

Abstract—Evolvable hardware (EHW) is a developing field that

applies evolutionary algorithm (EA) to automatically design circuits,

antennas, robot controllers etc. A lot of research has been done in this

area several different EAs have been introduced to tackle numerous

problems, as scalability, evolvability etc. However every time a

specific EA is chosen for solving a particular task, all its components,

such as population size, initialization, selection mechanism, mutation

rate, and genetic operators, should be selected in order to achieve the

best results. In the last three decade the selection of the right

parameters for the EA’s components for solving different “test-

problems” has been investigated. In this paper the behaviour of

mutation rate for designing logic circuits, which has not been done

before, has been deeply analyzed. The mutation rate for an EHW

system modifies the number of inputs of each logic gates, the

functionality (for example from AND to NOR) and the connectivity

between logic gates. The behaviour of the mutation has been

analyzed based on the number of generations, genotype redundancy

and number of logic gates for the evolved circuits. The experimental

results found provide the behaviour of the mutation rate during

evolution for the design and optimization of simple logic circuits.

The experimental results propose the best mutation rate to be used for

designing combinational logic circuits. The research presented is

particular important for those who would like to implement a

dynamic mutation rate inside the evolutionary algorithm for evolving

digital circuits. The researches on the mutation rate during the last 40

years are also summarized.

Keywords— Design of logic circuit, evolutionary computation,

evolvable hardware, mutation rate.

I. INTRODUCTION

VOLUTIONARY design of circuits, which is a branch of

evolvable hardware [1–3], refers to a technique introduced

to automatically design circuit where the circuit configuration

is carried out by evolutionary algorithm (EA). The basic

schema of an evolvable hardware (EHW) system is given in

Fig. 1. The evolutionary algorithm provides the circuit

configurations to the reconfigurable hardware, which could be

an FPGA, FPTA or other customized chips. The electronic

chip configures itself with the circuit configuration received

and sends the circuit’s response back to the evolutionary

algorithm. Based on the response received the EA modifies the

chromosome and supplies a new circuit configuration to the

Manuscript received October 25, 2005. This work was supported in part

by the EPSRC under grant number GR/S17178/.

E. Stomeo, C. Lambert and T. Kalganova are with Brunel University, West

London. UB8 3PH, Uxbridge, Middlesex, UK. (Tel: 0044 01895 266777; e-

mail: emanuele.stomeo@brunel.ac.uk).

Fig. 1. Basic evolvable hardware system.

chip. EHW is a technique inspired by natural evolution [4].

These techniques began to be treated with increasing interest

since the 60s when Holland introduced the concept of genetic

algorithms (GA) [5], [6], which are the most general methods

of solving search and optimization problems. A lot of research

has been done in order to improve the classic GA for a given

problem and many others evolutionary algorithms have been

introduced as genetic programming (GP) [7], evolution

strategy (ES) [8–11], evolutionary programming (EP) [12],

[13], Cartesian Genetic Programming [14] etc. However, every

time a specific evolutionary algorithm is chosen for solving a

particular problem, all its parameters such as population size,

type of initialization, selection mechanism, and genetic

operators should be tuned in order to achieve the best results.

This is because the efficiency of EA is highly dependent on all

its parameters as already demonstrate by several researchers in

[4], [15–19]. In order to find the best values for evolutionary

algorithm’s parameters several researchers have tuned them

[18–20] in an attempt to find a general optimum for a set of

test functions. However, the results obtained are different for

different types of algorithms and problems as shown in Table

1. The design of circuits was not included in this set of test

functions. Therefore the behavior of the mutation rate for

designing combinational logic circuits has to be investigated.

The mutation operation accomplishes simple operation which

involves in flipping the value of some genes. The aim of this

operation is to bring more change (diversity) into the

population. By increasing the mutation rate, the genetic search

will be transformed into a random search but it also helps to

reintroduce lost genetic material [27]. In designing of

combinational logic circuits change some genes inside the

chromosome means to change the functionality of logic gates,

for example from AND to XOR, and to change the

connections between them.

The performance of the evolutionary algorithm (number of

generations required to completely design the logic circuits)

together with the quality (based on the value of the redundancy

Chose the Right Mutation Rate for Better

Evolve Combinational Logic Circuits

Emanuele Stomeo, Tatiana Kalganova, Cyrille Lambert

E

Tatiana Kalganova
Text Box
1. Stomeo E., T. Kalganova and C. Lambert (2006) Chose the Right Mutation Rate for Better Evolve Combinational Logic Circuits. Int'l Journal of Computational Intelligence (IJCI), ISSN 1304-2386, Vol. 2, No. 4, pp.286-277

TABLE 1. RESEARCH RESULTS ON MUTATION RATE

Author Year Approach Proposed mutation rate Problems

De Jong [19] 1975
GA (for online and offline

performance)
0.001

Grefenstette [18] 1986 Meta GA 0.01

General optimization problems (EHW not

included)

Shaffer et al [21] 1989
GA (using online average

performance)
0.005-0.01

Multimodal functions, FIR filter, 30 city travel

sales person, graph partitioning

Mühlenbein et al. [22] 1992
Iterated Hillclimbing or

(1+1,m,hc)-algorithm
1/l l=chromosome length Binary functions

Srinivas et al. [23] 1994 AGA

0.5(fmax-f)/(fmax-favg)

where fmax is the maximum fitness

value and favg is the average of the

fitness

Several multimodal function including TSP,

neural network weight optimization problems

and generation of test vectors for VLSI circuits

Niwa et al [24] 1995 GA 1/2n n=population size Markov chain

Haupt [25] 2000 GA 0.05-0.2 Electromagnetic (array factors)

Nijssen [26] 2003 (1:λ) EA 1/l l=bit-string length Trap functions

and number of logic gates used during design and optimization

of the logic circuits) of the obtained results has been studied

for different values of mutation rate.

