researchers consider the emergence
of this theory as the birth of modern financial mathematics (Rubinstein 2002). The cornerstones
of Markowitz’s theory are the concepts of return, risk and diversification. It is widely accepted
(Rubinstein 2002) that an investment portfolio is a collection of income-producing assets that
have been acquired to meet a financial goal. However, an investment portfolio as a concept did
not exist before the late 1950s.

Remarkably, there is a long history behind the Expected Utility Theory (EUT) that started
in 1738 when Daniel Bernoulli investigated the St. Petersburg paradox. He was the first scientist
who separated the definitions of “price” and “utility” in terms of determining the item’s value.
Price is an assessment of an item and depends only on the item itself and its characteristics, i.e.
price is the objective value. In contrast, utility is subjective and “is dependent on the particular
circumstances of the person making the estimate” (Bernoulli 1954). EUT follows the assump-
tions of the neoclassical theory of individual choice in cases when risk appears. It was formally
developed by John von Neumann and Oscar Morgenstern in their book “Theory of Games and
Economic Behavior”(1944) (Neumann and Morgenstern 1944).

The theory’s main concern is the representation of individual attitudes towards risk (Karni
2014). Since the 1950s, several papers appeared showing that the empirical evidence on indi-
viduals’ patterns of choice under risk are inconsistent with the expected utility theory (Pirvu
and Schulze 2012). It is also shown (Rieger and Wang 2008) that the players’ behaviour system-
atically violates the independence axiom which states that the preference relations between 2
outcomes (lotteries) will state the same even if each of these outcomes (lotteries) will mixed with
the third outcome (lottery) with the same probability p. Violation of this axiom is also known as
“common consequence” problem. At the same time the EUT is unable to explain many paradoxes
that take place in economic practice (for example, Allais Paradox (Allais 1953)).

The number of EUT’s drawbacks led to the appearance of the Behavioral Portfolio Theory
(BPT) – a new fundamental framework which was designed to compensate for the misguidings
of the EUT. To date it is the best model for explaining the behaviour of the players and investors
in the experiment in decision making under risk. In contrast to EUT, BPT fills in some gaps in

2



January 28, 2016 Quantitative Finance Paper˙revision

explaining controversial economic phenomena, such as Ellsberg Paradox (Ellsberg 1961).
The recent financial crisis has shown the shortcomings of the individual market instruments

and the low level of validity in investment decisions. This can be explained by the dismissive
investors’ attitude in assessing the real risks, they usually just follow their own intuition. In the
investment practice, the situation of unaccounted risks is fairly common, hence, the investors
need to have a reliable mathematical tool for justification of investment decisions. In this paper
we consider BPT as a tool which takes into account behavioural errors.

BPT was developed by Shefrin and Statman in 2000 (Shefrin and Statman 2000). The main
idea of the theory is the maximisation of the value of the investor’s portfolio in which several
goals are met and these goals are considered with different levels of risk aversion. BPT is based
on two main theories: Security-Potential/Aspiration Theory (SP/A) and Prospect Theory (PT).
SP/A theory, established by Lola Lopez in 1987 (see (Lopes 1987)), is a general choice (not
only financial) risk framework and not specified for the portfolio selection problem. It uses two
independent criteria of choice - overall utility and aspiration level. In our research we focus on
the PT (Kahneman and Tversky 1979) devoted to human behaviour in financial decision making
under uncertainty.

PT adopts the main idea from the expected utility theory and adds in the vital psychological
components, which take into account human behaviour in the decision making process. It also
fixes different types of inaccuracies that took place in previously developed behaviour based
theories, e.g the independence axiom and inconsistency with a uniform attitude towards risk,
see (Shefrin and Statman 2000).

Loss aversion is a corner stone for prospect theory, especially for portfolio performance evalua-
tion (Zakamouline and Koekebakker 2009) and market price of risk (Levy 2010). Since prospect
theory was proposed many researchers studied the loss aversion effect in asset pricing (Barberis
and Huang 2001), (Lia and Yang 2013), (Easley and Yang 2015), price volatility (Yang and
Wu 2011) and insurance (Wang and Huang 2012) very successfully. As far as we aware, despite
many papers devoted to PT, few researchers have investigated the portfolio selection problem
with prospect theory and index tracking in terms of diversification and return performance. We
also have compared the prospect theory model with index tracking to the original index tracking
model.

The goal of this paper is to identify potential benefits of behaviourally based prospect the-
ory model depending on different market situations in comparison with traditionally accepted
portfolio optimisation model such as Index Tracking (IT) model. In this paper we apply the PT
model to several empirical and experimental data sets in order to find an optimal solution to the
portfolio selection problem with index tracking settings. In order to do so we develop appropri-
ate solution approaches to prospect theory namely genetic algorithm and differential evolution
algorithm which take into account mathematically complexity of the researched problem. We
also test the results out-of-sample and compare the performance of the PT model with the re-
sults obtained by the index tracking model. We investigate these models performance also with
a cardinality constraint. The main contribution of our work is large scale computational results
using metaheuristics obtained for the prospect theory portfolio selection problem for data from
various financial markets, with the asset universe of each ranging from 31 assets to 225 assets.

2. Literature Review

Prospect theory is a behavioural economic theory that describes decisions between alternatives
that involve risk, where the probabilities of outcomes are known. It was developed as a descriptive
model of decision making under uncertainty by two psychologists, Daniel Kahneman and Amos
Tversky, and published in the Econometrica in 1979 (Kahneman and Tversky 1979). The authors
relied on a series of small experiments to identify the manner in which people make choice in the
face of risk. The theory says that people make decisions based on the potential value of losses
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and gains rather than the final outcome, and that people evaluate these losses and gains using
heuristics. Although the original formulation of prospect theory was only defined for lotteries
with two non-zero outcomes, it can be generalised to n outcomes. Generalisations have been
used by various authors (Schneider and Lopes 1986), (Camerer and Ho 1994), (Fennema and
Wakker 1997), (Vlcek 2006).

The original PT choice process consists of two phases. During the first phase, which is called
editing, an agent defines their own (subjective) meaning of a gain and a loss by setting a reference
point r0 for the portfolio return, which represents zero gain (or zero loss) for this particular
person. During the second stage, which is called the evaluating phase, our investor calculates
the values of the prospect theory utility based on the potential outcomes and their respective
probabilities, and chooses the maximal one.

To understand the features of prospect theory let us analyse two approaches to the portfolio
selection problem which are traditional (modern portfolio theory) and behavioural (behavioural
portfolio theory). We focus more on the assumptions underlying these theories which govern the
investor’s choice.

Modern portfolio theory uses several basic assumptions namely “rational investor”, normal
distribution of asset returns and neglection of transaction costs (Markowitz 1959). At the same
time it was shown that in real life market conditions, these assumptions are not valid (Das et al.
2010), (Mandelbrot 1963) (Fama 1968), (Peng et al. 2008), (Patel and Subrahmanyam 1982),
(Fisher and Lorie 1970), (Evans and Archer 1968), (Jacob 1974), (Szego 1980), (Sengupta and
Sfeir 1985).

The mean variance model which exists in the MPT framework is both sufficiently general and
static for a significant range of practical situations and at the same time it is simple enough
for theoretical analysis and numerical solution. This benefit provides widely use of the mean
variance model in practice all over the world. However, the portfolio selection problem becomes
even more complicated in modern economic conditions which demand more flexible and multi-
factor models and tools to satisfy the investor’s preferences, while MPT’s assumptions lead to
some serious limitations.

The question about the difference and ratio between the portfolio allocation according to mean
variance optimisation and prospect theory utility function optimisation is very challenging in the
literature. Many scientists attempt to conceptualise the benefits and drawbacks of each approach
depending on specific market situations, data and assumptions. There are several reasons why
it is not easy to compare MPT and prospect theory approaches.

