

Abstract—The evolutionary design of electronic circuits, or

evolvable hardware, is a discipline that allows the user to
automatically obtain the desired circuit design. The circuit
configuration is under the control of evolutionary algorithms. Several
researchers have used evolvable hardware to design electrical
circuits. Every time that one particular algorithm is selected to carry
out the evolution, it is necessary that all its parameters, such as
mutation rate, population size, selection mechanisms etc. are tuned in
order to achieve the best results during the evolution process. This
paper investigates the abilities of evolution strategy to evolve digital
logic circuits based on programmable logic array structures when
different mutation rates are used. Several mutation rates (fixed and
variable) are analyzed and compared with each other to outline the
most appropriate choice to be used during the evolution of
combinational logic circuits. The experimental results outlined in this
paper are important as they could be used by every researcher who
might need to use the evolutionary algorithm to design digital logic
circuits.

Keywords—Evolvable hardware, evolutionary algorithm, digital
logic circuit, mutation rate.

I. INTRODUCTION
VOLVABLE hardware [1] – [3] is a technique to
automatically design electronic circuits, where the circuit

configuration is carried out by evolutionary algorithms.
Several evolutionary algorithms, such as genetic algorithm
[4], evolution strategy [5], genetic programming [6], have
been used for the evolution of digital circuits. Furthermore,
numerous researchers have altered evolutionary algorithms
(by changing for example the selection mechanisms, the
chromosome evaluation etc.) to improve its performance in
terms of the number of generations, fitness value reached,
computational time etc. leading to the introduction of several
other evolutionary algorithms such as Strength Pareto
Evolutionary Algorithm [14], Traceless Genetic Programming
[15], Embedded Cartesian Genetic Programming [16] etc.
Other researchers, alternatively, have introduced
decomposition strategies such as the increased complexity

Manuscript received February 15, 2006. This work was supported in part

by the EPSRC Grant GR/S17178/.
K. Movsovic and E. Stomeo are undergraduate and PhD students at School

of Engineering and Design, Brunel University, West London, UK. (e-mail:
Konstantin.Movsovic; emanuele.stomeo; tatiana.kalganova@brunel.ac.uk). T.
Kalganova is lecture at the same university. UB8 2TR, Uxbridge, Middlesex,
UK.

evolution [11], bi-directional incremental evolution [10],
generalized disjunction decomposition [7] to improve the
scalability and the evolvability, which are the main issues that
limit the use of evolvable hardware for real world
applications. The scalability limits the size of the circuit that
may be evolved. Evolvability, as defined by Altenberg in [8],
is the ability of the genetic operator/representation scheme to
produce offspring that are fitter than their parents. What is
clear from all those papers is that every time a researcher uses
different evolutionary methods, it is necessary to tune its
parameters, such as mutation rate, population size, and fitness
evaluation, in order to achieve the final goal more efficiently:
the design of the circuits. In this paper, we are analyzing the
behavior of the evolutionary algorithm for designing digital
circuits based on PLA structures when the mutation rate is
changing dynamically. Six different mutation rates (fixed and
variable) are analyzed and compared with each other in order
to find general solutions. In [12][13] the behavior of the
mutation rate was studied for designing and optimizing digital
logic circuits based on FPGA structures. The mutation
operator is very important since it brings diversity into the
population of the possible solutions. If the mutation rate is
very high, the genetic search will be transformed into random
searches but it also helps to reintroduce lost genetic material
[9]. Therefore a correct value for the mutation rate should be
investigated.

This paper is organized as follow: Section 2 illustrates the
evolutionary algorithm, from the description of the
chromosome to the explanation of the fitness calculation
chosen for the evolution of combinational logic circuits.
Section 3 describes the six different mutation rates used for
the evolution processes and Section 4 shows the experimental
results, based on the number of successful evolutions, of the
designed circuits. Section 5 concludes this paper and outlines
the significance of the results obtained.

II. EXTRINSIC EVOLVABLE HARDWARE
In this section extrinsic evolvable hardware is described.

All the genetic mechanisms from the initialization to the
fitness function calculation are explained. As both the genetic
algorithm and the fitness function are simulated in software,
the implemented system is called extrinsic evolvable hardware
system.

