
 

 

  

Abstract—Evolvable hardware (EHW) is a developing field that 

applies evolutionary algorithm (EA) to automatically design circuits, 

antennas, robot controllers etc. A lot of research has been done in this 

area several different EAs have been introduced to tackle numerous 

problems, as scalability, evolvability etc. However every time a 

specific EA is chosen for solving a particular task, all its components, 

such as population size, initialization, selection mechanism, mutation 

rate, and genetic operators, should be selected in order to achieve the 

best results. In the last three decade the selection of the right 

parameters for the EA’s components for solving different “test-

problems” has been investigated. In this paper the behaviour of 

mutation rate for designing logic circuits, which has not been done 

before, has been deeply analyzed. The mutation rate for an EHW 

system modifies the number of inputs of each logic gates, the 

functionality (for example from AND to NOR) and the connectivity 

between logic gates. The behaviour of the mutation has been 

analyzed based on the number of generations, genotype redundancy 

and number of logic gates for the evolved circuits. The experimental 

results found provide the behaviour of the mutation rate during 

evolution for the design and optimization of simple logic circuits. 

The experimental results propose the best mutation rate to be used for 

designing combinational logic circuits. The research presented is 

particular important for those who would like to implement a 

dynamic mutation rate inside the evolutionary algorithm for evolving 

digital circuits. The researches on the mutation rate during the last 40 

years are also summarized. 

 

Keywords— Design of logic circuit, evolutionary computation, 

evolvable hardware, mutation rate.  

I. INTRODUCTION 

VOLUTIONARY design of circuits, which is a branch of 

evolvable hardware [1–3], refers to a technique introduced 

to automatically design circuit where the circuit configuration 

is carried out by evolutionary algorithm (EA). The basic 

schema of an evolvable hardware (EHW) system is given in 

Fig. 1. The evolutionary algorithm provides the circuit 

configurations to the reconfigurable hardware, which could be 

an FPGA, FPTA or other customized chips. The electronic 

chip configures itself with the circuit configuration received 

and sends the circuit’s response back to the evolutionary 

algorithm. Based on the response received the EA modifies the 

chromosome and supplies a new circuit configuration to the  
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Fig. 1. Basic evolvable hardware system. 

 

chip. EHW is a technique inspired by natural evolution [4]. 

These techniques began to be treated with increasing interest 

since the 60s when Holland introduced the concept of genetic 

algorithms (GA) [5], [6], which are the most general methods 

of solving search and optimization problems. A lot of research 

has been done in order to improve the classic GA for a given 

problem and many others evolutionary algorithms have been 

introduced as genetic programming (GP) [7], evolution 

strategy (ES) [8–11], evolutionary programming (EP) [12], 

[13], Cartesian Genetic Programming [14] etc. However, every 

time a specific evolutionary algorithm is chosen for solving a 

particular problem, all its parameters such as population size, 

type of initialization, selection mechanism, and genetic 

operators should be tuned in order to achieve the best results. 

This is because the efficiency of EA is highly dependent on all 

its parameters as already demonstrate by several researchers in 

[4], [15–19]. In order to find the best values for evolutionary 

algorithm’s parameters several researchers have tuned them 

[18–20] in an attempt to find a general optimum for a set of 

test functions. However, the results obtained are different for 

different types of algorithms and problems as shown in Table 

1. The design of circuits was not included in this set of test 

functions. Therefore the behavior of the mutation rate for 

designing combinational logic circuits has to be investigated. 

The mutation operation accomplishes simple operation which 

involves in flipping the value of some genes. The aim of this 

operation is to bring more change (diversity) into the 

population. By increasing the mutation rate, the genetic search 

will be transformed into a random search but it also helps to 

reintroduce lost genetic material [27]. In designing of 

combinational logic circuits change some genes inside the 

chromosome means to change the functionality of logic gates, 

for example from AND to XOR, and to change the 

connections between them.  