The first obstacle can be called computational difficulties. Due to the fact that the PT model
is very complex from a computational (solution approach) point of view, only simple cases for
the analysis are available in the literature. For example, many researchers used only 2-3 assets to
get the portfolio allocation based on prospect theory (Kahneman and Tversky 1979). However,
it is not enough for rigorous comparative analysis.

The first effort to compare two models was made by Levy and Levy in 2004 (Levy and Levy
2004). The idea was to select the portfolio with the highest prospect theory utility among the
other portfolios in the mean variance efficient frontier. Following this route Pirvu and Schulze in
2012 present results confirming that an analytical solution is mostly equivalent to maximising
the PT objective function along the mean variance efficient frontier (Pirvu and Schulze 2012).

The next step in development was connected with application to general return distributions.
The attempts started with an application to a market with two assets available: one of them is
the risk-free and the other is a risky asset. As a computational approach for the problem, the
piecewise-power value function is considered. Originally this method was suggested by Tversky
and Kahneman in 1992 (Tversky and Kahneman 1992). Gomes in 2005 applied this idea to
prospect theory (Gomes 2005). For more information about the piecewise-quadratic approach
to PT see (Hens and Bachmann 2008), (Zakamouline and Koekebakker 2009). Many researches
propose a heuristic approach as an effective tool for dealing with non-convex problems (Karni
2008).
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Metaheuristic approach is very popular method for solving the portfolio selection problem, in
a constrained formulation which is NP-hard and difficult to be solved by standard optimisation
methods (di Tollo 2015), (Gaspero et al. 2011). Adebiyi Ayodele and Ayo Charles used meta-
heuristics method of generalized differential evolution 3 in order to solve extended Markowitz
mean variance portfolio selection model consists of four constraints: bounds on holdings, cardinal-
ity, minimum transaction lots, and expert opinion (Ayodele and Charles 2015). Other researches
devoted to using metaheuristics for solving constrained portfolio selection problem see in the
following sources (Lin and Wang 2002), (Lin and Liu 2008), (Dueck and Winker 1992).

In this paper we propose two heuristic approaches to the prospect theory portfolio selection
problem: the differential evolution algorithm and the genetic algorithm. A recent addition to
the class of evolutionary heuristics is a method of differential evolution proposed by R. Storn
and K. Price (Storn and Price 1997), (Price et al. 2005) which is based on the evolutionary
principle using differential weight (F ) as a mutation factor. This solution approach has been
used by Maringer (Karni 2008) who studied PT investor’s risk aversion and loss aversion using
higher order moments such as skewness and kurtosis. To best of our knowledge he was the first
researcher who adopted this algorithm to the behaviourally based optimisation problem.

A genetic algorithm is a searching mechanism which is based on evolutionary principles of
natural selection and genetics. The theoretical background of genetic algorithms was developed
by Holland. It works with populations of solutions and uses the principles of survival of the fittest.
In genetic algorithms the variables of the solution are coded into chromosomes (Holland 1975).
To make a natural selection and get good solutions, chromosomes are evaluated by a fitness-
criterion. In the considered optimisation problems the measure of fitness is usually connected
with the objective function (Mitchell 1996), (Beasley 2002), (Aarts et al. 2003). As far as we
aware, the genetic algorithm has not been applied to the prospect theory problem.

Later several approaches to get computational results for the prospect theory utility function
optimisation were developed (Levy and Levy 2004), (Pirvu and Schulze 2012). Then the question
about which data should be used arose. Most of the researches are based on normally distributed
testing data (Levy and Levy 2004). At the same time it is well known that many asset allocation
problems involve non-normally distributed returns since commodities typically have fat tails and
are skewed (Mandelbrot 1963), (Fama 1968). Therefore, in our research we obtain and test the
optimal portfolios on several sets of data including data with a t-distribution and bearish market
data.

According to the problem formulation and theoretical basis the mean variance model manages
the risk of the portfolio taking into account the covariance matrix and standard deviation of
assets. Modern portfolio theory and the work of Harry Markowitz on diversification and risk of a
portfolio established the Capital Asset Pricing Model (CAPM) which distinguishes two types of
portfolio risk: systematic and unsystematic. Systematic risk is considered as a market risk, i.e. it
is undiversifiable and common for all assets in the market while unsystematic risk is associated
with each security. In terms of CAPM the optimal portfolio which aims to achieve the lowest
risk together with any possible return is the market portfolio which, in fact, could be a market
index. Following the assumption of CAPM the index tracking problem for portfolio selection is
a replication of the “ideal” market portfolio in order to reduce unsystematic risk.

Index tracking, known as a form of passive fund management, aims to produce optimal port-
folios which replicate the index dynamics providing a balance between risk and return. However,
the index tracking model normally includes almost all available assets in the market that leads
to large transaction costs and a portfolio which is very difficult to manage because of its diversity
(Beasley et al. 2003). Thus, the cardinality constrained index tracking model is also considered in
this paper. We explore this model in comparison with behaviourally based model (the prospect
theory model) in terms of diversification and tracking error issues.

Generally speaking, MPT uses a model that attempts to describe how capital markets operate,
not a recipe for designing investment portfolios. Curtis in his paper “Modern Portfolio Theory
and Behavioral Finance” assumed that MPT “is very useful, but it is descriptive, not prescriptive,
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and relies on assumptions that may not always be valid” (Curtis 2004). It is a very limited theory
in terms of application to the real economic world conditions (Shefrin and Statman 2000),
(Shefrin 2001). In contrast, BPT gives us flexibility and range of tools such as natural investor
preferences (risk aversion, loss aversion, etc.) which provide an opportunity to investigate and
to adjust risk component in portfolio selection more deeply and precisely.

3. Problem Formulation

In this section we formulate the index tracking and the prospect theory with index tracking
models with cardinality constraint.

First we set out some general notation that we use for all of our models. In this section and
in the rest of the paper, we will use the following notation:
N - number of assets,
S - number of scenarios (time periods),
K - cardinality limit (desirable number of assets in the portfolio),

ps - probability of scenario s,
∑
s

ps = 1,

r̄i - mean return of asset i,
ris - return of asset i in scenario s, i = 1, . . . , N, s = 1, . . . , S,
r0 - reference point,
ωi ≥ 0 - weight of asset i in the portfolio,

x = (ω1, . . . , ωN ) - a portfolio and

N∑
i=1

ωi = 1,

X = {x = (ω1, . . . , ωN ) ∈ RN+} - set of all portfolios,
rs(x) - return of portfolio x in scenario s,
d - desirable level of return.

It should be noted that one can transfer these models with a cardinality constraint into the
basic models if we put K = N . For the sake of simplicity we can use a unified formulation for
both, basic and cardinality constrained models.

3.1 Index Tracking Model

In our research we use a simple index tracking model in the form of full replication as we are
minimising the tracking error in order to reduce the difference between the index return and the
portfolio return.

Let at time s
rms - index return,
os = max(rs(x)− rms, 0) - portfolio return amount over the index return,
us = max(rms − rs(x), 0) - portfolio return amount under the index return.
Tracking error (TE) for a given time period is equal to |rs(x) − rms|. Clearly, at time s at

least one of os or us is equal to 0, i.e. we can define a new quantity

TEs = os + us =

{
os, if os ≥ 0,
us, otherwise.

(1)

Let us define the tracking error in the simplest possible way: as the difference between the index
and portfolio returns over all time periods s = 1, . . . , S:

TE =
S∑
s=1

TEs. (2)
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Here we would like to mention that tracking error can be defined in different ways, for example,
in (Roll 1993) the tracking error is defined as the root mean square of the difference between
index and portfolio returns.