Feasibility of the Evolutionary Algorithm using
Different Behaviours of the Mutation Rate to

Design Simple Digital Logic Circuits
Konstantin Movsovic, Emanuele Stomeo, Tatiana Kalganova

E

Tatiana Kalganova
Text Box
Movsovic K., Stomeo E. and T. Kalganova (2006) Feasibility of the Evolutionary Algorithm using Different Behaviours of the Mutation Rate to Design Simple Digital Logic Circuits Proc. of the 3rd Int. Conf. on Computational Intelligence, ICCI 2006

A. Evolutionary Algorithm
The evolutionary algorithm chosen is the well known (1+λ)

evolution strategy [17][18]. It has been decided to use this
algorithm because was extensively tested for its efficiency for
the design of digital logic circuits [19]. The implemented
evolution strategy is shown in Figure 1. At the beginning all
the λ individuals are randomly initialized. After this first step,
they are evaluated and then selected. The individual with the
highest fitness function value will be selected in order to
reproduce a new population, using the mutation operator only.
In the next generation all the individuals are evaluated and
then again selected. This continues to run until all the
conditions are met. The conditions are usually a certain
number of generations or a fitness value that does not increase
anymore. The second condition happens when the stalling
effects occur [7]. However, at this generation the best
individual is going to be selected within (1+λ) indivuduals.
This evolutionary algorithm is very simple and could be easily
implemented into hardware and tested in an intrinsic
environment.

B. Genotype Representation
Since the evolutionary algorithm chosen is to be used for

designing logic circuits based on PLA, and in the PLA both
planes are programmable (the AND plane and the OR plane),
we have decided that each chromosome should contain the
required information to make the evolution of the connections
in the AND plane and in the OR plane possible. In Figure 2 an
example of a PLA, with the AND and the OR planes, together
with the chromosomes representations is shown. Each
connection-point in the AND plane could be: connected to the
positive (direct to the input signal), connected to the negative
(connected to the output of the NOT gate of the input signal)
or not connected. The connection-point of the OR plane could
be connected or not connected to the output of the AND gates.
As a result, to encode the possible connections in the AND
plane 2 bits are required. For the OR plane only 1 bit is
needed for each possible connection.

C. Initialization
In the implemented evolutionary algorithm all the

chromosomes are randomly initialized.

D. Fitness Evaluation
The fitness is a measure of the quality of the evolved

individual. During the evolutionary process each individual
(described by its chromosome) is evaluated. The fittest
individuals are usually selected for the reproduction of a new
generation that will replace the old one. The fitness function is
the function used to evaluate those individuals. The fitness
function for the evaluation of the PLA is very simple: each
evolved PLA is stimulated with all the possible input

Fitness evaluation
Selection

individual 1

individual 2

individual k

individual λ

Best
chromosome

Mutation

Initialisation

λ
condition

met?
no

yes

end

Best chromosome

FVs

FV of the best chromosome
of the previous generation

FV = Fitness Value

Figure 1. Implemented algorithm for the design and optimization of digital

logic circuits. Figure taken from [7].

& & & & &

X
X
X
X

F>1
>1
>1

>1

connected on +
connected on -
not connected

connected
not connected

and plane

product_line_1
product_line_2

product_line_n

connection point

connection point

0

1

2

3

F
F

F

0

1

2

16

Figure 2. Schema of the PLA with representation of the chromosome.

combinations and the obtained results are compared with the
truth table of the desired digital logic circuits. A value in
percentage, based on the quality of the evaluated individual, is
assigned to each PLA. The PLA with the highest fitness value
is selected for the reproduction. λ new individuals are then
generated applying the mutation operator to the selected PLA.

E. Selection Mechanism
The selection mechanism is based on elitism, meaning that

only the best individual is selected for reproduction. All the
other individuals are to be replaced with newly generated.

F. Reproduction Mechanism
In the implemented (1+λ) evolution strategy, the

reproduction mechanism is limited to the mutation operator.
An example of the mutation is given in Figure 3. Since it has
been decided to use the (1+λ) evolution strategy the mutation
points are to be changed λ times and the same parent is going
to produce λ different offspring. How the mutation points
change during the evolution process is described in the next
section.