The experimental results achieved indicate that a fixed

mutation rate should not be used for designing logic circuits.

Furthermore the behavior of the mutation rate to be used

during evolution, for those who want to use a dynamic

mutation rate for design and optimization of logic circuits, has

been extrapolated. In this paper we focus only on online

average performance [21]. The (1+λ) evolution strategy

already tested for its performance [35–36] has been chosen as

evolutionary algorithm.

The paper is organized as follows: Section II gives a

classification of the evolvable hardware systems and explains

why an extrinsic evolvable hardware system (firstly introduced

by H. de Garis [3]) has been chosen for the simulations.

Section III describes an extrinsic evolvable hardware system,

from the definition of the evolutionary algorithm to the

description of the fitness functions implemented. Section IV

gives the system set-up for the EA used. Section V presents the

experimental results. Section VI provides a discussion of the

results found. Last section gives conclusions and indicates

possible areas for future investigation.

II. CLASSIFICATION IN EVOLVABLE HARDWARE

As proposed by Torresen [40], Andersen [41] and Gordon

and Bentley [42], evolvable hardware can be classified in

several classes, depending on: evolutionary algorithm, target

technology, level of abstraction (Hirst [43]) and fitness

evaluation. Based on that classification a simpler

categorization is:

• Extrinsic environment [21], [28–32]

• Intrinsic environment [33], [34].

• Mixtrinsic environment [39].

Extrinsic EHW refers to a system whereby the evolutionary

algorithm runs in software. Intrinsic EHW describes situations

where the evolutionary algorithm is implemented in hardware

and mixtrinsic evolvable hardware is a hybrid combination of

intrinsic and extrinsic methods, usually the evolutionary

algorithm with the fitness function evaluation is done in

software and the evolved target implemented into hardware.

The extrinsic evolvable hardware has been chosen as an object

of investigation due to its ability to collect any relative

information fairly easy.

III. EXTRINSIC EVOLVABLE HARDWARE

In this section the evolutionary algorithm used to evolve

logic circuits, together with the fitness function and

chromosome representations are presented. The approach in

question was introduced in [28].

A. Evolutionary Algorithm

The evolutionary algorithm chosen for the evolution of

combinational logic circuits is the (1+λ) evolution strategy

already tested for its efficiency in [45]. In this approach λ

represents the population size.

Each individual of the population represents a potential

solution to a given task. The algorithm is very simple and

easily implementable. In the first step all the chromosomes are

randomly initialized. At the second step the fitness function of

each individual is calculated (at each individual is assigned a

fitness value according to how good it is), the fittest individual

is selected and duplicated for the population to the next

generations. The new population is brought up to date by

mutating the best chromosome of the previous generation (see

Fig. 2).

Fig. 2. Schematic of (1+λ) evolution strategy.

B. Chromosome Coding

The chromosome is a string of parameters (known as genes)

joined together. The string of genes represents a potential

solution to a given problem. In evolutionary design of

electronic circuits the chromosome contains all the needed

information to describe the structure and the connectivity of

the evolved combinational logic circuits. Since the final scope

of this research is to design combinational logic circuits using

Field Programmable Logic Array (FPGA), we have decided to

represent the electronic circuits as a rectangular array of logic

gates, see Fig. 3. The logic gates used for the simulations are:

AND, OR, XOR, NOT with up to 4 inputs and MUX, where

MUX is a multiplexer with 2 inputs and one control signal.

The chromosome is divided in three components:

• Geometry which contains information about the number

of rows, the number of columns of the rectangular array

and the degree of internal connectivity, also referred to as

level-back parameter [14]. The level-back parameter, or

so called connectivity parameter, defines how many

columns of cells to the left of the current column might

have their outputs connected to the inputs of the current

cell. The chromosome at this level is made of an array of

3 cells, the first contains the number of row, the second

the number of columns of the rectangular array and the

third contains the level back parameter.

• Functionality which describes the array of cells and

determines the circuit’s outputs. It is an array which

identifies all the logic gates together with their

functionality. The last cells of this array identify the logic

gates from which the circuit’s output are taken.

• Routing which represents the structures of each cell in the

circuit and the connections between them. This is

characterized by an array where the first cell identifies the

logic gate, the second identifies it’s the number of inputs

and the other cells identify the connections with other

logic gates.

The next session presents an example of chromosome

encoding.

Fig. 3. Example of chromosome during evolution.

C. Example of Chromosome Coding

In this section an example of the chromosome encoding is

presented. Supposing that for a particular experiment a circuit

layout with 2 rows, 3 columns and the maximum internal

connectivity (level back) is chosen. Therefore the chromosome

that describes the geometry of the circuits is the following

array: (2, 3, 3). The chromosome at functionality level is an

array which identifies each logic gates together their

functionality, based on the encoding table reported in Table 2,

and the circuit’s output. Therefore the chromosome at

functionality level for the circuit reported in Fig. 4 is the

following array: (4, 7, 5, 8, 6, 7, 7, 9, 8, 7, 9, 8, 5, 6), see Fig.