The performance of the evolutionary algorithm (number of 

generations required to completely design the logic circuits) 

together with the quality (based on the value of the redundancy  
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TABLE 1. RESEARCH RESULTS ON MUTATION RATE 

Author Year Approach Proposed mutation rate Problems 

De Jong [19] 1975 
GA (for online and offline 

performance) 
0.001 

Grefenstette [18] 1986 Meta GA 0.01 

General optimization problems (EHW not 

included) 

Shaffer et al [21] 1989 
GA (using online average 

performance) 
0.005-0.01 

Multimodal functions, FIR filter, 30 city travel 

sales person, graph partitioning 

Mühlenbein et al. [22] 1992 
Iterated Hillclimbing or 

(1+1,m,hc)-algorithm 
1/l   l=chromosome length  Binary functions 

Srinivas et al. [23] 1994 AGA 

0.5(fmax-f)/(fmax-favg) 

where fmax is the maximum fitness 

value and favg is the average of the 

fitness 

Several multimodal function including TSP, 

neural network weight optimization problems 

and generation of test vectors for VLSI circuits 

Niwa et al [24] 1995 GA 1/2n  n=population size Markov chain 

Haupt [25] 2000 GA 0.05-0.2 Electromagnetic (array factors) 

Nijssen [26] 2003 (1:λ) EA 1/l     l=bit-string length  Trap functions 

 

 

 

and number of logic gates used during design and optimization 

of the logic circuits) of the obtained results has been studied 

for different values of mutation rate. 

The experimental results achieved indicate that a fixed 

mutation rate should not be used for designing logic circuits. 

Furthermore the behavior of the mutation rate to be used 

during evolution, for those who want to use a dynamic 

mutation rate for design and optimization of logic circuits, has 

been extrapolated. In this paper we focus only on online 

average performance [21]. The (1+λ) evolution strategy 

already tested for its performance [35–36] has been chosen as 

evolutionary algorithm. 

The paper is organized as follows: Section II gives a 

classification of the evolvable hardware systems and explains 

why an extrinsic evolvable hardware system (firstly introduced 

by H. de Garis [3]) has been chosen for the simulations. 

Section III describes an extrinsic evolvable hardware system, 

from the definition of the evolutionary algorithm to the 

description of the fitness functions implemented. Section IV 

gives the system set-up for the EA used. Section V presents the 

experimental results. Section VI provides a discussion of the 

results found. Last section gives conclusions and indicates 

possible areas for future investigation. 

 

II. CLASSIFICATION IN EVOLVABLE HARDWARE 

As proposed by Torresen [40], Andersen [41] and Gordon 

and Bentley [42], evolvable hardware can be classified in 

several classes, depending on: evolutionary algorithm, target 

technology, level of abstraction (Hirst [43]) and fitness 

evaluation. Based on that classification a simpler 

categorization is: 

 

• Extrinsic environment [21], [28–32] 

 

• Intrinsic environment [33], [34]. 

 

• Mixtrinsic environment [39]. 

 

Extrinsic EHW refers to a system whereby the evolutionary 

algorithm runs in software. Intrinsic EHW describes situations 

where the evolutionary algorithm is implemented in hardware 

and mixtrinsic evolvable hardware is a hybrid combination of 

intrinsic and extrinsic methods, usually the evolutionary 

algorithm with the fitness function evaluation is done in 

software and the evolved target implemented into hardware. 

The extrinsic evolvable hardware has been chosen as an object 

of investigation due to its ability to collect any relative 

information fairly easy.  

 

III. EXTRINSIC EVOLVABLE HARDWARE 

In this section the evolutionary algorithm used to evolve 

logic circuits, together with the fitness function and 

chromosome representations are presented. The approach in 

question was introduced in [28]. 

A. Evolutionary Algorithm 

The evolutionary algorithm chosen for the evolution of 

combinational logic circuits is the (1+λ) evolution strategy 

already tested for its efficiency in [45]. In this approach λ 

represents the population size. 

Each individual of the population represents a potential 

solution to a given task. The algorithm is very simple and 

easily implementable. In the first step all the chromosomes are 

randomly initialized. At the second step the fitness function of 

each individual is calculated (at each individual is assigned a 

fitness value according to how good it is), the fittest individual 

is selected and duplicated for the population to the next 

generations. The new population is brought up to date by 

mutating the best chromosome of the previous generation (see 

Fig. 2). 

 



 

 

 
Fig. 2. Schematic of (1+λ) evolution strategy. 