As was mentioned previously we can use the formulation of the cardinality constrained model
for the basic model as well when we put K = N . Then the index tracking problem with cardi-
nality constraint can be formulated as (Reilly and Brown 2005):

minimise ITcc(x) = minimise TE(x) =
S∑
s=1

(os + us), (3)

subject to the constraints

N∑
i=1

ωiris = rms + os − us, s = 1, . . . , S (4)

N∑
i=1

ωi = 1, (5)

li ϕi ≤ ωi ≤ ui ϕi, i = 1, . . . , N, (6)

N∑
i=1

ϕi ≤ K, (7)

ϕi ∈ {0, 1}, i = 1, . . . , N, (8)

ωi ≥ 0, i = 1, . . . , N, (9)

os, us ≥ 0, s = 1, . . . , S. (10)

Equation (4) checks the difference between returns of the optimal portfolio and the index for each
time period. Constraint (5) imposes that the investment weights sum to one (budget constraint).
Inequality (6) describes a buy-in threshold and restricts asset investment. It is easy to see that if
an asset i is not held, i.e. ϕi = 0, then the corresponding weight ωi = 0. If an asset i is held, i.e.
ϕi = 1, then (6) ensures that the value of ωi lies between the appropriate lower and upper limits,
li and ui respectively (Woodside-Oriakhi et al. 2011). Inequality (7) ensures that the number of
assets in the optimal portfolio is at most K. The binary definition (8) reflects the inclusion (or
exclusion) of an asset in the portfolio.

3.2 Prospect Theory Model for Index Tracking

Consider the game:

(r1, p1), (r2, p2), . . . , (r0, p0), . . . , (rS−1, pS−1), (rS , pS), (11)
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outcome

value function
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Figure 1. Prospect theory value function v(r) with α = β = 0.88 and λ = 2.25

where (rs, ps), s = 1, 2, . . . , 0, . . . , S − 1, S, means that the gambler wins rs with probability

ps, of course, the sum of all probabilities is equal to 1, i.e.
S∑
s=1

ps = 1; r0 denotes some numerical

boundary called the reference point (constant) which depends on the investor’s preference. Let
rs define the outcomes of the game (11) such that:

• if s = 0, i.e. rs = r0, then the investor’s gain is 0,
• if s > 0, then rs > r0, hence the investor won from this investment,
• if s < 0, then rs < r0, hence the investor lost.

According to the prospect theory one needs to make additional mental adjustments in the original
probability and outcome value functions p and r, which is equivalent to replacing a standard
utility function by the prospect theory utility function. In order to do so we transform the
original p and r into the prospect theory probability weight function π(p) and value function
v(r).

The prospect theory probability weighting function π(p) measures, according to (Kahneman and
Tversky 1979), “the impact of events on the desirability of prospects, and not merely the perceived
likelihood of these events”, i.e. expresses the weights of the decisions to the probabilities. Let us
mention that π(p) is an increasing function, π(0) = 0, π(1) = 1, and for very small values of
probability p we have π(p) ≥ p. The probability weighting function based on the observation
that most people tend to overweigh small probabilities and underweigh large probabilities.

The prospect theory value function v(r) describes the (behavioural) value of the gain/loss
outcome. Kahneman and Tversky experimentally obtained the value function which was depen-
dent on the initial value deviation. This function is usually asymmetric with respect to a given
reference point r0 (which reflects different investor’s attitude to gains and losses), it is concave
upward for gains and convex downward for losses. Moreover, generally the value function v(r)
grows steeper for losses than for gains, i.e. for s > 0 we have v(rs) ≤ −v(r−s).

The explicit formula for the prospect theory value function v(r), given in (Tversky and Kah-
neman 1992), is:

v (r) =

{
(r − r0)α, if r ≥ r0,
−λ (r0 − r)β, if r < r0,

(12)
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where α = β = 0.88 are risk aversion coefficients with respect to gains and losses accordingly,
λ = 2.25 is the loss aversion coefficient which underlines differences in the investor‘s perception
of gains and losses. We note that the value function (12) is nonlinear with respect to return r
and, hence, the portfolio variable x. Figure 1 contains the graphs for the value function v(r).

The prospect theory utility function can be written in terms of π and v as:

PTU =

S∑
s=1

π(ps) v(rs) =

S∑
s=1

ps v

(
N∑
i=1

rsi ωi

)
. (13)

Clearly, the formula (12) consists of two parts. The part in the gain domain (i.e. when r ≥ r0) is
concave and the part in the loss domain (i.e. when r ≤ r0) is convex, capturing the risk-averse
tendency for gains and risk-seeking tendency for losses as seen by many decision makers (Rieger
and Wang 2008). Let as mention, that for the sake of simplicity in our study we use π(p) = p.
Clearly, the prospect theory utility function (13) is a nonlinear function.

The prospect theory model aims to find the best (optimal) portfolio which maximises the
prospect theory utility function where decision variables are weights of available assets ω sub-
ject to constraints on a desirable level of return (in the case of basic prospect theory problem
formulation), budget and short sales. This is a nonlinear and non-convex optimisation model
as the objective function is nonlinear and non-convex. In order to solve this problem we use
heuristics which are an inexact solution approach.

According to the prospect theory portfolio selection problem looks as follows (basic prospect
theory model):

maximise PT(x) =
S∑
s=1

ps v

(
N∑
i=1

rsi ωi

)
, (14)

subject to the constraints

r̄(x) =
N∑
i=1

r̄i ωi ≥ d, (15)

N∑
i=1

ωi = 1, (16)

ωi ≥ 0, i = 1, . . . , N. (17)

Studying the prospect theory problem we found that the principle of the model is very similar
to that of the index tracking portfolio optimisation problem. The main common feature is that
behaviourally based models use a reference point as the limit for desired level of returns in each
time period similar to an index tracking model which uses the index as a reference point. Thus
it is easy to implement the idea of the index tracking problem into prospect theory by changing
the value of the reference point. In this case we let r0 be a vector of the index value for each
time period of the data set not a scalar as it is in the original version of the prospect theory.
We also remove the limit on the desirable level of returns similar to the index tracking problem
which focuses on the index value as a level of return for each time period. We call this model
prospect theory with index tracking (PT with IT).

We also implemented a cardinality constraint in this model to address the issue of too diver-
sified a portfolio. It is very interesting to compare not only the IT and PT with index tracking
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problems but these models with the limit on the number of the assets in the portfolio. We
formulate the prospect theory model with index tracking and with a cardinality constraint as:

maximise PT+ITcc(x) =
S∑
s=1

ps v

(
N∑
i=1

rsi ωi, rms

)
, (18)

subject to the constraints

N∑
i=1

ωi = 1, (19)

li ϕi ≤ ωi ≤ ui ϕi, i = 1, . . . , N, (20)

N∑
i=1

ϕi ≤ K, (21)

ϕi ∈ {0, 1}, i = 1, . . . , N, (22)

where

v (r(x), rms) =

{
(r(x)− rms)

α, if r(x) ≥ rms,
−λ (rms − r(x))β, if r(x) < rms.

(23)

As one can see in equation (23) the value function for the prosect theory model with index
tracking is defined as a dynamic not constant due to the fact that instead of a constant reference
point r0 here we use a dynamic index rm which takes different values in each scenario (time
period).

4. Solution Approach for the Prospect Theory Model

In the previous chapter we considered two basic models: index tracking and prospect theory with
index tracking models. The index tracking problem is mixed-integer linear problem and can be
solved easily with a built-in solver. For the IT (also with cardinality constraint) in our empirical
study we use the standard solver CPLEX (AMPL) which is developed to deal with integer,
mixed-integer, linear programming and quadratic problems, including problems with quadratic
constraints possibly involving integer variables. In contrast, the prospect theory model is non-
convex. Hence, the solution approach becomes more challenging.

