
Automation of Electro-Hydraulic Routing Design using Hybrid
Artificially-Intelligent Techniques

OLIVER Q. FAN, JOHN P. SHACKLETON, TATIANA KALGONOVA

School of engineering and design
Brunel University

Uxbridge Campus, Brunel University, Uxbridge, UB8 3PH
UNITED KINGDOM

 http://www.brunel.ac.uk

Abstract: Traditional ‘simple’ genetic algorithms are theoretically capable of solving the 3-D spatial problem
represented by hydraulic and electrical harness design. However, the size of the ‘solution space’ to be searched,
for even the simplest of problems can represent a computational load sufficient to limit any practical
application. This research proposes a ‘key-point search’ which when used prior to the GA can successfully
reduce the size of the computational task. It does this by identifying those points in the physical three-
dimensional space which are most likely to be useful in the final solution and producing an initial population of
solutions from these points. This is shown to significantly reduce computation times to find valid solutions.

Key-Words: Artificial Intelligence, Automated routing, 3D pipe routing , Genetic Algorithms, Key point search ,
Industrial Design

1 Introduction
As Cross points out [1], brute force of computation
actually can achieve performances that outmatch
human performance in a number of significant
areas of human cognitive endeavour. Moreover, in
addition to doing things that human beings simply
cannot do unaided, he notes that humans want
machines to do things that are arduous and difficult
for human beings to do. So rather than just emulate
human abilities, artificially intelligent design
support should be able to a) do things that designers
cannot do, and b) relieve designers of unrewarding
aspects of the design activity.

The problem that forms the basis of this study
originated from an industrial partner who had the
problem that whenever they make even minor
design changes to the mechanical geometry of their
products, they potentially have to re-route their
hydraulic and electrical lines. This is difficult for
them to do, because it is not easy route hundreds of
different wires and pipes inside a complex 3D
environment where each competes with the other
for space. Moreover it is time consuming, and not a
particularly rewarding job for designers, and if a
method to automate this task could be developed,
the potential savings in time and human resource
could be immense.

The problem falls into a category of spatial
configurations problems, and there have been some
attempts to use evolutionary design techniques
have been developed to solve other problems in this
domain. Bentley has an evolutionary system to
design different tables which is a combination of
legs and flat surfaces. [2]. In our problem, not only
spatial position of parts and their environment
should be taken into take account, but ideally other
constraint on the design solution must be take into
account as well.

2 Tedious problems for designers
The aim is to develop a universal method to route
pipes and wires through any given 3D space
automatically and within a reasonable time.
Additionally, this method should also be capable of
expansion to encompass other characteristics such
as pipe cost, standard inventories, etc.

A primitive problem, based on a simply defined
physical space with a few obstacles, was used to
develop and test the new algorithm. Each pipe or
hose is pre-defined with their starting point, ending
point and size along with other constrains such as
the price of the hose, size of the hose etc. However

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp457-462)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/42131139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

there is nothing inherent in either programme, or
the underlying methods developed, to limit it to
such primitive problems. One space and obstacle
used in the primitive problem is shown in Figure 1,
though to make it more difficult, in other test cases
a second obstacle has been placed randomly in the
space before programme is running. The primitive
routing problem requires that two different hoses
are routed though the space, Hose A from Point A
to Point B, and Hose B from Point C to Point D. A
satisfactory routing design requires that

• The hoses should neither intersect with the
obstacles in, nor with each other.

• The Hose has to be close to the surface to
get support.

• The cost of total combination will be as
low as possible.

Fig1: Primitive problem space.

The space is 2000mm x 200mm x 160mm in size,
the wall is 100mm x 160mm x 150mm and the hole
is 20mm in radius. Hose A is 10mm in radius and
Hose B is 5mm in radius. Price of hose A is 1.5 per
unit, hose B is 2.5 per unit.