 

 

B. Chromosome Coding 

The chromosome is a string of parameters (known as genes) 

joined together. The string of genes represents a potential 

solution to a given problem. In evolutionary design of 

electronic circuits the chromosome contains all the needed 

information to describe the structure and the connectivity of 

the evolved combinational logic circuits. Since the final scope 

of this research is to design combinational logic circuits using 

Field Programmable Logic Array (FPGA), we have decided to 

represent the electronic circuits as a rectangular array of logic 

gates, see Fig. 3.  The logic gates used for the simulations are: 

AND, OR, XOR, NOT with up to 4 inputs and MUX, where 

MUX is a multiplexer with 2 inputs and one control signal. 

The chromosome is divided in three components: 

 

• Geometry which contains information about the number 

of rows, the number of columns of the rectangular array 

and the degree of internal connectivity, also referred to as 

level-back parameter [14]. The level-back parameter, or 

so called connectivity parameter, defines how many 

columns of cells to the left of the current column might 

have their outputs connected to the inputs of the current 

cell. The chromosome at this level is made of an array of 

3 cells, the first contains the number of row, the second 

the number of columns of the rectangular array and the 

third contains the level back parameter. 

 

• Functionality which describes the array of cells and 

determines the circuit’s outputs. It is an array which 

identifies all the logic gates together with their 

functionality. The last cells of this array identify the logic 

gates from which the circuit’s output are taken. 

 

• Routing which represents the structures of each cell in the 

circuit and the connections between them. This is 

characterized by an array where the first cell identifies the 

logic gate, the second identifies it’s the number of inputs 

and the other cells identify the connections with other 

logic gates. 

 

The next session presents an example of chromosome 

encoding. 

 

 
Fig. 3. Example of chromosome during evolution. 

 

C. Example of Chromosome Coding 

In this section an example of the chromosome encoding is 

presented. Supposing that for a particular experiment a circuit 

layout with 2 rows, 3 columns and the maximum internal 

connectivity (level back) is chosen. Therefore the chromosome 

that describes the geometry of the circuits is the following 

array: (2, 3, 3). The chromosome at functionality level is an 

array which identifies each logic gates together their 

functionality, based on the encoding table reported in Table 2, 

and the circuit’s output. Therefore the chromosome at 

functionality level for the circuit reported in Fig. 4 is the 

following array: (4, 7, 5, 8, 6, 7, 7, 9, 8, 7, 9, 8, 5, 6), see Fig. 

5. The numbers in bold identify the logic gate, the number 

beside them identifies the functionality of that particular logic 

gate and the last number is italic identify form which logic 

gates the output of the circuits are taken. For example the first 

number “4” identifies the logic gate. The second number “7” 

identifies the functionality, AND gate in this case. The 

chromosome at routing level contains information regarding 

the structure of the logic gates and the connectivity between 

them. In relation of the circuit in Fig. 4, the chromosome at 

routing table is shown in Fig. 6. The first part of that array is 

(4, 2, 1, 2); the number “4” identifies the logic gate inside the 

circuit layout; “2” means that the logic gates identified by the 

number “4” has got two inputs which are taken from the 

output’s gates “1” and “2”. 

 

 
TABLE 2. GENE FUNCTIONALITY 

Gene 

functionality 

Gate 

function 

2 NOT 

6 WIRE 

7 AND 

8 OR 

9 XOR 

12 Multiplexer 

 

 

 



 

 

 

 
Fig. 4. Example of circuit 

 

 

 

 
Fig. 5. Chromosome at geometry and functionality level. 

 

4 2 1 2

5 2 4 7

6 2 5 8

7 2 2 3

8 3 5 2

9 3 0 0

7

0
 

Fig. 6. Chromosome at routing level. 

 

 

D. Redundancy 

In this paper the redundancy of the combinational logic 

circuits is given by the Equation 1, where NLG represents the 

total number of logic gates in our chromosome. NALG refers to 

the number of active logic gates, which are the logic gates that 

are currently used in a circuit configuration; therefore NALG is 

equal to or less than NLG. 

 

LG
N

ALG
N

r −= 1  

 

(1) 

 

Let us consider a numerical example, considering the circuit 

layout in Fig. 3. The rectangular array is made of 6 columns 

and 4 rows of logic gates. The highlighted logic gates are used 

for a particular configuration; therefore they are connected to 

each other in order to create the logic circuit. The logic gates 

not highlighted are not connected, thus they are redundant. In 

this example, NLG (the total number of logic gates) is 6*4=24. 