5. The numbers in bold identify the logic gate, the number

beside them identifies the functionality of that particular logic

gate and the last number is italic identify form which logic

gates the output of the circuits are taken. For example the first

number “4” identifies the logic gate. The second number “7”

identifies the functionality, AND gate in this case. The

chromosome at routing level contains information regarding

the structure of the logic gates and the connectivity between

them. In relation of the circuit in Fig. 4, the chromosome at

routing table is shown in Fig. 6. The first part of that array is

(4, 2, 1, 2); the number “4” identifies the logic gate inside the

circuit layout; “2” means that the logic gates identified by the

number “4” has got two inputs which are taken from the

output’s gates “1” and “2”.

TABLE 2. GENE FUNCTIONALITY

Gene

functionality

Gate

function

2 NOT

6 WIRE

7 AND

8 OR

9 XOR

12 Multiplexer

Fig. 4. Example of circuit

Fig. 5. Chromosome at geometry and functionality level.

4 2 1 2

5 2 4 7

6 2 5 8

7 2 2 3

8 3 5 2

9 3 0 0

7

0

Fig. 6. Chromosome at routing level.

D. Redundancy

In this paper the redundancy of the combinational logic

circuits is given by the Equation 1, where NLG represents the

total number of logic gates in our chromosome. NALG refers to

the number of active logic gates, which are the logic gates that

are currently used in a circuit configuration; therefore NALG is

equal to or less than NLG.

LG
N

ALG
N

r −= 1

(1)

Let us consider a numerical example, considering the circuit

layout in Fig. 3. The rectangular array is made of 6 columns

and 4 rows of logic gates. The highlighted logic gates are used

for a particular configuration; therefore they are connected to

each other in order to create the logic circuit. The logic gates

not highlighted are not connected, thus they are redundant. In

this example, NLG (the total number of logic gates) is 6*4=24.

The number of active logic gates (the logic gates that

participate in creating the digital circuit) NALG is 9. The

redundancy, calculated using equation (1) for the circuit’s

configuration of Fig. 3, is 0.625.

E. Fitness Function

In evolvable hardware the fitness function evaluates the

evolved circuits in terms of their functionality. Given a

particular chromosome the fitness function returns a value

which is supposed to be proportional to the utility and ability

of the individual which that chromosome represents [44]. In

our experiment a multi-objectives fitness function has been

considered. It has two main criteria: first design the fully

functional circuit and second, once the circuit is fully

functional evolved, optimization which leads to reduced

numbers of logic gates used in the circuit configuration.

The fitness function f is calculated as:

≥+

<
=

onoptimizaticircuit 100
21

designcircuit 100
1

fff

ff
f

(2)

where f1 is a design criterion that defines the percentage of

correct bits in the evolved circuit, f2 is the optimization

criterion for the optimization stage. The fitness function for the

functionality of the evolved circuit f1 is calculated as follows:

∑∑
−

=

−

=

−
⋅

−=
12

0

1

0

1

100
100

n

cf

m

i

ii dy
pm

f

(3)

where m and n are the number of outputs and the number of

inputs of the given logic function, respectively; p is the number

of input-output combinations; yi is the i
th

 digit of the output

combination produced by the evaluation of the circuit, di is the

desired output for the fitness case fc. |yi-di| is the absolute

difference between the actual and the required outputs.

The fitness function for the optimization stage has been

calculated below, where NLG is the number of the total logic

gates present in the chromosome, so NLG is equal to the

number of rows multiplied by the number of columns of the

chromosome.
max

PLGN is the number of primitive logic gates

necessary for building the logic gate with the highest number

of inputs present inside the chromosome. Fig. 7 shows how to

decompose a logic gates with 4 inputs. Therefore if a logic

gate has 4 inputs the number of primitive logic gates necessary

to build it is 3. Nrow and Ncol are the number of rows and

columns of the chromosome.
()jiPLGN

,
 is the number of

primitive logic gates necessary to build the (i, j)
th

logic gates.

()jiPLGN
,

 is 0 if the (i, j)
th

logic gate is unconnected.

()∑∑
= =

−⋅=
row col

ji

N

i

N

j

PLGPLGLG NNNf
1 1

max

2 ,

(4)

Fig. 8 shows the behaviour of a fitness function during the

evolution of a 2 bit multiplier. In that figure two different

stages are noticeable. The first shows the design of the

multiplier, with each generation the fitness function value

increases until it reaches 100%. At this point the functionality

of the circuit is completely evolved. During the first stage the

fitness function is calculated based on equation 3. The second

stage starts just after the circuit is evolved. This stage performs

the optimization of evolved circuits by reducing with each

generation the number of active logic gates. Furthermore

during this stage the fitness function, calculated from equation

4, also increases its value because the circuit is better

optimised.

Fig. 7. Decomposition of a non primitive logic gate into primitive

logic gates

IV. SETTING PARAMETERS

In this section the system set-up used to carry out all the

experiments is described. Firstly the evolutionary algorithm’s

parameters used are given, and then the circuit layout and the

logic of the evolved circuits are provided. Finally a description

of the circuits evolved, together with one example, is given.

A. Initial Parameters

In Table 3 the evolutionary algorithm’s parameters are

given; where the number of generations refers to the number of

cycles which each experiment has been evolved; population

size refers to the number of different chromosomes;

termination criteria is the maximum number of generations the

evolutionary algorithm can perform before the process will be

stopped; the mutation rate modifies the cell input, cell type (for

example form AND to XOR) and circuit output.