3 KPA + GA

3.1 The GA and its drawbacks
On first viewing, the problem seems not too
difficult, since the 3D space is complex, and there
only 2 hoses, though the issues to be solved around
this are common to much more complicated hose
combinations and more complex 3D environments,
though with increasing space and more hoses,
many more potential solutions are possible. As we

know any point 1 to point 2, the direct line is the
shortest, therefore the cost of the hose will be
lowest. But what if the combination of some hoses
are more expensive than one hose and competes for
the same space? Should this combination of hoses
get priority? Huge numbers of possibilities exist for
the solutions, hoses compete for space from each
other, and also with the 3D environment. Moreover
there can be other constrains to be applied to, such
as in the primitive case, the overall cost of the route.
The method to solve the problem will have the
ability to search very large solution space and come
up with good enough solutions. Because the given
3D environment is changeable, a direct formula
will be difficult to find. So we are looking at
indirect methods like evolutionary systems which
do evolve to search large space and check the
results until the results are satisfactory. GAs are
one of the most successful evolutionary systems
and were developed by Holland in an attempt to
explain the adaptive process of natural systems and
to design artificial systems based upon these natural
systems [3]. GA has been widely used for a broad
range of optimisation problems for years [4], and
have been described as being a ‘search algorithm
with some of the innovative flair of human search’
[5]. GAs are today renowned for their ability to
tackle a huge variety of optimisation problems and
for their consistent ability to provide excellent
results, they are robust [6][7].

In this research, a GA system was used to try to
solve the problem, and very quickly the
disadvantage of GA systems was apparent. The
efficiency problem; to evolve a reasonable solution
with 2 hoses with only 1 constrains applied which
is the length will normally take GA hours to run.
Do a mathematical calculation, there are
2000x200x160 possible turning points of a hose,
and in GA we defined maximum turning points of
a hose is 4, so there will be
(1): (2000x200x160)! / (2000x200x160-4)!
choices for one hose within GA. This is a huge
number even for a modern computer. And that is
only for one hose in a not very large 3D space;
imagine if there are hundreds of them. GA does
provide acceptable results eventually if you give it
enough time. But the time GA consumed is not
practical at all. Is there any way to speed up the GA?
There are two obvious ways. First choice is to find
faster computers to deal with the problem, the
faster the better of course. More computing power
means less calculation time. But this is not a
practical way either since there is an always

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp457-462)

physical limit for a computer and the problem can
be easily big enough close to infinite. The second
choice is to narrow down the search space. Properly
all the humans are using this to solve a really time
problem unconsciously. If a human designer look at
the primitive problem, they will spot the area
around the obstacle straight way. The trick is
human designer will penalize unless space straight
away, then for a simply case like the primitive
problem, it not much route choice left. In simple
GA, the whole space is possible location for the
route and each location treated equally. For a more
complex 3D space, human designer will take lot
longer time to figure out the route(s) because even
human designer can penalize useless route location
quite easily, it still will have too much possible
route location choices left. If there is a way that let
the computer to penalize useless space in the given
3D space, the search space of GA will be lot
smaller. And optimisation is one of the advantages
of GA over human designers. If we can combine
these two advantages together, the human’s ability
to penalize useless 3D space and computer’s superb
combination calculation, is it will be a new way to
route hoses automatically in reasonable time?

3.2 Key Point Search (KPA)

3.2.1 Step of KPA
To improve the efficient of GA, we propose the
idea of finding key points of the given 3D space
which we called it Key Point Search (KPS).

The first step is to put the whole 3D space into a
3D bounding box and then divide the box into
small 3D cubes. [Fig. 2] The 3D bounding box will
provide the physical limits of the space; it can be
extended if needed.

Fig 2. 3D environment in bounding box

The size of the cubes is changeable too; the suitable
size will be the size of the biggest hoses or bigger
that will guarantee any one of the hose will get
through. In my program, the cube size is set to 20

by default. That means, the whole 3D space has
been divided into 8000 small cubes.

The second step is to eliminate the cubes that
intersect with the walls. The location of those cubes
will not be needed since the intersection with the
wall. After this process, there are 5956 cubes left.
That means almost 25% of the cubes are intersected
with the wall and those locations are not good for
routing.