It is important to note that problem (18)–(22) is non-convex and function (18) is non differen-
tiable. In addition we consider the cardinality constrained PT with IT model which potentially
makes the problem more complex for solving. This complexity of the researched problem does
not allow the use exact methods due to the increasing CPU time and restrictions of size of
reasonable data sets. As long as it is very difficult to find an optimal solution for this type of
problem many researchers and traders use heuristics that are inexact methods to solve this sort
of portfolio optimisation problems.

In our research we use two heuristic solution approaches for the cardinality constrained port-
folio optimisation problem with behavioural component. The first is based on the differential
evolution algorithm proposed by R. Storn and K. Price (Storn and Price 1997), (Price et al.
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2005) and adopted to the prospect theory model by Maringer (Karni 2008). In the development
of paper (Chang et al. 2009), we suggest the genetic algorithm as the second approach to the re-
searched problem which is based on meta-heuristic approach (Holland 1975) in order to find the
“optimal” solution for the prospect theory with index tracking cardinality constrained portfolio
optimisation problem.

It should be noted that we also tried to use tabu search and pattern search methods (in
Matlab) and have to refuse the results due to the fact that found optimal portfolios by these
algorithms consists only of 1 or 2 assets among 31 available. These portfolios do not appear to
be interesting for real market conditions and strategies.

For the sake of simplicity in our calculations we define the prospect theory weighting function
as π(p) = p and use the original value function v(r) as proposed in (Tversky and Kahneman
1992) using dynamic reference point rm as defined in (23).

4.1 Differential Evolution Algorithm

Let N be the number of all available assets. We need to find an optimal value of a uniformly dis-
tributed variable x = (ω1, ω2, . . . , ωN ) ∈ D ⊆ RN , where D is a set of feasible objective function
values, i.e. we are looking for the value of x ∈ D, which provides a solution for the problem (18).
In order to find this optimal value of x we need to maximise the value of PT+ITcc(x) (which is
equivalent to PT+IT(x) if K = N) using the following steps.

1. Initialisation. We define the set

DK = {v ∈ D, such that exactly K components of vector v are positive}.

Let P ∈ N. We generate an initial population xi = (ωi1, . . . , ωiN ), ∀ i = 1, . . . , P 2 xi ∈ DK .
2. Mutation and Crossover. At each generation g = 1, . . . , G let take xi and choose vectors

xa, xb, xc randomly from the population’s vectors xl, l = 1, . . . , P 2, such that they do not
coincide with xi and each other. Also pick a random number R ∈ {1, . . . , N}. We construct the
components of a new vector x̃i ∈ D as follows. With probability CR and if R = j, j = 1, . . . , N ,
for the jth component, we assume x̃ij = vaj + (F + z1)(xbj − xcj + z2) and x̃ij = xij otherwise.
Here parameters F ∈ [0, 2] and CR ∈ [0, 1] are called the differential weight and the crossover
probability respectively and should be chosen by the user; quantities z1 and z2 are either zero
with a low probability (e.g. 0.0001 and 0.0002, respectively), or are normally distributed random
variables with a mean of zero and a small standard deviation (for example 0.02). The parameters
z1 and z2 are optional for the differential evolution algorithm. They are used to add up some
“noise” to the calculation of the resulting vector and avoid getting into local extrema.

3. Selection. Using equation (18) we calculate the values PT+ITcc(xi) and PT+ITcc(x̃i) and
choose the maximum called max(xi) to proceed to the new population which is used in the next
generation until the stopping criteria (e.g. number of generations, precision, etc.) is met.

4. Final Assessment. In the last generation g = G find the vector which yi =
{xi|max{PT+ITcc(x1), . . . ,PT+ITcc(xP 2)}. The vector yi then is our best solution (Homchenko
et al. 2013).

Pseudo-code of the differential evolution algorithm for prospect theory utility function max-
imisation is given below.

Generate initial population xi ∈ DK, i = 1, . . . , P 2,

cycle of G generations

for each xi in population P

choose 3 random vectors xa 6= xb 6= xc 6= xi
for each component j of xi do

with probability π1 : z1 ← N(0, σ1), else z1 = 0

with probability π2 : z2 ← N(0, σ2), else z2 = 0
pick uj ∼ U(0, 1)

if uj < CR or j = R

then x̃ij = xaj + (F + z1)(xbj − xcj + z2)
else x̃ij = xij

11
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if PT + IT (x̃i) > PT + IT (xi)

then ỹi = x̃i
else ỹi = xi

In g = G find yi = {ỹi|max{PT+ITcc(ỹ1), . . . ,PT+ITcc(ỹP2 )}}.

4.2 Genetic Algorithm

To maximise the objective function or utility function PT+ITcc(x) given in formula (18) using
a genetic algorithm we need to make the following steps.

1. Initialisation. We define the set

DK = {x ∈ D, such that exactly K components of vector x are positive}.

Let P ∈ N. We generate an initial population xi = (ωi1, . . . , ωiN ), ∀ i = 1, . . . , P 2 xi ∈ DK .
2. Selection. At each generation g = 1, . . . , G we calculate values

PT+ITcc(x1), . . . ,PT+ITcc(xP 2) and put them in decreasing order, i.e. we obtain a decreasing
sequence (

PT+ITcc(xm1
) ≥ . . . ≥ PT+ITcc(xmP2 )

)
,

where set xm1
, . . . , xmP2 is a permutation of the initial set x1, . . . , xP 2 . We fix the maximum value

of the objective function max PT+ITcc(xi). Only the first 2P elements move to the new popula-
tion without changes, i.e. xm1

, . . . , xm2P
. Denote this elements of a new population y1, . . . , y2P .

3. Crossover. We randomly choose two vectors x̃j and x̂k in the set {xm2P+1
, . . . , xmP2} and

breed them to produce a “child”. In order to do this we construct the l−th element (l = 1, . . . , N)
of the new vectors ai = (ai1, . . . , aiN ), i = 2P + 1, . . . , P 2, ai ∈ DK , from vectors x̃j and x̂k,
∀j, k = 2P + 1, . . . , P 2, by choosing between x̃jl and x̂kl following the rules:

• if x̃jl = ωj > 0 and x̂kl = ωk > 0 (i.e. the asset is in both parents portfolios), than the asset
in the child is as follows ail = χ · ωj + (1− χ) · ωk, where χ is randomly generated number
in [0,1];

• if x̃jl = 0 and x̂kl = 0 (i.e. the asset is not in either parent portfolios), than ail = 0 (this
asset is not in the child);

• if x̃jl = ωj > 0 and x̂kl = 0 (i.e. the asset is in only one of the parent portfolios), than with
probability π ail = ωj (i.e. this asset is included in the portfolio with probability π).

Although there are lots of other crossover operators known in the literature (Haupt and Haupt
2004), (Cormen et al. 2010), (Abdoun and Abouchabaka 2011) our implementation and test-
ing of the genetic algorithm approach with developed crossover stage (specially adjusted for
prospect theory portfolio selection problem) have shown good convergence and improvement of
the solution in each generation. Neither divergence nor cyclic errors has been detected during
the algorithm’s progress. A simple approach provides appropriate CPU time, convenient pseudo
code and programme code which is flexible enough to play with parameters and conditions of
the models.

