
 

 

  
Abstract—The evolutionary design of electronic circuits, or 

evolvable hardware, is a discipline that allows the user to 
automatically obtain the desired circuit design. The circuit 
configuration is under the control of evolutionary algorithms. Several 
researchers have used evolvable hardware to design electrical 
circuits. Every time that one particular algorithm is selected to carry 
out the evolution, it is necessary that all its parameters, such as 
mutation rate, population size, selection mechanisms etc. are tuned in 
order to achieve the best results during the evolution process. This 
paper investigates the abilities of evolution strategy to evolve digital 
logic circuits based on programmable logic array structures when 
different mutation rates are used. Several mutation rates (fixed and 
variable) are analyzed and compared with each other to outline the 
most appropriate choice to be used during the evolution of 
combinational logic circuits. The experimental results outlined in this 
paper are important as they could be used by every researcher who 
might need to use the evolutionary algorithm to design digital logic 
circuits. 
 

Keywords—Evolvable hardware, evolutionary algorithm, digital 
logic circuit, mutation rate.  

I. INTRODUCTION 
VOLVABLE hardware [1] – [3] is a technique to 
automatically design electronic circuits, where the circuit 

configuration is carried out by evolutionary algorithms. 
Several evolutionary algorithms, such as genetic algorithm 
[4], evolution strategy [5], genetic programming [6], have 
been used for the evolution of digital circuits. Furthermore, 
numerous researchers have altered evolutionary algorithms 
(by changing for example the selection mechanisms, the 
chromosome evaluation etc.) to improve its performance in 
terms of the number of generations, fitness value reached, 
computational time etc. leading to the introduction of several 
other evolutionary algorithms such as Strength Pareto 
Evolutionary Algorithm [14], Traceless Genetic Programming 
[15], Embedded Cartesian Genetic Programming [16] etc. 
Other researchers, alternatively, have introduced 
decomposition strategies such as the increased complexity 
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evolution [11], bi-directional incremental evolution [10], 
generalized disjunction decomposition [7] to improve the 
scalability and the evolvability, which are the main issues that 
limit the use of evolvable hardware for real world 
applications. The scalability limits the size of the circuit that 
may be evolved. Evolvability, as defined by Altenberg in [8], 
is the ability of the genetic operator/representation scheme to 
produce offspring that are fitter than their parents. What is 
clear from all those papers is that every time a researcher uses 
different evolutionary methods, it is necessary to tune its 
parameters, such as mutation rate, population size, and fitness 
evaluation, in order to achieve the final goal more efficiently: 
the design of the circuits. In this paper, we are analyzing the 
behavior of the evolutionary algorithm for designing digital 
circuits based on PLA structures when the mutation rate is 
changing dynamically. Six different mutation rates (fixed and 
variable) are analyzed and compared with each other in order 
to find general solutions. In [12][13] the behavior of the 
mutation rate was studied for designing and optimizing digital 
logic circuits based on FPGA structures. The mutation 
operator is very important since it brings diversity into the 
population of the possible solutions. If the mutation rate is 
very high, the genetic search will be transformed into random 
searches but it also helps to reintroduce lost genetic material 
[9]. Therefore a correct value for the mutation rate should be 
investigated. 

This paper is organized as follow: Section 2 illustrates the 
evolutionary algorithm, from the description of the 
chromosome to the explanation of the fitness calculation 
chosen for the evolution of combinational logic circuits. 
Section 3 describes the six different mutation rates used for 
the evolution processes and Section 4 shows the experimental 
results, based on the number of successful evolutions, of the 
designed circuits. Section 5 concludes this paper and outlines 
the significance of the results obtained. 