The third step is to eliminate the cubes that
surrounded in all the directions by other cubes, in
another words, those cubes are in the middle of the
air with connections to all directions. Why we have
to eliminate those locations? It’s because if they are
surrounded by other cubes, they can accessed by all
the possible directions and can be represented by
other cubes. For example in X direction, if there’re
3 cubs next to each other, n1, n2, n3. So in the
direction of X, if we can reach n1 and n3, then we
can definitely reach n2 since n1, n2, n3 are
connected next to each other. Similarly, if there is a
string of points n1, n2, n3 … nx, nx+1 which are
connected next to each other, if we can connect to
n1 and nx+1, then we can reach any cubes in
between n1 and nx+1 since they are all connected
next to each other. After this process, there are
3290 cubes left.

The fourth step is to eliminate the cubes that
surrounded by other cubes in one plane, either X, Y,
or Z plane. If a cube (red in Fig. 3) is surrounded
by other 4 cubes in a plane that means either one of
those 4 cubes that can access the middle cube and
the middle cube can be represent by surround 4
cubes, so the middle cube can be eliminated.

Fig. 3 Points connections in one plane

In the other way of explanation, only those cubes
that have the direct connectivity to further space
will be saved into next process, the rest cubes will
be eliminated because the can be represented by the

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp457-462)

cubes selected. After this process, only 79 cubes
left.

Fig. 4 KPA level 3/4

In the picture above [Fig. 4], the yellow dots (light
grey if printed B/W) are the cubes that left from
step three; the green dots (darker grey if printed in
B/W) are the cubes that left from step four in the
primitive problem.

The last step is to eliminate the cubes that have
connection with other two cubes in one direction,
either X axis, Y axis or Z axis. Same reason, keep
the cubes that have the direct connectivity to
further space and eliminate the ones can be
represented by those selected cubes. By now, there
are 16 cubes left, and those 16 points are the key
points we was looking for and the locations are
saved for further processing.

Fig. 5 KPA Level 5

The blue dots (light grey if this paper printed in
B/W) are the key points of the given space found
by KPS.

3.2.2 KPA Matrix
After key points have been found in the given space,
a matrix will be created to holds all the information
that needed.

First layer of the matrix is the connectivity between
key points and maximum volume that between 2
key points. Since 15 points have been found in the
primitive problem, the matrix will look like:

Table. 1 KPA Matrix

Every two different key points will be tested to see
if they have direct connectivity by connecting these
two key points with a hose same size of cubes. If
the hose created not intersect with any of the wall
that means these two key points have direct
connectivity. Otherwise, they don’t. If two key
points have direct connectivity, the maximum pass
though volume will be checked next. The
maximum pass-though volume is to see how many
hoses can be route though these two key points. Of
course, if the maximum pass though volume is
bigger than all the hoses that mean all the hoses can
be route though these two key points.

Fig. 7 KPA space frame

In the primitive problem, Hose A is size of 10 and
Hose B is size of 5, so if the maximum pass-though
volume of two key points is bigger than total size
of Hose A and Hose B which is 15, that means both
hoses can be route though these two key points in
the same time.

The way to check maximum pass-though volume of
two key points is to connect a hose with increasing
size till the hose intersected with the wall or
obstacle. Key points at this stage will be allowed to
move in small steps to make sure the maximum or

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp457-462)

near maximum pass-though is reached. Fig. 7
presents a full connectivity frame formed by direct
connections between key points.

From the first layer of the matrix[Table.1], all the
positive numbers in the matrix shows connectivity
between key points also the maximum pass-though
volume, for example key points 1 and 2 have direct
connectivity, and both hoses can be route though
key point 1 and key points 2.

The second layer of the matrix is the length
between 2 key points. Since length is a very
important factor of the problem and it will be
referred so many times in the calculation of the
routing process, it’s a better way to save it so can
be referred later on in the process. It saves the time
of every time when length of the hose needed in the
calculation.