For the given logic functions the results are considered only

if the logic circuit has been successfully evolved 100 times out

of 100 runs (i.e. success rate 100%).

Dynamic fitness function (design and optmization)

1

10

100

1000

10000

1 88 901 1031 1650 2846 6862

Number of generations

F
it

n
es

s
fu

n
ct

io
n
 v

al
u

e

0

5

10

15

20

25

30

N
u
m

b
er

 o
f

p
ri

m
it

iv
e

ac
ti

v
e

lo
g
ic

 g
at

es

Fitness Function (F)

Primitive active gate

Design f 1 Optmization f 1 +f 2

Fig. 8. This graphic shows the behaviour of the fitness function. Two different stages may be seen, design f1 and optimization (f1 + f2). It is also

notable that the number of primitive active gates is reduced.

TABLE 3. INITIAL DATA FOR THE EXPERIMENTS CARRIED OUT USING

(1+λ) EVOLUTION STRATEGY.

Number of generations 5000

Population size (λ) 5

Number of runs per each evolved circuit 100

Termination criteria for evolutionary process 5000

generations

Mutation rate 0.09 – 0.5

Elitism yes

TABLE 4. INITIAL DATA: DIMENSION SIZE AND CONNECTIVITY OF THE

CIRCUIT LAYOUT USED DURING SIMULATIONS

Number of rows 10

Number of columns 10
Circuit

layout
Level back or

connectivity parameter

[14]

10

Fig. 9. Example of truth table (in Berkley format) used for the

evolution of logic circuit with (1+λ) evolution strategy.

Each logic circuit has been evolved 100 times for each

different mutation rate, starting from 0.09 to 0.5 with an

increasing step of 0.01. In Table 4 the features of the circuit

layout are given. Definitions of the number of rows, columns

and level back have been provided in the previous section. The

logic gates that participate in evolutionary processes are AND,

OR, XOR, NOT, and multiplexer with 2 inputs and one

control.

The connection between building blocks (combination of

primitive logic gates) is in interactive and cascade mode. Each

logic gate has up to 4 inputs. The structures of cascade and

interactive building blocks are given in Fig. 7. The logic

circuits evolved are randomly generated and fully defined by

truth tables. The truth tables used to describe the logic circuits

are compatible with the Berkeley format, see Fig. 9. where .i

specifies the number of inputs, .o the number of outputs, .p the

number of product or input-output combinations and .e the end

of file.

V. EXPERIMENTAL RESULTS

In this section the results of the evolved logic circuits are

presented. The intention of these experiments is to analyse the

variation of mutation rate influences:

• the number of generations required to design the

circuit

• the number of active logic gates obtained during

design

• the number of logic gates after the optimization stage

• the redundancy of logic gates

In Fig. 10 and Fig. 11 the average of the number of

generations of the evolved logic circuits with 2 and 3 inputs

respectively is given. This average is calculated by taking into

account the results out of 100 runs, which are all successfully

evolved. To better clarify how the average has been calculated.

Let us consider the circuit with 2 inputs and 3 outputs see Fig.

10. This circuit has been evolved 100 times with mutation rate

equal to 0.009; 100 times with mutation rate 0.01 and so on

until the mutation rate is equal to 0.5. So, this circuit has been

evolved 1500 times. The average is calculated out of 100 runs

per each value of mutation rate. Therefore each point on that

graph represents the average out of 100 runs of the number of

generations required to evolve the circuits.

From Fig. 10 and Fig. 11 it may be observed that, in terms

of the number of generations for evolving small circuits, the

best value of mutation rate is 0.1.

Number of generations - Mutation rate

for logic circuits with 2 inputs

1

10

100

1000

10000

0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5

Mutation rate

N
u

m
b

er
 o

f
g

en
e
ra

ti
o

n
s

2 in - 2 out

2 in - 3 out

2 in - 4 out

2 in - 5 out

2 in - 6 out

Fig. 10. Average out of 100 experiments of the number of

generations required to completely evolve a logic circuit by changing

the mutation rate. The circuits are with 2 inputs and varying numbers

of outputs.

Number of generations - Mutation rate

for logic circuits with 3 inputs

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5

Mutation rate

N
u

m
b

er
 o

f
g

e
n

er
a

ti
o

n
s

3 in - 2 out

3 in -3 out

3 in - 4 out

3 in - 5 out

Fig. 11. Average out of 100 experiments of the number of generations

required to completely evolve a logic circuit by changing the mutation rate for

evolving logic circuits with 3 inputs. The solutions are given only for the

circuits which are 100% evolved.

TABLE 5. SIMULATION RESULTS: REDUNDANCY OF EVOLVED RANDOMLY GENERATED LOGIC CIRCUITS. N.E. REFERS TO CIRCUITS WHICH ARE NOT

EVOLVED WITH SUCCESS RATE EQUAL TO 100%. IN EACH CELL THE AVERAGE VALUES OF THE REDUNDANCY CALCULATED USING 100 EXPERIMENTS

ALL COMPLETELY EVOLVED ARE REPORTED. THE BEST CIRCUIT’S CONFIGURATION FOR EACH LOGIC CIRCUIT IS HIGHLIGHTED.