4. Mutation. To introduce mutation we change each element of the constructed vector ai with
a given small probability ζ > 0 for the randomly generated number from [0,1]. Then we ensure
that the number of non-zero elements of the new vector is less than or equal to K and normalise
the elements of this vector. Doing empirical experiments we have noticed that genetic algorithm
choose not too a diversified portfolios and very rare the number of assets in the chosen portfolios
exceed cardinality constraint much. So, if in some cases the cardinality constraint condition is
broken we randomly choose non-zero elements of the vector one by one in order to make it zeros
till
∑N

i=1 ϕi ≤ K. After checking the K condition we normalise the vector.
We also find the maximum of the vectors ai, x̃j , x̂k and denote this as yi. This is the most fit

vector and now move this to the new population. Continue while the last yP 2 element of the new

12
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Table 1. Test problem dimension

Data set Number of stocks N Number of time periods S K

1 Hang Seng 31 290 15
2 DAX 100 85 290 20
3 FTSE 100 89 290 25
4 S&P 100 98 290 25
5 Nikkei 225 225 290 25

population matrix have been processed.
5. Assessment. We calculate the values PT+ITcc(y1), . . . ,PT+ITcc(yP 2) and compare the

maximum values of the obtained objective function max PT+ITcc(yi) to max PT+ITcc(xi). The
new population proceeds to the new generation (if g < G) if and only if max PT+ITcc(yi) ≥
max PT+ITcc(xi).

6. Final Assessment. In the last generation g = G find the vector y∗i =
{yi|max{PT+ITcc(y1), . . . ,PT+ITcc(yP 2)}. The vector y∗i then is the best solution.

Pseudo-code of the genetic algorithm for prospect theory utility function maximisation is given
below.

Generate initial population xi ∈ DK, i = 1, . . . , P 2,
cycle of G generations

calculate values PT+ITcc(x1), . . . ,PT+ITcc(xP2 )

sort PT+ITcc(xm1 ) ≥ . . . ≥ PT+ITcc(xmP2 )
save max PT+ITcc(xi)

xm1 , . . . , xm2P = y1, . . . , y2P proceed to the next generation

randomly pick x̃j and x̂k in the set {xm2P , · · · , xmP2 }
∀ i, j, k, l, i, j, k = 2P + 1, . . . , P 2, l = 1, . . . , N

if x̃jl = ωj and x̂kl = ωk

then ail = χ · ωj + (1− χ) · ωk, χ ∈ U(0, 1)

else if x̃jl = 0 and x̂kl = 0

then ail = 0
else if x̃jl = ωj and x̂kl = 0

then with π ail = ωj

with mutation probability ζ > 0
ail ← âij, âil ∈ U(0, 1)

choose max{PT+ITcc : yi ∈ {ai, x̃j , x̂k}}
find PT+ITcc(yi) = max{PT+ITcc(y1), . . . ,PT+ITcc(yP2 )}
choose PT+ITcc(y

∗
i ) = max{max PT+ITcc(yi),max PT+ITcc(yP2 )}

y∗i is an optimal solution

5. Computational Investigations

5.1 Data

We have solved the portfolio optimisation problems using publicly available data relating to
five major market indices, available from the OR-Library (Beasley 2003). The five market
indices are the Hang Seng (Hong Kong), DAX 100 (Germany), FTSE 100 (UK), S&P 100
(USA) and the Nikkei 225 (Japan) for 290 time periods each (weekly data), taken from:
http://people.brunel.ac.uk/m̃astjjb/jeb/orlib/portinfo.html. All of these problems were consid-
ered previously by Chang et al. (2000) (see (Chang et al. 2000)) and Woodside-Oriakhi at al.
(see (Woodside-Oriakhi et al. 2011)). The size of these five test problems ranged from N = 31
(Hang Seng) to N = 225 (Nikkei 225) and are presented in Table 1.

The data used in this paper is given in the form of matrices of asset prices. We transformed
the original data sets into matrices of asset log returns. It is widely accepted to use logarithm
of the price ratio in order to derive the rate of returns, instead of using absolute asset price
relations (JPMorgan 1996). In our research the rate of return r is calculated using the prices p

13
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for each time period s as follows:

ri = ln

(
pis
pis−1

)
, i = 1, . . . , N, s = 1, . . . , S,

where N is the number of assets and S is the total number of time periods.
In this research we apply simulation of the data with a particular type of distribution as an

out-of-sample test data for our models. We are interested in so called “bullish” market dynamics
which indicates the investor’s confidence that the positive trend of the prices will continue. It also
characterises increasing investments and high activity of exchange trades which follows from a
stable economic situation. In contrast a “bearish” market demonstrates pessimistic expectations
which leads to stagnation and long-term decreasing of the prices. In order to investigate the
performance of the models in different conditions we simulate these two trends in the matrix of
the asset returns.

The out-of-sample data set which simulates bullish and bearish markets were obtained using
the built in functions available in the Statistics Toolbox in Matlab. For bullish market simulations
we apply the function datasample. This function y = datasample(data, k) returns k observations
sampled uniformly at random, with replacement, from the specific data set in data. In order to
obtain the data set which possesses properties of a bullish market we simulate the returns based
on historical data of market growth (data form 4.01.2005 to 30.12.2005; 252 time periods in
total).

Bearish market simulations are made using the command mvtrnd. The statement r =
mvtrnd(kR, df, cases) returns a matrix of random numbers chosen from the multivariate t-
distribution, where kR is matrix of historical returns from the crisis period, df is the degrees
of freedom (in our computational study df = 5) and it is either a scalar (like we use in this
research) or could be a vector with cases elements (case is the number of lines, equal to 100 for
these tests). We chose a t-distribution because the tails of a Student t-distribution tend to zero
slower than the tails of the normal distribution which reflects more the real market situation. For
the simulations of bearish market we used historical data related to the FTSE 100 index of the
global crisis period in 2008 available in Bloomberg Database (data from 1.01.2008 to 31.12.2008;
261 time periods in total) as an initial matrix for simulation. So we apply both, crisis historical
data as a sample of data and a t-distribution simulation in order to underline the contrast in
two different types of return distributions, bullish and bearish.

The index tracking portfolio selection problem (basic formulation and with cardinality con-
straints) were solved using AMPL software with CPLEX (version 12.5.1.0) as a software package
for solving large-scale optimisation problems. The prospect theory with index tracking portfolio
selection problem (without and with cardinality constraints) were implemented using Matlab
software, as well as built-in and specially developed functions. All simulations were run in Mat-
lab. The system runs under MS Windows 7 64-bit SP 1 and in our computational work we used
an Intel Core i3-2310M pc with a 2.10 GHz processor and 8.0 GB RAM.

5.2 Parameters of the models

For the basic prospect theory model (also with index tracking and with cardinality constraints)
we use constant values of the parameters λ = 2.25, α = β = 0.88 as proposed by Tversky
and Kahneman in their paper (Tversky and Kahneman 1992). Tversky and Kahneman consider
prospect theory as a complex choice model. Estimation of such types of problems is very difficult
because of the large number of parameters. In order to reduce this number they “focused on
the qualitative properties of the data rather than on parameter estimates and measures of fit”
(Tversky and Kahneman 1992) by using a nonlinear regression procedure for estimation of the
parameters of equation (12), they found that “the median exponent of the value function was
0.88 for both gains and losses, in accordance with diminishing sensitivity” and “the median λ
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was 2.25”(Tversky and Kahneman 1992).
We used K as a parameter for cardinality constrained models as shown in Table 1. These

models according to its formulation have lower and upper limits on the asset weight. We use
li = 0.01 and ui = 1 for these limits.

5.3 Parameters of the heuristic approaches

Previously we note that prospect theory model (also with index tracking) is mathematically
complex problem and therefore it is difficult to deal with. In Section 2. we proposed different
solution approaches to this model. In order to obtain an “optimal” solution for the behaviourally
based model (basic formulation and with index tracking) we use a differential evolution algorithm
and a genetic algorithm.

It is known that the parameters of heuristics and metaheuristic algorithms have a great in-
fluence on the effectiveness and efficiency of these algorithms (Akbaripour and Masehian 2013).
It is important to find correct parameter settings for each problem and data set. To obtain the
best solution for the problems we illustrate this here with the algorithms using the first data set
(Hang Seng) trying to choose the most appropriate value for each parameter and analyse the
effectiveness of each algorithm in order to define the best for our research. We tested effective-
ness of both algorithms applied to basic prospect theory problem (14)–(17). The analysis and
selection of the parameters for the chosen algorithm for the other sets of data are presented in
Appendix A.