The number of active logic gates (the logic gates that 

participate in creating the digital circuit) NALG is 9. The 

redundancy, calculated using equation (1) for the circuit’s 

configuration of Fig. 3, is 0.625. 

E. Fitness Function 

In evolvable hardware the fitness function evaluates the 

evolved circuits in terms of their functionality. Given a 

particular chromosome the fitness function returns a value 

which is supposed to be proportional to the utility and ability 

of the individual which that chromosome represents [44]. In 

our experiment a multi-objectives fitness function has been 

considered. It has two main criteria: first design the fully 

functional circuit and second, once the circuit is fully 

functional evolved, optimization which leads to reduced 

numbers of logic gates used in the circuit configuration.  

The fitness function f is calculated as: 
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where f1 is a design criterion that defines the percentage of 

correct bits in the evolved circuit, f2 is the optimization 

criterion for the optimization stage. The fitness function for the 

functionality of the evolved circuit f1 is calculated as follows: 
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(3) 

 

where m and n are the number of outputs and the number of 

inputs of the given logic function, respectively; p is the number 

of input-output combinations; yi is the i
th

 digit of the output 

combination produced by the evaluation of the circuit, di is the 

desired output for the fitness case fc. |yi-di| is the absolute 

difference between the actual and the required outputs. 

The fitness function for the optimization stage has been 

calculated below, where NLG is the number of the total logic 

gates present in the chromosome, so NLG is equal to the 

number of rows multiplied by the number of columns of the 



 

 

chromosome. 
max

PLGN  is the number of primitive logic gates 

necessary for building the logic gate with the highest number 

of inputs present inside the chromosome. Fig. 7 shows how to 

decompose a logic gates with 4 inputs. Therefore if a logic 

gate has 4 inputs the number of primitive logic gates necessary 

to build it is 3. Nrow and Ncol are the number of rows and 

columns of the chromosome. 
( )jiPLGN

,
 is the number of 

primitive logic gates necessary to build the (i, j)
th 

logic gates. 

( )jiPLGN
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 is 0 if the (i, j)
th 

logic gate is unconnected. 
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Fig. 8 shows the behaviour of a fitness function during the 

evolution of a 2 bit multiplier. In that figure two different 

stages are noticeable. The first shows the design of the 

multiplier, with each generation the fitness function value 

increases until it reaches 100%. At this point the functionality 

of the circuit is completely evolved. During the first stage the 

fitness function is calculated based on equation 3. The second 

stage starts just after the circuit is evolved. This stage performs 

the optimization of evolved circuits by reducing with each 

generation the number of active logic gates. Furthermore 

during this stage the fitness function, calculated from equation 

4, also increases its value because the circuit is better 

optimised. 

 

 
Fig. 7. Decomposition of a non primitive logic gate into primitive 

logic gates 

 

IV. SETTING PARAMETERS 

In this section the system set-up used to carry out all the 

experiments is described. Firstly the evolutionary algorithm’s 

parameters used are given, and then the circuit layout and the 

logic of the evolved circuits are provided. Finally a description 

of the circuits evolved, together with one example, is given. 

 

A. Initial Parameters 

In Table 3 the evolutionary algorithm’s parameters are 

given; where the number of generations refers to the number of 

cycles which each experiment has been evolved; population 

size refers to the number of different chromosomes; 

termination criteria is the maximum number of generations the 

evolutionary algorithm can perform before the process will be 

stopped; the mutation rate modifies the cell input, cell type (for 

example form AND to XOR) and circuit output. 

For the given logic functions the results are considered only 

if the logic circuit has been successfully evolved 100 times out 

of 100 runs (i.e. success rate 100%). 
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Fig. 8. This graphic shows the behaviour of the fitness function. Two different stages may be seen, design f1 and optimization (f1 + f2). It is also 

notable that the number of primitive active gates is reduced.  
 

 



 

 

TABLE 3. INITIAL DATA FOR THE EXPERIMENTS CARRIED OUT USING 

(1+λ) EVOLUTION STRATEGY. 