1 0 1 0 0 0 1 1 0 1 1 1parent

offspring 1 0 1 1 0 0 0 1 0 1 1 1

mutation points

Figure 3. Example of a mutation operator. To obtain a new individual some

genes of the chromosome’s parent are changed.

III. BEHAVIOR OF THE MUTATION OPERATORS
This section illustrates the different behaviors of the mutation
operator that have been taken into account for the simulations
of the described (1+λ) evolution strategy. In order to have a
general analysis, six different mutation rates have been tested
for their efficiency to design logic circuits. The chosen
mutation rates are:

• (Task 1). Fixed mutation rate at 5% for the evolution
of the AND plane and the OR plane. It means that the
5% of all chromosomes within the PLA are changed
during the evolution.

• (Task 2). Mutation rate fixed at 3.75% for the AND

plane and 1.25% for the OR plane.

• (Task 3). Mutation rate fixed at 3.75% for the OR
plane and 1.25% for the AND plane.

• (Task 4). Variable mutation rate (see Equation 1,

where y is the mutation rate to be chosen and x is the
number of generations used) within the range of 0 –
5%. For the AND plane α=5/Ngen and β=0. For the
OR plane α=-(Ngen/5) and β=5.

• (Task 5). Inverted Task 4.

• (Task 6). Mutation rate fixed at 5% applied to all the

chromosomes.

For all the tasks, except for Task 6, the following constraint
has been applied to the system: the part of the chromosome
corresponding to the AND plane is fixed in such a way that
each input will be considered for the evolution process.
However, for task 6, could happen that one or more inputs
may not take part during the evolution.

βα += xy (1)

IV. EXPERIMENTAL RESULTS
In this section the experimental results obtained using a 2-bit
multiplier, the 4- and 5-bit even parity circuits are presented.
Since the two bit multiplier is widely used within the
evolvable hardware community it has been decided to use it as
a benchmark for the simulation. The chosen test benches also

include the even parity circuits. It is difficult to evolve these
circuits since a change in the value of any of its arguments
toggles the value of the function. The parity functions are
often used to check the accuracy of the stored or transmitted
binary data in computers. The intention of these experiments
is to show how the choice of a particular mutation rate will
influence the evolvability for the selected digital circuits. The
initial data for the simulations is the number of generations for
the evolutionary process together with the number of product
lines per each PLA. They are reported at the left side of each
table. For the experiments, the described (1+λ) evolution
strategy with λ=5 (thus in total 6 PLAs are involved in the
evolution) has been implemented into an extrinsic
environment using C++ and tested with a desktop PC with the
following configuration: 2,4Ghz Pentium 4, 512 MB RAM.
Table 1 reports the average (based on 100 runs) of the
successful evolution for the evolution of the 2-bit multiplier,
when the mutation rate is chosen according to the given task.
All the tasks are described in the previous section. In Table 2
and Table 3 the experimental results for the evolution of the 4-
and 5- bit even parity bit circuits is shown. In all the given
tables the best results are highlighted.
From Table 1 is clear that if we centre attention only on the
design part, the best behavior of the mutation operator is the
one given with the Task 3 and Task 4. Using those two tasks it
is noticeable that a higher value of the successful evolution is
reached. Nevertheless, it is also true that the given solutions
are not very well optimized since they are using a higher
number of product lines. The more the product lines are used
during the evolution the higher the number of the required
logic gates in the final configuration of the PLA. Instead, if
we focus our attention on the optimal solutions based on the
number of logic gates, we notice that they are obtained when a
fixed mutation rate (equal to 5%) is applied to the system.
Regarding the experimental results obtained for the evolution
of even parity functions, that are shown in Table 2 and Table
3, it is evident that the mutation rate that gives better results is
equal to the one described in Task1 (mutation rate fixed at 5%
for the evolution process).

TABLE 1. AVERAGE (BASED ON 100 OF RUNS) OF THE SUCCESSFUL EVOLUTION

FOR THE 2-BIT MULTIPLIER.