Our choice of parameter is based on three comparison criteria: computational time, util-
ity as the value of the objective function PT(x) and range of PT(x) as a difference ξ =
max PT(x) − min PT(x). In order to study the stability of the algorithm we test each com-
bination of parameters 10 times and compare mean CPU time, mean utility and ξ in the form
of the difference max PT(x)−min PT(x).

The optimal solution of the prospect theory problem is typically unknown and we have no
benchmark for comparative analysis. So we define the optimal solution to be the best in the set
of solutions we have obtained in our tests.

Much research has been devoted to using heuristic approaches as an effective tool for dealing
with non-convex problems. Maringer in 2008 presented a comparative analysis of quadratic,
power and the prospect theory utility function performance with different levels of loss aversion
(Karni 2008). He used a differential evolution approach in order to get a solution for the prospect
theory model. The paper focused more on performance of the models and parameters of the
optimal portfolio return distribution but not on the solution approach itself.

To the best of our knowledge there are no studies where the genetic algorithm has been
applied to the prospect theory problem. From the mathematical point of view it is interesting to
investigate the performance of different solution approaches applied to problem (14)–(17) also
with additional constraints and index tracking modification which is non-convex and function
(14) which is non differentiable.

Differential evolution algorithm
The differential evolution algorithm efficiency depends on parameters such as the differential

weight F , the crossover probability CR, the population size P and the number of generations G.
It is necessary to start with the F parameter because the differential weight is the key parameter
for the differential evolution algorithm. As we noticed this value significantly influences the mean
value of the objective function and its dispersion. It is known that F ∈ [0, 2] (see Section 4.1),
however, in our case a value larger than 1 gives us a very unstable solution. Thus, we define the
following values to test: 0.05, 0.15, 0.5 and 0.95. In the calculations shown in Table 2 for our
specific function, the smaller the value of the differential weight the higher the value of objective
function (utility) and the smaller the range of the solution (ξ = 0 leads to the best quality of
the solution). The value 0.05 gives us the best results according to all three criteria.

It should be mentioned that in choosing parameter F = 0.05 we set CR = 0.5, P = 20 and
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Table 2. Differential evolution parameter comparison
(Hang Seng data set)

Parameter Parameter value CPU time PT (x) ξ

F 0.05 61.8 0.6237 0
0.15 64.4 0.6235 0.0003
0.5 66 0.62084 0.0013
0.95 69.2 0.56534 0.0269

CR 0.3 61.6 0.62356 0.0002
0.5 61.8 0.6237 0
0.8 65.4 0.6237 0

P 15 35.2 0.62302 0.0031
20 61.8 0.6237 0
25 97.4 0.6237 0

G 70 43.2 0.62342 0.0005
100 61.8 0.6237 0
130 80.6 0.6237 0

G = 100. This choice is based on preliminary analysis and recommendations available in the
literature (Price et al. 2005), (Feoktistov 2006). Hereinafter while testing each parameter one by
one we fix the values of other parameters (F = 0.05, CR = 0.5, P = 20 and G = 100) in order
to show the difference in the results. In Table 2 and further tables the chosen best parameters
indicated in bolt font.

The next step is to choose the optimal value for the crossover probability. It is known that
the CR ∈ [0, 1] (see Section 4.1). We analyse three values for CR = 0.3, 0.5, 0.8. The results in
Table 2 confirms that CR = 0.5 provides an acceptable CPU time (better than CR = 0.8) and
a stable utility (better than CR = 0.3) which leads to a stable solution.

The parameters F and CR should be chosen for the specific objective function and features
of the problem. In contrast, the values of G and P primarily depend on the size of the problem.
For example, for a data set with 31 assets we define values for G and P , so, for larger scale
problems we use values in proportion to the best we find here. We consider the values of these
parameters as a function of problem size. We now explain the choice of these parameters only
for the smallest data set Hang Seng.

We test values P = 15, 20, 25 in order to define suitable parameters in terms of CPU time
and optimality of the solution. As one can see in Table 2 the population size of 20 provides
the best utility (quantitatively and in terms of stability) with reasonable computational time.
The value P = 25 requires more time (+35.6 seconds) compared to P = 20, providing the same
utility while a smaller population size leads to an unstable solution.

Within the DE algorithm we need to decide which number of generations is the best for this
problem size. We define three points to test which are G = 70, 100, 130 in order to find a
balance between solution quality and computational time. We choose 100 because it provides
maximum utility with range 0 in an acceptable CPU time as shown in Table 2.

Genetic algorithm
There are three main parameters in the genetic algorithm: the mutation probability z, the

population size P and the number of generations G. These parameters are the most influencing
on the outcome of the algorithm.

As shown in Table 3 we tested different values for each of these parameters in order to find the
optimal settings. In the analysis we used constant parameters z = 0.5, P = 15 and G = 70 for
the Hang Seng (Hong Kong) data set while testing each parameter in order to show the difference
in the results. This choice is based on preliminary analysis and recommendations available in
the literature.

First of all the mutation probability should be chosen. We took several different values for
the parameter z. As one can see in Table 3 the CPU time does not change much and does
not depend on the value of this parameter. It is obvious that z = 0.5 gives us a necessary and
sufficient mutation component to obtain the best stability of the solution. The values larger

16



January 28, 2016 Quantitative Finance Paper˙revision

Table 3. Genetic algorithm parameter comparison
(Hang Seng data set)

Parameter Parameter value CPU time PT (x) ξ

z 0.3 36.6 0.6219 0.0084
0.5 36.2 0.62354 0.0002
0.7 36.8 0.62352 0.0004

P 10 15.6 0.60916 0.0713
15 36.2 0.62354 0.0002
20 67.4 0.62361 0.0002

G 40 25.6 0.6235 0.0034
70 36.2 0.62354 0.0002
100 47.2 0.62358 0.0001

(z = 0.7) or smaller (z = 0.3) provide the solution with lower level of stability. In addition, the
value of the objective function in this case is not the best as well.

Population size is a very important parameter for any heuristic algorithm. One should find
the right value of P for the specific problem. There are many recommendations in the literature
which can help to choose suitable parameters for the genetic algorithm (Fogel 2006) according
to the specific objective function. Most of the guides suggest to use the number of variables and
multiply it by 10 for such complex objective functions such as prospect theory utility function.
At the same time for the portfolio optimisation problem the recommended population size is
around 100-200 (Alander 1992). In our case there are 31 assets in a data set and we found testing
the model that reasonable interval for the search is [10, 20] for such a small matrix. Taking into
account that in our algorithm we use population size P 2 we obtained an interval [100, 400] which
covers the first recommendation (31 · 10 = 310) and the second one ([100,200]).

The population size greatly affects the CPU time. Again we are searching for a balance between
computational time and stability because the quality is not improving much with an increasing
value of P . However, the solution becomes more volatile once you decrease the population size
(see results for P = 10 in Table 3). We define P = 15 as the best for our experiments because it
gives optimal utility and saves computational time compared to P = 20. Also P = 15 provides
a good search space for exploration.

We study the interval [40,100] in order to define the optimal parameter value for the number
of generations. Previously, we tested extremely high values such as 300 and 400 and the quality
of the solution did not change much versus the value of 100 but the CPU time increases dramat-
ically. One can see in Table 3 that the difference between the results obtained using G = 70 and
G = 100 is not much too, so, we can save time for approximately the same range of the solution
and the value of objective function while decreasing the value of G results in a deteriation the
solution.

As was mentioned previously, we consider values of P and G parameters as a function of the
problem size for the heuristic approaches and one should choose it proportionally to the problem
size. The values of G and P parameters for the genetic algorithm for different sized problems
can be found in Appendix A.