Number of generations 5000 

Population size (λ) 5 

Number of runs per each evolved circuit 100 

Termination criteria for evolutionary process 5000 

generations 

Mutation rate 0.09 – 0.5 

Elitism yes 

 

 

TABLE 4. INITIAL DATA: DIMENSION SIZE AND CONNECTIVITY OF THE 

CIRCUIT LAYOUT USED DURING SIMULATIONS 

Number of rows 10 

Number of columns 10 
Circuit 

layout  
Level back or 

connectivity parameter 

[14] 

10 

 

 

 
Fig. 9. Example of truth table (in Berkley format) used for the 

evolution of logic circuit with (1+λ) evolution strategy. 

 

Each logic circuit has been evolved 100 times for each 

different mutation rate, starting from 0.09 to 0.5 with an 

increasing step of 0.01. In Table 4 the features of the circuit 

layout are given. Definitions of the number of rows, columns 

and level back have been provided in the previous section. The 

logic gates that participate in evolutionary processes are AND, 

OR, XOR, NOT, and multiplexer with 2 inputs and one 

control. 

The connection between building blocks (combination of 

primitive logic gates) is in interactive and cascade mode. Each 

logic gate has up to 4 inputs. The structures of cascade and 

interactive building blocks are given in Fig. 7. The logic 

circuits evolved are randomly generated and fully defined by 

truth tables. The truth tables used to describe the logic circuits 

are compatible with the Berkeley format, see Fig. 9. where .i 

specifies the number of inputs, .o the number of outputs, .p the 

number of product or input-output combinations and .e the end 

of file. 

V. EXPERIMENTAL RESULTS 

In this section the results of the evolved logic circuits are 

presented. The intention of these experiments is to analyse the 

variation of mutation rate influences:  

• the number of generations required to design the 

circuit 

• the number of active logic gates obtained during 

design  

• the number of logic gates after the optimization stage 

• the redundancy of logic gates 

In Fig. 10 and Fig. 11 the average of the number of 

generations of the evolved logic circuits with 2 and 3 inputs 

respectively is given. This average is calculated by taking into 

account the results out of 100 runs, which are all successfully 

evolved. To better clarify how the average has been calculated. 

Let us consider the circuit with 2 inputs and 3 outputs see Fig. 

10. This circuit has been evolved 100 times with mutation rate 

equal to 0.009; 100 times with mutation rate 0.01 and so on 

until the mutation rate is equal to 0.5. So, this circuit has been 

evolved 1500 times. The average is calculated out of 100 runs 

per each value of mutation rate. Therefore each point on that 

graph represents the average out of 100 runs of the number of 

generations required to evolve the circuits. 

From Fig. 10 and Fig. 11 it may be observed that, in terms 

of the number of generations for evolving small circuits, the 

best value of mutation rate is 0.1. 
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Fig. 10. Average out of 100 experiments of the number of 

generations required to completely evolve a logic circuit by changing 

the mutation rate. The circuits are with 2 inputs and varying numbers 

of outputs. 
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Fig. 11. Average out of 100 experiments of the number of generations 

required to completely evolve a logic circuit by changing the mutation rate for 

evolving logic circuits with 3 inputs. The solutions are given only for the 

circuits which are 100% evolved. 



 

 

TABLE 5. SIMULATION RESULTS: REDUNDANCY OF EVOLVED RANDOMLY GENERATED LOGIC CIRCUITS. N.E. REFERS TO CIRCUITS WHICH ARE NOT 

EVOLVED WITH SUCCESS RATE EQUAL TO 100%. IN EACH CELL THE AVERAGE VALUES OF THE REDUNDANCY CALCULATED USING 100 EXPERIMENTS 

ALL COMPLETELY EVOLVED ARE REPORTED. THE BEST CIRCUIT’S CONFIGURATION FOR EACH LOGIC CIRCUIT IS HIGHLIGHTED. 