Initial data Behavior of the mutation rate chosen according
with the

Num. of
generations

Number
of

Product
lines

Task
1
%

Task
2
%

Task
3
%

Task
4
%

Task
5
%

Task
6
%

5000 9 12 0 0 0 0 0
5000 10 28 0 6 6 6 0
5000 11 35 4 6 6 11 0
5000 12 29 12 32 30 10 0
5000 13 47 5 24 31 12 0
5000 14 33 5 39 41 3 1
5000 15 36 4 42 44 5 0
5000 16 32 2 48 35 1 0
5000 17 22 3 38 43 1 0
5000 18 13 3 41 41 1 0
5000 19 12 0 36 23 1 0
5000 20 5 0 24 27 0 0
5000 21 6 1 17 17 0 0
5000 22 3 0 24 14 0 0

TABLE 2. AVERAGE (BASED ON 100 RUNS) OF THE SUCCESSFUL EVOLUTION
FOR THE 4-BIT EVEN PARITY CIRCUITS.

Initial data Behavior of the mutation rate chose according
with the

Num. of
generations

Number
of

Product
lines

Task
1
%

Task
2
%

Task
3
%

Task
4
%

Task
5
%

Task
6
%

5000 7 0 0 0 0 0 0
5000 8 47 10 40 39 36 0
5000 9 82 14 82 67 70 0
5000 10 89 20 95 83 90 0
5000 11 95 49 99 92 92 0
5000 12 99 65 100 95 95 0
5000 13 100 78 100 98 99 0
5000 14 100 76 100 99 100 0
5000 15 100 83 100 100 100 0
5000 16 100 98 98 100 100 0
5000 17 100 97 100 100 100 0
5000 18 100 96 100 100 99 0
5000 19 100 95 99 100 100 0

TABLE 3. AVERAGE (BASED ON 100 OF RUNS) OF THE SUCCESSFUL EVOLUTION
FOR THE 5-BIT EVEN PARITY CIRCUITS. ALL THE TASKS EXCEPTS THE TASK 6,

HAVE BEEN ANALYZED. TASK 6 HAS NOT BEEN TAKEN INTO ACCOUNT
BECAUSE IT DOES NOT GIVE ANY VALUABLE RESULTS.

Initial data Behavior of the mutation rate chose according
with the

Num. of
generations

Number of
Product

lines

Task 1
%

Task 2
%

Task 3
%

Task 4
%

Task 5
%

5000 35 67 18 59 28 45
5000 36 69 26 67 42 56
5000 37 77 15 55 33 53
5000 38 77 26 67 40 55
5000 39 78 18 64 39 52
5000 40 67 17 76 48 57
5000 41 88 13 72 35 53
5000 42 77 21 59 46 56
5000 43 78 23 64 33 56
5000 44 80 18 64 36 63
5000 45 81 24 71 40 62
5000 46 82 25 71 47 62
5000 47 79 24 80 47 67
5000 48 73 23 74 36 65
5000 49 81 10 75 40 66
5000 50 87 22 68 37 47
5000 51 75 24 67 39
5000 52 68 20 68 44 59

V. CONCLUSION
This paper has exploited several behaviours of the mutation

operator to be used for the evolution of digital logic circuits
based on PLA structures. To have statistically relevant results
each analyzed logic circuit has been evolved 100 times and
the average, based in terms of successful evolution has been
shown and discussed. The mutation operators analyzed were
with fixed and linearly variable mutation rates. The mutation
rate was changed dynamically during the evolution process.
Regarding the evolution of multipliers, the experimental
results have shown that with the use of fixed mutation rates
the successful evolution rate was quite low, however the few
obtained solutions were well optimized. Contrary to this,
when the mutation rate was dynamically changed the number
of required generations to fully evolve the combinational

circuits was drastically reduced. For the even parity circuits
was noticed that the best solution are obtained when the
mutation rate was fixed at 5%. Future work would consider a
wider range for the mutation rate to be used for the
evolutionary process in order to design and optimize logic
circuits larger circuits.

REFERENCES
[1] N. Forbes. “Evolution on a chip: evolvable hardware aims to optimize

circuit design”. Computing in Science & Engineering [see also IEEE
Computational Science and Engineering]. Volume 3, Issue 3, May-June
2001 Page(s):6 – 10.