It is important to note that both different algorithms give us the same value of the objec-
tive function. This fact verifies the solution obtained with the proposed solution approaches
and confirms the accuracy of the implementation of the prospect theory model into heuristic
approaches.

We notice that the value of criterion ξ for the genetic algorithm is slightly worse than the
results achieved when testing the differential evolution algorithm. At the same time the CPU
time of the GA is much less which gives a benefit compared to the DE. This benefit defines the
choice of this solution approach for further computational study for this research.
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Table 4. Comparative analysis of the index tracking
and prospect theory with index tracking problem

(in-sample)

Data set Model CPU time n TE TE o TE u

Hang Seng IT 0.047 30 0.4290 0.2444 0.1845
PT+IT 70 20 0.8420 0.5690 0.2730

DAX 100 IT 0.109 69 0.3354 0.1835 0.1519
PT+IT 242 51 1.1763 0.7336 0.4427

FTSE 100 IT 0.141 81 0.2855 0.1657 0.1198
PT+IT 250 46 1.1463 0.7919 0.3544

S&P 100 IT 0.125 83 0.2682 0.1553 0.1130
PT+IT 347 67 0.9409 0.5881 0.3529

Nikkei 225 IT 0.266 159 0.1686 0.0921 0.0765
PT+IT 1803 69 0.9802 0.6300 0.3501

5.4 The index tracking problem and prospect theory model

The index tracking problem usually chooses many assets in the optimal portfolio which is very
difficult to manage and rebalance. That is why the IT has a cardinality constraint which then
becomes a computationally challenging problem for researchers. In this section we discuss em-
pirical results of in-sample and out-of-sample performance of the IT and PT with index tracking
problems (with and without cardinality constraint). As out-of-sample tests we use simulation of
bullish and bearish market.

The computational results presented in this section for index tracking problems were obtained
using five data sets described earlier. The first asset in each data set is the index and is not
included in the investment universe of assets. We also use a methodology described above for
simulation of bullish and bearish markets in out-of-sample tests.

We analyse the performance of the results by several criteria such as CPU time, the number
of assets in the portfolio n, tracking error TE, tracking error over the index TE o, tracking error
under the index TE u. It should be noted that we use absolute values of TE, TE o, TE u for
our analysis. Table 4 reflects the empirical results of the experiment for the used sets of data.

It is easy to see from the table that the number of assets in the PT with IT optimal portfolios
is approximately half those in the IT portfolios. This issue gives a good advantage to the PT with
IT in comparison with the IT model because of transaction costs and convenience of portfolio
management.

It is obvious that the tracking error of the IT model solution is always less than in PT with
IT optimal portfolios but it is still comparable. One can notice that the beneficial difference
between parameters TE o for IT and PT with IT models is much greater (in proportion to the
tracking error) than between parameters TE u for these models. This means that the PT with
IT model chooses assets with higher return than the IT model using the reference point (index)
only as a starting point but not as a benchmark. These facts confirm that the PT with IT model
focuses more penalty on not achieving the reference point compared with exceeding it.

We test the performance of the two models using out-of-sample simulations and use the same
criteria for analysis. Firstly, we simulate on a bullish market. Table 5 reflects the empirical results
of the experiment.

We should note that the behaviour of the investigated models in the bullish market is very
similar to the in-sample performance. According to the tracking error parameter the PT with
IT portfolios show smaller value compare to the in-sample results.

We also test the performance of two models using an out-of-sample simulation on a bearish
market. It is interesting to explore the performance of the models in opposite conditions. In
Table 6 one can find the out-of-sample empirical results.

In contrast with the previous results, PT with IT model fails to show a good outcome. This
model performs worse in each data set for each parameter when compared to the IT. Only
tracking error of the prospect theory with IT improved and becomes even less than for IT model
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Table 5. Comparative analysis of the index tracking
and prospect theory with index tracking problem

(out-of-sample: simulation of bullish market)

Data set Model TE TE o TE u

Hang Seng IT 0.1292 0.1292 0
PT+IT 0.3589 0.3589 0

DAX 100 IT 0.0934 0.0918 0.0016
PT+IT 0.5470 0.5470 0

FTSE 100 IT 0.1304 0.1304 0
PT+IT 0.6335 0.6335 0

S&P 100 IT 0.1271 0.1271 0
PT+IT 0.4432 0.4432 0

Nikkei 225 IT 0.1225 0.1225 0
PT+IT 0.5660 0.5660 0

Table 6. Comparative analysis of the index tracking
and prospect theory with index tracking problem

(out-of-sample: simulation of bearish market)

Data set Model TE TE o TE u

Hang Seng IT 0.1960 0.1960 0
PT+IT 0.1806 0.1806 0

DAX 100 IT 0.2991 0.1673 0.1317
PT+IT 0.2928 0.1481 0.1446

FTSE 100 IT 0.3013 0.1217 0.1795
PT+IT 0.3136 0.1164 0.1972

S&P 100 IT 0.3026 0.1172 0.1854
PT+IT 0.2984 0.1085 0.1899

Nikkei 225 IT 0.2750 0.1342 0.1408
PT+IT 0.3017 0.0880 0.2137

portfolios.
Finally, we can conclude that the prospect theory model with index being a reference point

is very effective in an increasing market due to its mathematical formulation which makes it
desirable to exceed the reference point (in our case it is the index values). In addition it is more
beneficial in terms of lower number of assets in the optimal portfolio. However, in a crisis market
situation PT with IT model performs worse than IT. Thus, the prospect theory model adjusted
for index tracking works well in a stable or increasing market condition.

Cardinality constrained index tracking and prospect theory with index tracking
models

The index tracking model with a cardinality constraint is a very computationally challenging
problem. On the one hand, the optimal solution is unknown and one should set the termination
criteria very carefully to obtain the best results. On the other hand, the CPU time required is
significantly large versus the non cardinality constrained model.

For the index tracking and prospect theory with index tracking models with cardinality con-
straint we used similar asset thresholds li = 0.01, ui = 1 (i = 1, . . . , N) and parameter K which
is the number of assets allowed to be included in the optimal portfolio as described in Section
5.2.

Tables 7, 8 and 9 show the performance of the IT and PT with IT models with the cardinality
constraint in-sample, out-of-sample (simulation of bullish market) and out-of-sample (simulation
of bearish market) empirical results.

As displayed in the tables the behaviour of the models with the cardinality constraint is
completely similar to the behaviour of the non-cardinality constrained IT and PT with IT
models in different conditions. It should be noted that CPU time for behavioural models with
the additional constraint does not change much and it implies that the genetic algorithm deals
well with such type of complex problems. So, the cardinality constrained models results confirms

19



January 28, 2016 Quantitative Finance Paper˙revision

Table 7. Comparative analysis of index tracking and
prospect theory with index tracking problem with

cardinality constraint (in-sample)

Data set Model CPU time K n TE TE o TE u

Hang Seng ITcc 102 15 15 0.5760 0.3316 0.2448
PT+ITcc 74 15 15 1.1871 0.7828 0.4044

DAX 100 ITcc 200 20 20 0.5889 0.3280 0.2609
PT+ITcc 275 20 20 1.3309 0.9616 0.3693

FTSE 100 ITcc 193 25 25 0.6650 0.3819 0.2831
PT+ITcc 323 25 24 1.4432 1.0323 0.4109

S&P 100 ITcc 176 25 25 0.5555 0.3223 0.2332
PT+ITcc 459 25 22 1.2972 0.9111 0.3861

Nikkei 225 ITcc 612 25 25 0.7211 0.3845 0.3367
PT+ITcc 2780 25 25 1.3179 0.9637 0.3542

Table 8. Comparative analysis of index tracking and
prospect theory with index tracking problem with
cardinality constraint (out-of-sample: simulation of

bullish market)