Redundancy of evolved logic circuits 

Logic circuits Mutation rate 

in out p 0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5 

2 2 4 0.816 0.830 0.809 0.824 0.824 0.829 0.811 0.826 0.824 0.829 0.829 0.819 0.851 0.840 0.842 

2 3 8 0.762 0.759 0.750 0.771 0.752 0.758 0.769 0.777 0.776 0.769 0.772 0.801 0.812 0.816 0.817 

2 4 16 0.711 0.729 0.717 0.710 0.700 0.731 0.742 0.730 0.744 0.748 0.756 0.777 0.779 0.809 0.789 

2 5 32 0.671 0.686 0.683 0.687 0.692 0.700 0.703 0.703 0.720 0.713 0.700 0.723 0.765 0.763 0.749 

2 6 64 0.646 0.644 0.650 0.675 0.674 0.665 0.672 0.668 0.680 0.668 0.691 0.715 0.730 0.734 0.748 

3 2 4 0.790 0.788 0.790 0.809 0.808 0.798 0.813 0.814 0.811 0.818 0.816 0.845 0.850 0.868 0.869 

3 3 8 0.738 0.735 0.726 0.740 0.740 0.740 0.740 0.752 0.748 0.775 0.781 0.805 0.837 0.831 0.737 

3 4 16 0.685 0.688 0.691 0.704 0.700 0.707 0.709 0.738 0.732 0.723 0.733 0.802 0.755 N.E. N.E. 

3 5 32 0.635 0.657 0.655 0.676 0.681 0.677 0.693 0.687 0.706 0.703 0.694 0.690 N.E. N.E. N.E. 

3 6 64 0.638 0.623 0.654 0.652 0.650 0.665 0.674 0.703 0.686 0.715 0.711 0.773 N.E. N.E. N.E. 
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Fig. 12. Average out of 100 experiments of the primitive active 

gates required for the design stage, before the logic circuits are 

optimized. The solutions are given only for the circuits which are 

100% evolved. The circuits are with 2 inputs and varying number 

of outputs. 
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Fig. 13. Average out of 100 experiments of the primitive active 

gates required for the design stage, before the logic circuits are 

optimized. The solutions are given only for the circuits which are 

100% evolved. The circuits are with 3 inputs and varying number 

of outputs 

 

 

By increasing the complexity of the logic circuit based on 

the number of input-output combinations [38], the mutation 

rate which gives the best performance in terms of number of 

generations is decreased to 0.03. Therefore, the best mutation 

rate should be chosen according to the complexity of the task 

to be solved. The complexity of those circuits in evolvable 

hardware is mainly dependant on the number of inputs rather 

than outputs [38]. Moreover it may be noticed in Fig. 11, that 

if the mutation rate is very high (more than 0.3) the evolution 

of more complex tasks is not performed. This is because of the 

high randomness introduced in the chromosome. Therefore, 

the random processes become dominant under the evolutionary 

process if a mutation rate higher than 0.3 is used. 

Table 5 illustrates the quality of the evolved logic circuits 

based on redundancy (before the optimization stage). The 

circuits with higher redundancy are those obtained with very 

high mutation rates. These results place us in contrast to the 

previously obtained results which advise the use of smaller 

values of mutation rate in order to find a solution with fewest 

numbers of generations. Therefore at this point the best trade-

off between a small mutation rate for finding the final circuit’s 

configuration with the fewest number of generations and a 

high mutation rate for finding the better-optimized circuits 

should be determined. However, before the final solution is 

outlined, the number of active logic gates required during 

design and optimization should be analyzed. Fig. 12 and Fig. 

13 show the number of active logic gates by varying the 

mutation rate when the circuits are designed.  

The experimental results demonstrate that the circuits with 

fewer logic gates are those created with high mutation rates, 

between 0.1 and 0.3. In Table 6 the number of active logic 

gates used after the optimization stage is presented. In that 

table the solutions with the smallest number of active logic 

gates are highlighted. 

One may notice that the best solutions are achieved by 

decreasing the mutation rate as the complexity of the logic 

circuits increases.  



 

 

TABLE 6. SIMULATION RESULTS OF THE MUTATION RATE FOR EVOLVING RANDOMLY GENERATED LOGIC. N.E. REFERS TO CIRCUITS WHICH ARE NOT 

EVOLVED WITH SUCCESS RATE EQUAL TO 100%. IN THIS TABLE THE BEST SOLUTIONS (THOSE WITH THE SMALLEST AMOUNT OF LOGIC GATES 

REQUIRED) ARE HIGHLIGHTED. IN EACH CELL THE AVERAGE VALUES OF THE REDUNDANCY CALCULATED USING 100 EXPERIMENTS IS REPORTED. 