[2] G. W. Greenwood, “On the practicality of using intrinsic reconfiguration
for fault recovery.” IEEE Transactions on Evolutionary Computation.
Volume 9, Issue 4. Pages: 398 – 405.

[3] X. Yao, T. Higuchi. “Promises and challenges of evolvable hardware”
IEEE Trans. Systems, Man and Cybernetics, Part C, vol. 29, Pages. 87 -
97, February 1999.

[4] J. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor,
MI: University of Michigan Press, 1975.

[5] I. Rechenberg, “Evolution Strategy”, in J. Zurada, R. Marks II, and C.
Robinson (Eds.), Computational Intelligence: Imitating Life, 1994, pp.
147-159.

[6] J. R Koza. Genetic Programming: On the Programming of Computers by
Means of Natural selection. ISBN 0-262-11170-5. MIT Press, 1992.

[7] E. Stomeo, T. Kalganova, C. Lambert. “Generalized Disjunction
Decomposition for Evolvable Hardware” IEEE Trans. Systems, Man and
Cybernetics, Part B. 2006 (Accepted for publication).

[8] Lee Altenberg “The Evolution of Evolvability in Genetic Programming”.
Chapter 3 in Advances in Genetic Programming, ed. Kenneth Kinnear.
pp. 47-74. MIT Press, Cambridge, 1994.

[9] M. Srinivas, L. M. Patnaik; “Genetic algorithms: a survey”. IEEE JNL
Computer, Volume: 27, Issue: 6, June 1994. Pages: 17 – 26.

[10] T. Kalganova; “Bidirectional incremental evolution in extrinsic
evolvable hardware”. Proc. of the Second NASA/DoD Workshop on
Evolvable Hardware. IEEE Computer Society, 13-15 July 2000.
Pages:65 – 74

[11] J. Torresen, “Increased complexity evolution applied to evolvable
hardware”, ANNIE'99, November 1999, St. Louis, USA.

[12] E. Stomeo, T. Kalganova, C. Lambert. “Mutation Rate for Evolvable
Hardware”. International Conference on Computational Intelligence -
ICCI 2005 August 26-28, 2005. Prague, Czech Republic. Pages: 117 -
124.

[13] E. Stomeo, T. Kalganova, C. Lambert “Chose the Right Mutation Rate
for Better Evolve Combinational Logic Circuits”. International Journal
of Computational Intelligence (IJCI) (accepted for publication).

[14] S. Bleuler, M. Brack, L. Thiele, E. Zitzler. “Multiobjective genetic
programming: reducing bloat using SPEA2”. Proceedings of the 2001
Congress on Evolutionary Computation, 2001.Volume 1, 27-30 May
2001. Page: 536 – 543.

[15] M. Oltean. “Solving even-parity problems using traceless genetic
programming”. Congress on Evolutionary Computation, 2004.
CEC2004. Volume 2. 19-23 June 2004 Page: 1813 – 1819.

[16] A. James Walker and Julian F. Miller, “Evolution and Acquisition of
Modules in Cartesian Genetic Programming”, Proceedings of
EuroGp2004. Lecture Notes in Computer Science, Volume 3003 / 2004.
Pages: 187 – 197. Maarten Keijzer, Una-May O’Reilly, Simon M.
Lucas, Ernesto Costa, Terence Soule (Eds.).

[17] T. Bäck, F. Hoffmeister, and H. P. Schwefel. “A survey of evolutionary
strategies”. In R. Belew and L. Booker, editors, Proceedings of the 4th
International Conference on Genetic Algorithms, San Francisco, CA,
1991. Morgan Kaufmann. Pages 2–9.

[18] H.-P. Schwefel. Numerical Optimization of Computer Models. John
Wiley & Sons, Chichester, UK, 1981.

[19] E. Stomeo, T. Kalganova, C. Lambert, N. Lipnitsakya, Y. Yatskevich.
”On Evolution of Relatively Large Combinational Logic Circuits”. The
IEEE 2005 NASA/DoD Conference on Evolvable Hardware. June 29 -
July 1, 2005, Washington DC, USA. IEEE Computer Society. Pages 59
– 66.