Redundancy of evolved logic circuits

Logic circuits Mutation rate

in out p 0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5

2 2 4 0.816 0.830 0.809 0.824 0.824 0.829 0.811 0.826 0.824 0.829 0.829 0.819 0.851 0.840 0.842

2 3 8 0.762 0.759 0.750 0.771 0.752 0.758 0.769 0.777 0.776 0.769 0.772 0.801 0.812 0.816 0.817

2 4 16 0.711 0.729 0.717 0.710 0.700 0.731 0.742 0.730 0.744 0.748 0.756 0.777 0.779 0.809 0.789

2 5 32 0.671 0.686 0.683 0.687 0.692 0.700 0.703 0.703 0.720 0.713 0.700 0.723 0.765 0.763 0.749

2 6 64 0.646 0.644 0.650 0.675 0.674 0.665 0.672 0.668 0.680 0.668 0.691 0.715 0.730 0.734 0.748

3 2 4 0.790 0.788 0.790 0.809 0.808 0.798 0.813 0.814 0.811 0.818 0.816 0.845 0.850 0.868 0.869

3 3 8 0.738 0.735 0.726 0.740 0.740 0.740 0.740 0.752 0.748 0.775 0.781 0.805 0.837 0.831 0.737

3 4 16 0.685 0.688 0.691 0.704 0.700 0.707 0.709 0.738 0.732 0.723 0.733 0.802 0.755 N.E. N.E.

3 5 32 0.635 0.657 0.655 0.676 0.681 0.677 0.693 0.687 0.706 0.703 0.694 0.690 N.E. N.E. N.E.

3 6 64 0.638 0.623 0.654 0.652 0.650 0.665 0.674 0.703 0.686 0.715 0.711 0.773 N.E. N.E. N.E.

Primitive active gates - design stage

0

10

20

30

40

50

60

70

80

90

0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5

mutation rate

n
u

m
b

e
r

o
f

p
ri

m
it

iv
e
 a

c
ti

v
e

g
a

te
s

2 in - 2 out

2 in - 3 out

2 in - 4 out

2 in - 5 out

2 in - 6 out

Fig. 12. Average out of 100 experiments of the primitive active

gates required for the design stage, before the logic circuits are

optimized. The solutions are given only for the circuits which are

100% evolved. The circuits are with 2 inputs and varying number

of outputs.

Primitive active gates - design stage

0

10

20

30

40

50

60

70

80

90

0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5

Mutation rate

A
c
ti

v
e

lo
g

ic
 g

a
te

s

3 in - 2 out

3 in - 3 out

3 in - 4 out

3 in - 5 out

Fig. 13. Average out of 100 experiments of the primitive active

gates required for the design stage, before the logic circuits are

optimized. The solutions are given only for the circuits which are

100% evolved. The circuits are with 3 inputs and varying number

of outputs

By increasing the complexity of the logic circuit based on

the number of input-output combinations [38], the mutation

rate which gives the best performance in terms of number of

generations is decreased to 0.03. Therefore, the best mutation

rate should be chosen according to the complexity of the task

to be solved. The complexity of those circuits in evolvable

hardware is mainly dependant on the number of inputs rather

than outputs [38]. Moreover it may be noticed in Fig. 11, that

if the mutation rate is very high (more than 0.3) the evolution

of more complex tasks is not performed. This is because of the

high randomness introduced in the chromosome. Therefore,

the random processes become dominant under the evolutionary

process if a mutation rate higher than 0.3 is used.

Table 5 illustrates the quality of the evolved logic circuits

based on redundancy (before the optimization stage). The

circuits with higher redundancy are those obtained with very

high mutation rates. These results place us in contrast to the

previously obtained results which advise the use of smaller

values of mutation rate in order to find a solution with fewest

numbers of generations. Therefore at this point the best trade-

off between a small mutation rate for finding the final circuit’s

configuration with the fewest number of generations and a

high mutation rate for finding the better-optimized circuits

should be determined. However, before the final solution is

outlined, the number of active logic gates required during

design and optimization should be analyzed. Fig. 12 and Fig.

13 show the number of active logic gates by varying the

mutation rate when the circuits are designed.

The experimental results demonstrate that the circuits with

fewer logic gates are those created with high mutation rates,

between 0.1 and 0.3. In Table 6 the number of active logic

gates used after the optimization stage is presented. In that

table the solutions with the smallest number of active logic

gates are highlighted.

One may notice that the best solutions are achieved by

decreasing the mutation rate as the complexity of the logic

circuits increases.

TABLE 6. SIMULATION RESULTS OF THE MUTATION RATE FOR EVOLVING RANDOMLY GENERATED LOGIC. N.E. REFERS TO CIRCUITS WHICH ARE NOT

EVOLVED WITH SUCCESS RATE EQUAL TO 100%. IN THIS TABLE THE BEST SOLUTIONS (THOSE WITH THE SMALLEST AMOUNT OF LOGIC GATES

REQUIRED) ARE HIGHLIGHTED. IN EACH CELL THE AVERAGE VALUES OF THE REDUNDANCY CALCULATED USING 100 EXPERIMENTS IS REPORTED.