Average of number of  active logic gates after optimization stage 

Logic circuits mutation rate 

in out p 0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5 

2 2 4 2.75 2.45 2.11 2.17 2.04 2.08 2.01 2.00 2.00 2.01 2.01 2.00 2.00 2.00 2.00 

2 3 8 4.36 4.25 3.51 3.40 3.23 3.16 3.14 3.27 3.06 3.10 3.06 3.05 3.03 3.38 4.25 

2 4 16 6.23 5.56 4.69 4.32 4.33 4.37 4.18 4.16 4.15 4.12 4.10 4.11 7.41 10.57 17.59 

2 5 32 7.24 6.98 5.95 5.46 5.45 5.35 5.27 5.38 5.36 5.33 5.24 12.61 29.19 27.96 41.65 

2 6 64 8.21 7.52 6.59 6.35 6.21 6.13 6.10 5.87 5.78 6.07 5.88 16.97 36.00 43.48 49.00 

3 2 4 10.43 10.05 8.49 7.42 7.62 7.69 7.12 7.11 6.86 7.18 7.39 7.69 8.55 10.77 12.55 

3 3 8 16.84 16.50 13.37 11.25 11.05 10.57 10.85 10.88 11.81 11.45 11.66 24.07 26.44 36.40 50.00 

3 4 16 24.18 21.78 17.66 16.70 16.61 18.52 19.71 24.96 27.70 32.23 36.84 33.00 55.00 N.E. N.E. 

3 5 32 26.99 24.95 20.64 20.77 21.12 20.98 21.75 24.63 28.65 30.71 39.62 36.33 N.E. N.E. N.E. 

3 6 64 26.82 29.54 22.11 22.13 26.15 29.09 27.75 33.75 36.86 36.61 37.38 47.33 N.E. N.E. N.E. 

 

 

Based on those results one may conclude that the mutation 

rate for the better optimized circuit in terms of logic gates is 

inversely proportional to the complexity of the evolved circuit. 

Therefore, supposing that a very simple circuit should be 

solved, the best mutation rate to be chosen in order to have the 

best result in terms of number of logic gates should be between 

0.3 and 0.5. If the circuits are more complex, that value 

(according with the experimental results shown in Table 6) 

should be reduced to between 0.02 and 0.04. By taking into 

account the results found in terms of number of generations, 

redundancy and number of active logic gates used for getting 

the optimized solutions, one may conclude that the mutation 

rate should be chosen according to the complexity of the task 

to be evolved and with the wishes of the user: less generations, 

fewer logic gates or good redundancy. Simpler tasks should be 

solved with a higher mutation rate. By increasing the 

complexity of the task the mutation rate should decreased to 

0.02-0.04. 

VI. DISCUSSION OF THE RESULTS 

The behavior of the mutation rate observed is particularly 

important for those researchers wishing to implement a 

dynamic mutation rate inside the evolutionary algorithm for 

designing combinational circuits. It is also important for those 

who evolve large circuits [45] using decomposition strategies. 

For instance, supposing that a large circuit should be evolved; 

the mutation rate should be very low, as depicted above. When 

the stalling effect in the fitness function occurs (i.e. the 

evolutionary algorithm is not able to produce better results and 

the fitness values of the individuals of the population no longer 

increase) the system will be decomposed, usually using 

Shannon decomposition (see Fig. 14) [29] and the evolution of 

the circuit will continue with two or more simpler sub-circuits. 

At this stage the mutation rate should be changed in line with 

the complexity of those sub-circuits. 
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Fig. 14. Shannon decomposition. 

 

VII. CONCLUSION 

This paper describes how the mutation rate for an evolvable 

hardware system should be chosen in order to solve and better 

optimize the evolution of logic circuits. It should be noted that 

the mutation rate for EHW systems modifies the logic cell 

inputs, the cell functionality (for example from AND to NOR) 

and the system output. The experimental results found prove 

that the mutation rate should be inversely proportional to the 

complexity of logic circuits: more complex circuits require a 

smaller mutation rate. Therefore, these results are especially 

important for all researchers who are using decomposition 

strategies for evolving logic circuits, because they may now 

implement a dynamic mutation rate which changes in real-

time, based on the complexity of the decomposed task. Further 

work will be focused on exploring the evolution of bigger 

logic circuits together with the use of different population 

sizes. This will be done in order to identify the best set up for 

all the parameters in the evolutionary algorithms for designing 

logic circuits. 
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