 

II. EXTRINSIC EVOLVABLE HARDWARE 
In this section extrinsic evolvable hardware is described. 

All the genetic mechanisms from the initialization to the 
fitness function calculation are explained. As both the genetic 
algorithm and the fitness function are simulated in software, 
the implemented system is called extrinsic evolvable hardware 
system. 
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A. Evolutionary Algorithm 
The evolutionary algorithm chosen is the well known (1+λ) 

evolution strategy [17][18]. It has been decided to use this 
algorithm because was extensively tested for its efficiency for 
the design of digital logic circuits [19]. The implemented 
evolution strategy is shown in Figure 1. At the beginning all 
the λ individuals are randomly initialized. After this first step, 
they are evaluated and then selected. The individual with the 
highest fitness function value will be selected in order to 
reproduce a new population, using the mutation operator only. 
In the next generation all the individuals are evaluated and 
then again selected. This continues to run until all the 
conditions are met. The conditions are usually a certain 
number of generations or a fitness value that does not increase 
anymore. The second condition happens when the stalling 
effects occur [7]. However, at this generation the best 
individual is going to be selected within (1+λ) indivuduals. 
This evolutionary algorithm is very simple and could be easily 
implemented into hardware and tested in an intrinsic 
environment. 
 
 

B. Genotype Representation 
Since the evolutionary algorithm chosen is to be used for 

designing logic circuits based on PLA, and in the PLA both 
planes are programmable (the AND plane and the OR plane), 
we have decided that each chromosome should contain the 
required information to make the evolution of the connections 
in the AND plane and in the OR plane possible. In Figure 2 an 
example of a PLA, with the AND and the OR planes, together 
with the chromosomes representations is shown. Each 
connection-point in the AND plane could be: connected to the 
positive (direct to the input signal), connected to the negative 
(connected to the output of the NOT gate of the input signal) 
or not connected. The connection-point of the OR plane could 
be connected or not connected to the output of the AND gates. 
As a result, to encode the possible connections in the AND 
plane 2 bits are required. For the OR plane only 1 bit is 
needed for each possible connection.  
 

C. Initialization  
In the implemented evolutionary algorithm all the 

chromosomes are randomly initialized. 
  

D. Fitness Evaluation 
The fitness is a measure of the quality of the evolved 

individual. During the evolutionary process each individual 
(described by its chromosome) is evaluated. The fittest 
individuals are usually selected for the reproduction of a new 
generation that will replace the old one. The fitness function is 
the function used to evaluate those individuals.  The fitness 
function for the evaluation of the PLA is very simple: each 
evolved PLA is stimulated with all the possible input  
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Figure 1. Implemented algorithm for the design and optimization of digital 

logic circuits. Figure taken from [7]. 
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Figure 2. Schema of the PLA with representation of the chromosome. 

 
combinations and the obtained results are compared with the 
truth table of the desired digital logic circuits. A value in 
percentage, based on the quality of the evaluated individual, is 
assigned to each PLA. The PLA with the highest fitness value 
is selected for the reproduction. λ new individuals are then 
generated applying the mutation operator to the selected PLA. 
 

E. Selection Mechanism 
The selection mechanism is based on elitism, meaning that 

only the best individual is selected for reproduction. All the 
other individuals are to be replaced with newly generated. 
 

F. Reproduction Mechanism 
In the implemented (1+λ) evolution strategy, the 

reproduction mechanism is limited to the mutation operator. 
An example of the mutation is given in Figure 3. Since it has 
been decided to use the (1+λ) evolution strategy the mutation 
points are to be changed λ times and the same parent is going 
to produce λ different offspring. How the mutation points 
change during the evolution process is described in the next 
section. 
 



 

 

1 0 1 0 0 0 1 1 0 1 1 1parent

offspring 1 0 1 1 0 0 0 1 0 1 1 1

mutation points

 
Figure 3. Example of a mutation operator. To obtain a new individual some 

genes of the chromosome’s parent are changed. 
 

III. BEHAVIOR OF THE MUTATION OPERATORS 
This section illustrates the different behaviors of the mutation 
operator that have been taken into account for the simulations 
of the described (1+λ) evolution strategy. In order to have a 
general analysis, six different mutation rates have been tested 
for their efficiency to design logic circuits. The chosen 
mutation rates are: 

• (Task 1). Fixed mutation rate at 5% for the evolution 
of the AND plane and the OR plane. It means that the 
5% of all chromosomes within the PLA are changed 
during the evolution.  