3.2.3 Select Routes
There’s one more step from key point matrix to
finial stage that can be used by GA which is
picking the routes for hoses. Even from 15 key
points, there are still a big number of possibilities
of route locations. This is just in the primitive
problem, in the real case, there will be lot more key
points and the possibilities of the route will be even
bigger. But the most interesting thing is those key
points are not be picked totally randomly like GA
will do since they do have connectivity as
relationships between each two of them.

Here is the example of connectivity of primitive
problem:

Fig. 8 Key Point Relationship
When the program starts to route a hose though the
space, it checks the starting point and end point
along with the size of the hose. First of all, check
how many key points will have direct connectivity
with the starting point of the hose. Then do the

same for the ending point. For example, starting
point of Hose A has direct connectivity with key
points 2, 3, and 12, and ending point of Hose A has
direct connectivity with key points 13 and 14. Then
program starts with the starting point, check if all
those 3 key points has direct connectivity will have
enough volume to pass Hose A which is size 10
and it will. Program will then randomly pick one of
the key points from those 3 candidates. After that, it
will check if the picked key point has direct
connectivity to ending point. If yes, then a route has
been created, if not, then start to find the next level
of key points which is connected to the key points
program picked. For example, program pick 12
randomly, then program will check the Key Point
Matrix to find out key points 1,2,11, since key
points 2 is one of the choice in the previous level,
only key point 1 and 11 will be available for
program to pick with. If there’s nothing left to
choose from next level, program will then pick a
different candidate to start with from current level
of the key points. If there’s not a possible route
found after all the possibilities, which means there
is not a possible route for this hose to route though
the give 3D space.

Once a route has been found, the volume will be
subtracted from the Key Point Search Matrix before
the second hose begin to route. So hoses and wires
will not compete for space from each other.

A group of selected designs will then be put into
the GA pool to form the first generation of the GA.

4 Conclusions
The results from the combination of KPA and GA
are significant.

With GA only, maximum turning points of a hose
is set to 4 and the very basic constrain is the hoses
not intersect with the obstacle or themselves.

Max Turing
Point

Number of
Design

Time

4 400 643 mins
4 400 655 mins
4 400 631 mins

Table. 2 GA performance

With KPA + GA, turning point of a hose is
generate automatically depends on the route that
KPA matrix choose. And length(cost) constrain
took into account as well.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp457-462)

KPA GA Total

6 mins < 1 min 7 mins

6 mins <1 min 7 mins

6 mins <1 min 7 mins

Table. 3 KPA+GA performance

Both tests were running in the same machine which
is a dual Xeon 2.66GHz, 2GB Ram with windows
SP2.

Key point search actually transform the character of
a given space to a mathematical matrix to largely
reduced the search space for evolutionary systems
like GA. KPA can very much improve the
performance of GA and also it’s not bonded to GA
only. It’s also flexible to combine with other
evolutionary systems. I am not saying KPA is the
best or the only techniques that can solve this kind
of particular problems, but at least it is a new
approach to automate the pipe/wire routing in a
practical time.

References:

[1] Nigel Cross, Natural intelligence in design,
Design Studies, Vol.20, No.1, 1998, pp. 25-39

[2] Peter J. Bentley & David W. Corne, Creative
Evolutionary Systesm, Academic Press, 2002

[3] Peter J. Bentley, Evolutionary Design by
Computers, Morgan Kaufmann, 1999

[4] Holland, J.H, Genetic Algorithms. Scientific
American, 1992, pp. 66-72

[5] Goldberg, D. E. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-
Wesley. 1989

[6] Davis, L. The handbook of genetic algorithms.
Van Nostrand Reinhold, New York 1991

[7] Fogel, D. B. Asymptotic Convergence
Properties of Genetic Algorithms and Evolutionary
programming: analysis and experiments. J. of
cybernetics and system 25, Tayor and Francis Pub.
Pp.389-407

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp457-462)