Data set Model TE TE o TE u

Hang Seng ITcc 0.1519 0.1519 0
PT+ITcc 0.3915 0.3915 0

DAX 100 ITcc 0.1202 0.1195 0.0007
PT+ITcc 0.7190 0.7190 0

FTSE 100 ITcc 0.1826 0.1826 0
PT+ITcc 0.7285 0.7285 0

S&P 100 ITcc 0.1674 0.1674 0
PT+ITcc 0.6149 0.6149 0

Nikkei 225 ITcc 0.1296 0.1296 0
PT+ITcc 0.6326 0.6326 0

Table 9. Comparative analysis of the index tracking
and prospect theory with index tracking problem with

cardinality constraint (out-of-sample: simulation of
bearish market)

Data set Model TE TE o TE u

Hang Seng ITcc 0.2484 0.2484 0
PT+ITcc 0.1992 0.1992 0

DAX 100 ITcc 0.2907 0.1761 0.1145
PT+ITcc 0.3343 0.1652 0.1691

FTSE 100 ITcc 0.3248 0.1165 0.2083
PT+ITcc 0.3268 0.0954 0.2313

S&P 100 ITcc 0.2795 0.1208 0.1586
PT+ITcc 0.3066 0.0876 0.2189

Nikkei 225 ITcc 0.2939 0.1720 0.1219
PT+ITcc 0.3366 0.0943 0.2423

the conclusion about the character of compared models made above.

5.5 Summary

In this section the empirical study and analysis are presented. We discuss the parameters of the
models as well as define parameters for developed heuristic algorithms applied to the prospect
theory model. We mentioned above that using heuristic solution approaches the parameters of
these algorithms is very important for an accurate solution.

Previously, prospect theory model was considered by other researchers in the literature. In
contrast to similar researches (Levy and Levy 2004) and (Pirvu and Schulze 2012) known in
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the literature we obtained the optimal portfolios for the prospect theory with index tracking
model independently and not as a subset of the compared (index tracking) model efficient set.
In addition, we use data with different types of asset returns distribution but not normal in
contrast to (Levy and Levy 2004).

In unpredictable market conditions the index tracking portfolio selection problem becomes
very popular. We investigated the prospect theory model with the index as the reference point
(with and without cardinality) compared to the basic index tracking model. It has been found
that PT model is more beneficial in terms of lower number of assets in the portfolio than index
tracking (for models without cardinality constraint) that reduces transaction costs and makes
rebalancing of the portfolio more convenient. We also noticed that returns of the PT with index
tracking model mostly exceed the index returns which confirms our previous conclusion about
the impact of the reference point. However, in a bearish market the prospect theory model shows
greater losses compared to the index tracking model.

6. Conclusion

The behavioural approach to portfolio theory has become very popular in the last decade because
the market has demonstrated significant instability. There is much theoretical evidence in the
literature that behaviourally based models could help to decrease the risk of the portfolio since
they take into account natural loss aversion and risk aversion biases of the investors. However,
we found that there is a lack of practical and empirical studies in the literature which could
show and prove these benefits and shed light on the performance of these models in different
market situations.

In this research we studied behaviourally based model namely the prospect theory with index
tracking model using comparative analysis with the traditional index tracking model. In order
to investigate the benefits of a behavioural approach we implemented cardinality constraints to
these models and tested the results out-of-sample using simulation of bullish and bearish return
distributions. The results were presented for five publicly available data sets which reflect the
dynamics of major world markets.

We developed several solution approaches for the prospect theory model to obtain the accurate
solution using heuristics. The differential evolution algorithm and the genetic algorithm were
implemented in Matlab in order to do this. We also justify the parameter choice for these
models using an empirical study due to the importance of the parameters in heuristic algorithms
application. However, we propose some limitations of suggested solution approaches. It mainly
connected with increasing size of the problem data set and affect CPU time and convergence of
the algorithms. In order to use these algorithms for bigger data sets the generalisation of some
algorithm’s stages should be done (for example, crossover and mutation).

The application of the prospect theory with index tracking model to portfolio optimisation
problem show that the model obtains higher returns in comparison with the basic index tracking
model. It can be explained by the effect of the reference point. The prospect theory wants to
exceed the reference point (for example, risk free rate) as much as possible which reflects the
psychological biases. So, this reference point steers the model to choose the assets with higher
returns no matter which desired level of return for the whole period is set.

We can conclude that prospect theory optimal portfolios performed better in terms of returns
than index tracking model and the index itself in-sample and in a bullish market. However, the
PT model was slightly worse in a bearish trend compared to the index tracking model. At the
same time it has been found that the PT with IT model is normally less diversified than the IT
model which is a benefit in terms of transaction costs and portfolio management issues.

We would like to point that, in this paper prospect theory was applied to a large universe
of assets. Previously, only small experiments were presented in the literature (for example 2-3
assets). Thus, this empirical study aims to encourage the use of prospect theory in practice along
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with mean variance and index tracking models for specific real market conditions.
At the same time, the use of behaviourally based approach to the portfolio selection problem

has potential limitations in application to the derivatives because it is difficult to implement
different conditions and types of the contracts. The question here is how to implement additional
information to the model and how to identify the influence of the behavioural biases to the results
in the analysis. In addition, it is not clear which solution approach can be applied to this problem.

It should be noted that the problem of portfolio optimisation using a behavioural approach is
very challenging. There are different ways to investigate its solution and performance.

As was proposed in this research we developed several heuristic solution approaches for the
prospect theory model taking into account the specific features of the model. As an idea for
future work, one can bring more intelligent choice of the assets in the portfolio into the breeding
stage of the genetic algorithm based on the observations and preferences of the studied model. In
each generation one distinguishes the assets which is included in the best portfolio and use this
information for the breeding stage in the next generation. Instead of checking all assets in the
data the algorithm could faster find the preferable one using the information about frequency of
appearance of assets in previous best portfolios. It could help to decrease the CPU time for this
algorithm by reducing the search space of suitable assets for the best portfolios and decreasing
the number of generations.
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Appendix A: Parameters G and P of the heuristic approaches

Remark. The parameters of G and P for the Nikkei 225 data set is equal to the S&P 100 data
set in our empirical study because specifically for these returns (the Nikkei 225 set) the genetic
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Parameter Parameter value CPU time PT (x) ξ
G 150 444 0.5937 0.0152

180 550 0.6442 0.0002
210 652 0.6443 0.0001

P 35 415 0.5694 0.0032
40 550 0.6442 0.0002
45 697 0.6437 0.0001

Table A1. Genetic algorithm parameter comparison for the DAX 100 data set

Parameter Parameter value CPU time PT (x) ξ
G 160 532 0.823 0.0043

185 630 0.8429 0.0004
220 718 0.8429 0.0002

P 37 479 0.8423 0.0164
42 630 0.8429 0.0004
47 755 0.8431 0.0002

Table A2. Genetic algorithm parameter comparison for the FTSE 100 data set

Parameter Parameter value CPU time PT (x) ξ
G 160 586 0.7353 0.0172

190 721 0.7822 0.0006
220 953 0.7853 0.0004

P 40 542 0.7421 0.0043
45 721 0.7822 0.0006
50 994 0.7864 0.0003

Table A3. Genetic algorithm parameter comparison for the S&P 100 data set

Parameter Parameter value CPU time PT (x) ξ
G 160 1050 -0.9555 0.0001

190 1179 -0.9894 0
220 1547 -0.9894 0

P 40 939 -0.9468 0.0021
45 1179 -0.9894 0
50 1486 -0.9894 0

Table A4. Genetic algorithm parameter comparison for the Nikkei 225 data set

algorithm finds the best solution quickly enough. So, we do not need to increase the number of
generation and population size. The resulting portfolio is undiversified compare to the number
of assets available in total. The algorithm defines the preferable assets very fast and the rest of
time just plays with the weights.
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