Average of number of active logic gates after optimization stage

Logic circuits mutation rate

in out p 0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5

2 2 4 2.75 2.45 2.11 2.17 2.04 2.08 2.01 2.00 2.00 2.01 2.01 2.00 2.00 2.00 2.00

2 3 8 4.36 4.25 3.51 3.40 3.23 3.16 3.14 3.27 3.06 3.10 3.06 3.05 3.03 3.38 4.25

2 4 16 6.23 5.56 4.69 4.32 4.33 4.37 4.18 4.16 4.15 4.12 4.10 4.11 7.41 10.57 17.59

2 5 32 7.24 6.98 5.95 5.46 5.45 5.35 5.27 5.38 5.36 5.33 5.24 12.61 29.19 27.96 41.65

2 6 64 8.21 7.52 6.59 6.35 6.21 6.13 6.10 5.87 5.78 6.07 5.88 16.97 36.00 43.48 49.00

3 2 4 10.43 10.05 8.49 7.42 7.62 7.69 7.12 7.11 6.86 7.18 7.39 7.69 8.55 10.77 12.55

3 3 8 16.84 16.50 13.37 11.25 11.05 10.57 10.85 10.88 11.81 11.45 11.66 24.07 26.44 36.40 50.00

3 4 16 24.18 21.78 17.66 16.70 16.61 18.52 19.71 24.96 27.70 32.23 36.84 33.00 55.00 N.E. N.E.

3 5 32 26.99 24.95 20.64 20.77 21.12 20.98 21.75 24.63 28.65 30.71 39.62 36.33 N.E. N.E. N.E.

3 6 64 26.82 29.54 22.11 22.13 26.15 29.09 27.75 33.75 36.86 36.61 37.38 47.33 N.E. N.E. N.E.

Based on those results one may conclude that the mutation

rate for the better optimized circuit in terms of logic gates is

inversely proportional to the complexity of the evolved circuit.

Therefore, supposing that a very simple circuit should be

solved, the best mutation rate to be chosen in order to have the

best result in terms of number of logic gates should be between

0.3 and 0.5. If the circuits are more complex, that value

(according with the experimental results shown in Table 6)

should be reduced to between 0.02 and 0.04. By taking into

account the results found in terms of number of generations,

redundancy and number of active logic gates used for getting

the optimized solutions, one may conclude that the mutation

rate should be chosen according to the complexity of the task

to be evolved and with the wishes of the user: less generations,

fewer logic gates or good redundancy. Simpler tasks should be

solved with a higher mutation rate. By increasing the

complexity of the task the mutation rate should decreased to

0.02-0.04.

VI. DISCUSSION OF THE RESULTS

The behavior of the mutation rate observed is particularly

important for those researchers wishing to implement a

dynamic mutation rate inside the evolutionary algorithm for

designing combinational circuits. It is also important for those

who evolve large circuits [45] using decomposition strategies.

For instance, supposing that a large circuit should be evolved;

the mutation rate should be very low, as depicted above. When

the stalling effect in the fitness function occurs (i.e. the

evolutionary algorithm is not able to produce better results and

the fitness values of the individuals of the population no longer

increase) the system will be decomposed, usually using

Shannon decomposition (see Fig. 14) [29] and the evolution of

the circuit will continue with two or more simpler sub-circuits.

At this stage the mutation rate should be changed in line with

the complexity of those sub-circuits.

S2

S0

S1
MUX

x1
x2
x3
x4

x2
x3
x4

x2
x3
x4

x1

y1
y2
y3

y1
y2
y3

(a)

(b)

Fig. 14. Shannon decomposition.

VII. CONCLUSION

This paper describes how the mutation rate for an evolvable

hardware system should be chosen in order to solve and better

optimize the evolution of logic circuits. It should be noted that

the mutation rate for EHW systems modifies the logic cell

inputs, the cell functionality (for example from AND to NOR)

and the system output. The experimental results found prove

that the mutation rate should be inversely proportional to the

complexity of logic circuits: more complex circuits require a

smaller mutation rate. Therefore, these results are especially

important for all researchers who are using decomposition

strategies for evolving logic circuits, because they may now

implement a dynamic mutation rate which changes in real-

time, based on the complexity of the decomposed task. Further

work will be focused on exploring the evolution of bigger

logic circuits together with the use of different population

sizes. This will be done in order to identify the best set up for

all the parameters in the evolutionary algorithms for designing

logic circuits.

ACKNOWLEDGMENT

First author thanks Dr Hemantha Kodikara-Arachchi for his

valuable suggestions.

REFERENCES

[1] X. Yao, T. Higuchi; “Promises and challenges of evolvable hardware”

IEEE Trans. Systems, Man and Cybernetics, Part C, volume 29, pp. 87

- 97, February 1999.

[2] H. de Garis. “Evolvable Hardware: Principles and Practice”.

Communications of the Association for Computer Machinery (CACM

Journal). August 1997.

[3] H. de Garis. “An Artificial Brain: ATR's CAM-Brain Project Aims to

Build/Evolve an Artificial Brain with a Million Neural Net Modules

Inside a Trillion Cell Cellular Automata Machine”, New Generation

Computing J., 12, no. 2, pp. 215 – 221. 1994.

[4] D. E. Goldberg. Genetic algorithm in search, optimization and machine

learning. Addison-Wesley Publishing Company, Incorporated, Reading,

Massachusetts, 1989.

[5] J. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor,

MI: University of Michigan Press, 1975.

[6] M. D. Vose. “The Simple Genetic Algorithm”. MA: MIT Press 1999.

[7] J. R Koza. Genetic Programming: On the Programming of Computers

by Means of Natural selection. ISBN 0-262-11170-5. MIT Press, 1992.

[8] I. Rechenberg, “Evolution Strategy”, in J. Zurada, R. Marks II, and C.