 
• (Task 2). Mutation rate fixed at 3.75% for the AND 

plane and 1.25% for the OR plane. 
 

• (Task 3). Mutation rate fixed at 3.75% for the OR 
plane and 1.25% for the AND plane. 

 
• (Task 4). Variable mutation rate (see Equation 1, 

where y is the mutation rate to be chosen and x is the 
number of generations used) within the range of 0 – 
5%. For the AND plane α=5/Ngen and β=0. For the 
OR plane α=-(Ngen/5) and β=5. 

 
• (Task 5). Inverted Task 4. 

 
• (Task 6). Mutation rate fixed at 5% applied to all the 

chromosomes. 
 
For all the tasks, except for Task 6, the following constraint 
has been applied to the system: the part of the chromosome 
corresponding to the AND plane is fixed in such a way that 
each input will be considered for the evolution process. 
However, for task 6, could happen that one or more inputs 
may not take part during the evolution. 
 

βα += xy          (1) 

IV. EXPERIMENTAL RESULTS 
In this section the experimental results obtained using a 2-bit 
multiplier, the 4- and 5-bit even parity circuits are presented. 
Since the two bit multiplier is widely used within the 
evolvable hardware community it has been decided to use it as 
a benchmark for the simulation. The chosen test benches also 

include the even parity circuits. It is difficult to evolve these 
circuits since a change in the value of any of its arguments 
toggles the value of the function. The parity functions are 
often used to check the accuracy of the stored or transmitted 
binary data in computers. The intention of these experiments 
is to show how the choice of a particular mutation rate will 
influence the evolvability for the selected digital circuits. The 
initial data for the simulations is the number of generations for 
the evolutionary process together with the number of product 
lines per each PLA. They are reported at the left side of each 
table. For the experiments, the described (1+λ) evolution 
strategy with λ=5 (thus in total 6 PLAs are involved in the 
evolution) has been implemented into an extrinsic 
environment using C++ and tested with a desktop PC with the 
following configuration: 2,4Ghz Pentium 4, 512 MB RAM. 
Table 1 reports the average (based on 100 runs) of the 
successful evolution for the evolution of the 2-bit multiplier, 
when the mutation rate is chosen according to the given task. 
All the tasks are described in the previous section. In Table 2 
and Table 3 the experimental results for the evolution of the 4- 
and 5- bit even parity bit circuits is shown. In all the given 
tables the best results are highlighted. 
From Table 1 is clear that if we centre attention only on the 
design part, the best behavior of the mutation operator is the 
one given with the Task 3 and Task 4. Using those two tasks it 
is noticeable that a higher value of the successful evolution is 
reached. Nevertheless, it is also true that the given solutions 
are not very well optimized since they are using a higher 
number of product lines. The more the product lines are used 
during the evolution the higher the number of the required 
logic gates in the final configuration of the PLA. Instead, if 
we focus our attention on the optimal solutions based on the 
number of logic gates, we notice that they are obtained when a 
fixed mutation rate (equal to 5%) is applied to the system. 
Regarding the experimental results obtained for the evolution 
of even parity functions, that are shown in Table 2 and Table 
3, it is evident that the mutation rate that gives better results is 
equal to the one described in Task1 (mutation rate fixed at 5% 
for the evolution process). 
 
TABLE 1. AVERAGE (BASED ON 100 OF RUNS) OF THE SUCCESSFUL EVOLUTION 

FOR THE 2-BIT MULTIPLIER. 