Robinson (Eds.), Computational Intelligence: Imitating Life, 1994, pp.

147-159.

[9] H. G. Beyer and H. P. Schwefel, “Evolution strategies: A comprehensive

introduction,” Natural Computing: an international journal. Volume 1,

Issue. 1, pp. 3–52, 2002.

[10] T. Bäck, Evolutionary Algorithms in Theory and Practice. New York:

Oxford Univ. Press, 1996.

[11] H.-P. Schwefel, Numerical Optimization of Computer Models. New

York: Wiley, 1981.

[12] L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through

Simulated Evolution. New York: Wiley, 1966.

[13] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution

Programs. Berlin, Germany: Springer-Verlag, 1994.

[14] J. F. Miller and P. Thomson. “Cartesian genetic programming”. In

Riccardo Poli, Wolfgan Banzhaf, William B. Langdon, Julian F. Miller,

Peter Nordin and Terence C. Forgaty, editors. Genetic Programming,

Proceedings of EuroGP 2000. Vol. 1802 of LNCS, pages 121-132,

Edinburg, 16 April 2000. Springer-Verlag.

[15] Myung-Sook Ko, Tae-Won Kang and Chong-Su Hwang. “Function

optimisation using an adaptive crossover operator based on locality”.

Eng. Applic. Artif. Intell. Vol. 10, No 6 pp. 519-524, 1997.

[16] K. Y. Chan, M. E. Aydin, T. C. Fogarty; “Parameterisation of mutation

in evolutionary algorithms using the estimated main effect of genes”

Congress on Evolutionary Computatio. CEC2004. ,Volume: 2 , 19-23

June 2004 Pages:1972 – 1979.

[17] K. Y. Chan, M. E. Aydin, T. C. Fogarty; “An epistasis measure based

on the analysis of variance for the real-coded representation in genetic

algorithms” Congress on Evolutionary Computation. CEC '03. Vol.: 1 ,

8-12 Dec. 2003 Pages:297 – 304.

[18] J. J. Grefenstette, “Optimization of control parameters for genetic

algorithms,” IEEE Trans. Systems, Man, Cybernetics. Vol. 16, no. 1,

pp. 122–128, 1986.

[19] K. De Jong, “The analysis of the behavior of a class of genetic adaptive

systems.” Ph.D. dissertation, Dept. Computer Science, University of

Michigan, Ann Arbor, 1975.

[20] A. E. Eiben, R. Hinterding, Z. Michalewicz; “Parameter control in

evolutionary algorithms” IEEE Transactions on Evolutionary

Computation, Volume: 3, Issue: 2, July 1999 Pages:124 – 141.

[21] J. D. Schaffer, R. Caruana, L. Eshelman and R. Das, “A study of control

parameters affecting online performance of genetic algorithms for

function optimization.” Proceedings of the Third International

Conference on Genetic Algorithms, ed. J. D. Schaffer, Los Altos, CA:

Morgan Kaufmann, June 4-7, 1989, pp. 51-60.

[22] H. Mühlenbein. “How genetic algorithms really work: I.Mutation and

Hillclimbing,“ in Parallel Problem Solving from Nature- PPSN II, R.

Männer and B. Manderick, Eds., Amsterdam, The Netherlands, 1992,

pp. 15-25.

[23] M. Srinivas, L. M. Patnaik. “Adaptive probabilities of crossover and

mutation in genetic algorithms”. IEEE Transactions on Systems, Man

and Cybernetics, Volume 24, Issue 4, April 1994 Page(s):656 - 667

[24] T. Niwa, M. Tanaka. “On the mean convergence time for simple genetic

algorithms”. IEEE International Conference on Evolutionary

Computation. Volume 1, 29 Nov.-1 Dec. 1995 Page(s):373.

[25] R. L. Haupt. “Optimum population size and mutation rate for a simple

real genetic algorithm that optimizes array factors”. IEEE International

Symposium Antennas and Propagation Society. Volume: 2, 16-21 July

2000. Pages:1034 – 1037

[26] S. Nijssen, T. Back; “An analysis of the behaviour of simplified

evolutionary algorithms on trap functions”. IEEE Transactions on

Evolutionary Computation. Volume: 7, Issue: 1, Feb. 2003. Pages:11 –

22.

[27] M. Srinivas, L. M. Patnaik; “Genetic algorithms: a survey”. IEEE JNL

Computer, Volume: 27, Issue: 6, June 1994. Pages:17 - 26

[28] T. Kalganova, J. Miller, “Evolving more efficient digital circuits by

allowing circuit layout evolution and multi-objective fitness”. Proc. of

the First NASA/DoD Workshop on Evolvable Hardware. IEEE

Computer Society, Pages 54–63. July 1999

[29] T. Kalganova; “Bidirectional incremental evolution in extrinsic

evolvable hardware”. Proc. of the Second NASA/DoD Workshop on

Evolvable Hardware. IEEE Computer Society, 13-15 July 2000. Pages:

65 – 74.

[30] E. H. Luna, C.A. Coello Coello, A.H. Aguirre. “On the use of a

population-based particle swarm optimizer to design combinational

logic circuits”. Proceedings of the 2004 NASA/DoD Conference on

Evolvable Hardware, 24-26 June 2004. Pages:183 – 190.

[31] S. Balkir, G. Diindar, G. Alpaydin,; “Evolution based synthesis of

analog integrated circuits and systems” Proceedings of the 2004

NASA/DoD Conference on Evolvable Hardware, 24-26 June 2004

Pages:26 – 29.

[32] M. Oltean, C. Grosan; “Evolving digital circuits using multi expression

programming” Proceedings of the 2004 NASA/DoD Conference on

Evolvable Hardware, 24-26 June 2004 Pages:87 – 94.

[33] Yang Zhang, S.L. Smith, A.M. Tyrrell. “Digital circuit design using

intrinsic evolvable hardware” Proceedings of the 2004 NASA/DoD

Conference on Evolvable Hardware, 24-26 June 2004 Pages:55 – 62

[34] J.C. Gallagher, S. Vigraham, G. Kramer; “A family of compact genetic

algorithms for intrinsic evolvable hardware”. IEEE Transactions on

Evolutionary Computation, Volume: 8 , Issue: 2 , April 2004 Pages:111

– 126.

[35] J. Miller. “An empirical study of the efficiency of learning Boolean

functions using a Cartesian genetic programming approach” In Proc. of

the Genetic and Evolutionary Computation Conference. Volume 1, pp.

1135–1142, Orlando, USA, July 1999.

[36] T. Bäck, F. Hoffmeister, H. P. Schwefel. “A survey of evolutionary

strategies”. In R. Belew and L. Booker, editors, Proceedings of the 4th

International Conference on Genetic Algorithms, pages 2–9, San

Francisco, CA, 1991. Morgan Kaufmann.

[37] H. P. Schwefel. Numerical Optimization of Computer Models. John

Wiley & Sons, Chichester, UK, 1981.

[38] E. Stomeo and T. Kalganova. “Improving EHW performance

introducing a new decomposition strategy.” 2004 IEEE Conference on

Cybernetics and Intelligent Systems. Singapore 1-3 December 2004, pp.

439-444.

[39] A. Stoica, R. Zebulum, D. Keymeulen. “Mixtrinsic Evolution”. In

Fogarty, T., Miller, J., Thompson, A., Thompson, P. (Eds.),

Proceedings of the Third International Conference on Evolvable

systems: From Biology to Hardware (ICES2000), April 17-19, 2000,

Edinburgh, UK. New York, USA, Springer Verlag, 208-217.

[40] J. Torresen. “Possibilities and Limitations of Applying Evolvable

Hardware to Real-World Applications”. Proc. of the 10th International

Conference on Field Programmable Logic and Applications, Villach,

Austria, pp. 230-239. 2000.

[41] P. Andersen P. “Evolvable Hardware: Artificial Evolution of Hardware

Circuits in Simulation and Reality”, M.Sc. Thesis, University of Aarhus,

Denmark. 1998.

[42] Timothy G. W. Gordon and Peter J. Bentley. “On Evolvable Hardware”.

In Ovaska, S. and Sztandera, L. Soft Computing in Industrial

Electronics. Physica-Verlag, Heidelberg, Germany, pp. 279-323. 2002.

[43] A. J. Hirst. “Notes on the Evolution of Adaptive Hardware”, Proc. of

Adaptive Computing in Engineering Design and Control, Plymouth,

U.K., pp. 212-219. 1996.

[44] D. Beasley, D. R. Bull, R. R. Martin. “An Overview of Genetic

Algorithms: Part 1, Fundamentals”. University Computing, 1993, 15(2)

58-69; ©Inter-University Committee on Computing.

[45] E. Stomeo et al. “On Evolution of Relatively Large Combinational

Logic Circuits”. The 2005 NASA/DoD Conference on Evolvable

Hardware. June 29 - July 1, 2005, Washington DC, USA. IEEE

Computer Society. Pages 59-66.

Emanuele Stomeo received a Laurea degree in

electronic engineering from Politecnico di Torino,

Turin, Italy in 2003. He is currently working towards a

PhD in computer science and engineering at Brunel

University, West London, UK. From 2000 to 2003 he

studied at RWTH Aachen University, Germany where

he pursued specializations in image processing and

digital design.

He carried out his Master Thesis work at Philips

Research Laboratories, Aachen, Germany in 2002-2003. He is currently a

member of the Bio-Inspired Intelligent Systems Research Group at Brunel

University, West London, UK.

His research interests are in evolvable hardware, evolutionary computation,

design of digital circuits and bioengineering applications.

Tatiana Kalganova received MSc degree from

Belarusian State University of Informatics and

Radioelectronics, Belarus in 1994 and PhD degree

from Napier University, UK in 2000.

In August 2000 she has joined Electronic and

Computer Engineering Department, Brunel University.

Her research interests are evolvable hardware, ant

colony algorithms, scalability in AI systems.

She was awarded a personal grant from the Education

Ministry of the Republic of Belarus for distinctive achievements in the field

of exact sciences in 1997, and a grant from the International Soros Science

Education Program (ISSEP) for distinctive achievements in the field of exact

sciences in 1996.

Cyrille Lambert received a diplôme d’éducation

supérieure spécialisée in microelectronic engineering

from Pierre et Marie Currie University, Paris, France

in 2000.

After spending three years in the industry as a digital

design engineer he joined in 2003 the computer

science and engineering department at Brunel

University, West London, UK. He is currently working

toward the PhD. degree as a member of Bio-Inspired

Intelligent Systems at Brunel University, West London, UK.

He carried out his Master Thesis work at the Swiss Centre for Electronics and

Microtechnology, Inc., Neuchâtel, Switzerland in 1999-2000.