Initial data Behavior of the mutation rate chosen according 
with the 

Num. of 
generations 

Number 
of  

Product 
lines 

Task 
1 
% 

Task 
2 
% 

Task 
3 
% 

Task 
4 
% 

Task 
5 
% 

Task 
6 
% 

5000 9 12 0 0 0 0 0 
5000 10 28 0 6 6 6 0 
5000 11 35 4 6 6 11 0 
5000 12 29 12 32 30 10 0 
5000 13 47 5 24 31 12 0 
5000 14 33 5 39 41 3 1 
5000 15 36 4 42 44 5 0 
5000 16 32 2 48 35 1 0 
5000 17 22 3 38 43 1 0 
5000 18 13 3 41 41 1 0 
5000 19 12 0 36 23 1 0 
5000 20 5 0 24 27 0 0 
5000 21 6 1 17 17 0 0 
5000 22 3 0 24 14 0 0 



 

 

TABLE 2. AVERAGE (BASED ON 100 RUNS) OF THE SUCCESSFUL EVOLUTION 
FOR THE 4-BIT EVEN PARITY CIRCUITS. 

Initial data Behavior of the mutation rate chose according 
with the 

Num. of 
generations 

Number 
of 

Product 
lines 

Task 
1 
% 

Task 
2 
% 

Task 
3 
% 

Task 
4 
% 

Task 
5 
% 

Task 
6 
% 

5000 7 0 0 0 0 0 0 
5000 8 47 10 40 39 36 0 
5000 9 82 14 82 67 70 0 
5000 10 89 20 95 83 90 0 
5000 11 95 49 99 92 92 0 
5000 12 99 65 100 95 95 0 
5000 13 100 78 100 98 99 0 
5000 14 100 76 100 99 100 0 
5000 15 100 83 100 100 100 0 
5000 16 100 98 98 100 100 0 
5000 17 100 97 100 100 100 0 
5000 18 100 96 100 100 99 0 
5000 19 100 95 99 100 100 0 

 
TABLE 3. AVERAGE (BASED ON 100 OF RUNS) OF THE SUCCESSFUL EVOLUTION 
FOR THE 5-BIT EVEN PARITY CIRCUITS. ALL THE TASKS EXCEPTS THE TASK 6, 

HAVE BEEN ANALYZED. TASK 6 HAS NOT BEEN TAKEN INTO ACCOUNT 
BECAUSE IT DOES NOT GIVE ANY VALUABLE RESULTS.  

Initial data Behavior of the mutation rate chose according 
with the 

Num. of 
generations 

Number of 
Product 

lines 

Task 1 
% 

Task 2 
% 

Task 3 
% 

Task 4 
% 

Task 5 
% 

5000 35 67 18 59 28 45 
5000 36 69 26 67 42 56 
5000 37 77 15 55 33 53 
5000 38 77 26 67 40 55 
5000 39 78 18 64 39 52 
5000 40 67 17 76 48 57 
5000 41 88 13 72 35 53 
5000 42 77 21 59 46 56 
5000 43 78 23 64 33 56 
5000 44 80 18 64 36 63 
5000 45 81 24 71 40 62 
5000 46 82 25 71 47 62 
5000 47 79 24 80 47 67 
5000 48 73 23 74 36 65 
5000 49 81 10 75 40 66 
5000 50 87 22 68 37 47 
5000 51 75 24 67 39  
5000 52 68 20 68 44 59 

V. CONCLUSION 
This paper has exploited several behaviours of the mutation 

operator to be used for the evolution of digital logic circuits 
based on PLA structures. To have statistically relevant results 
each analyzed logic circuit has been evolved 100 times and 
the average, based in terms of successful evolution has been 
shown and discussed. The mutation operators analyzed were 
with fixed and linearly variable mutation rates. The mutation 
rate was changed dynamically during the evolution process. 
Regarding the evolution of multipliers, the experimental 
results have shown that with the use of fixed mutation rates 
the successful evolution rate was quite low, however the few 
obtained solutions were well optimized. Contrary to this, 
when the mutation rate was dynamically changed the number 
of required generations to fully evolve the combinational 

circuits was drastically reduced. For the even parity circuits 
was noticed that the best solution are obtained when the 
mutation rate was fixed at 5%. Future work would consider a 
wider range for the mutation rate to be used for the 
evolutionary process in order to design and optimize logic 
circuits larger circuits.  
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