

Scalable VLSI Design for Fast GF(p) Montgomery Inverse Computation

Adnan Abdul-Aziz Gutub1, Erkay Savas2, and Tatiana Kalganova3

1 Department of Computer Engineering,
King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

2 Faculty of Engineering & Natural Sciences,

Sabanci University, Istanbul, Turkey TR-34956

3 Department of Electronic and Computer Engineering
 Brunel University, Uxbridge, Middlesex, UK, UB8 3PH

Email: gutub@kfupm.edu.sa

Abstract

 This paper accelerates a scalable GF(p)
Montgomery inversion hardware. The hardware is
made of two parts a memory and a computing unit. We
modified the original memory unit to include parallel
shifting of all bits which was a task handled by the
computing unit. The new hardware modeling,
simulating, and synthesizing is performed through
VHDL for several 160-bits designs showing interesting
speedup to the inverse computation.

Keywords: Montgomery inverse, Elliptic curve
cryptography, Scalable hardware design

1. Introduction

 The addition, multiplication and inversion,
arithmetic computations in GF(p) have several
applications in cryptography, such as RSA algorithm
[1], Diffie-Hellman key exchange algorithm [2], the
US federal Digital Signature Standard [3] and also
elliptic curve cryptography (ECC) [4,5]. ECC is the
main focus of this work since its promise to replace
older public-key crypto systems [6]. Cryptography with
key size of 160-bits in ECC is equivalent in security to
1024 bits RSA [7] which made our design choice of
160-bits. Recently, speeding up inversion operations in
GF(p) have been gaining attention since inversion is
the most time consuming operation in elliptic curve
cryptographic algorithms when affine co-ordinates are
selected [6]. Although GF(p) inversion can be
performed in software or in hardware, hardware is
preferred to gain the best in speed and security [8].

 Modular inversion in hardware is often performed
by algorithms based on the Extended Euclidean
algorithm [6]. Several attempts [9-11] have
investigated the GF(p) inversion targeted to field
programmable gate array (FPGA) implementations.
The FPGA models face extra delay to propagate the
carry from top to bottom between different FPGA
columns.

 Different inversion hardware were proposed by
Feldhofer [12] and Zhou [13]. Feldhofer hardware
performs inversion but slow and complex due to the
usage of Fermat’s Theorem [12]. Zhou in [13],
designed a VLSI implementation for GF(p) inversion
computation using one simple adder that suffered from
the long propagation carry chain making the operation
clock frequency limited and the design area and
complexity not flexible to accommodate the changing
demand of the crypto applications.

 The Montgomery modular inverse algorithm and
hardware suitable for this research is presented in [8].
The algorithm is implemented in hardware using
scalability features, which allows the use of a fixed-
area scalable circuit to perform inversion of unlimited
precision operands. The hardware divides the long-
precision numbers in words and each word is processed
in a clock cycle. This research proposes speeding up
the process by making the shifting operation with the
memory unit instead of the scalable computing unit.
The results will show the speedup gained and the extra
hardware area needed. The conclusion proofs that the
extra hardware added is worth the expected speedup
with the VHDL measurements.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/42131131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Modified Hardware

 The original scalable inversion hardware is built of
two main parts, a memory unit and a computing unit.
The reader is referred to [8] for detailed information on
the original hardware and how it is built. The inversion
hardware is to run two hardware algorithms in series to
compute the Montgomery inverse needed. These
algorithms are known as the almost Montgomery
inverse (AlmMonInv) and the correction phase (CorPh)
procedures which are represented for hardware as
HW_Alg1 and HW_Alg2, respectively, as shown
below.

AlmMonInv Hardware Algorithm (HW-Alg1)
Registers: u, v, r, s, & p (all five registers hold n bits).
Input: a ∈ [1, p-1], p = modulus; where 2n-1 ≤ p < 2n

Output: result∈[1, p-1] & k;
 where result=a-12k mod p & n≤k≤2n
 1. u = p; v = a; r = 0; s = 1; k = 0
 2. if (u0 = 0) then { u = ShiftR(u,1) ;
 s = ShiftL(s,1)}; goto 7
 3. if (v0 = 0) then { v = ShiftR(v,1) ;
 r = ShiftL(r,1)}; goto 7
 4. S1 = Subtract (u, v); S2 = Subtract (v, u);
 A1 = Add (r, s)
 5. if(S1borrow=0)then{u=ShiftR(S1,1));r=A1;
 s=ShiftL(s,1)};goto 7
 6. s = A1; v = ShiftR(S2,1); r = ShiftL(r,1)
 7. k = k + 1
 8. if (v ≠ 0) go to step 2

9. S1 = Subtract (p, r); S2 = Subtract (2p, r)
 10. if(S1borrow=0)then{return result=S1};
 else {return result=S2}

The correction phase(CorPh) [8] algorithm is shown as
HW-Alg2 below:

CorPh Hardware Algorithm (HW-Alg2)
Registers: r & p (two registers to hold n bits).
Input: r,p,n,k; where r (r= a-12k-nmod p)&
 k from AlmMonInv
Output: result; where result = a-12n (mod p).
 11. j= 2n-k-1
 12. While j>0
 13. r = ShiftL(r,1); j = j-1
 14. S1 = Subtract(r, p)
 15. if (S1borrow = 0) then {r = S1}

 The new 160-bits modified hardware remodeled
both the computing and memory unit, as shown in
Fig. 1. The shifting operation is removed from the
computing unit. Instead, the memory is changed to a
bidirectional single bit shifting register. Each FIFO
within the memory block is improved to perform the
shifting by adding nmax multiplexers. The multiplexers
will reroute and organize passing the data to it self or to
the next cell for shifting as in the original architecture,
or they (the multiplexers) direct the data to be shifted
right or left. The memory & shifter unit will follow the
operations as controlled by the HW-Alg1 and HW-
ALg2.

Figure 1: Improved 160-bits inversion hardware block diagram

3. Area Comparison

 The area of any VLSI hardware depends on the
technology and minimum feature size. For technology
independence, the number of equivalent gates are used
as area measure. A CAD tool from Mentor Graphics
(Leonardo) was used. Leonardo takes the VHDL
design code and provides a synthesized design with its
area and longest path delay. The target technology is a
0.5µm CMOS defined by the ‘AMI0.5 fast’ library
provided in the ASIC Design Kit (ADK) from the same
Mentor Graphics Company [14].

 The areas of scalable hardware depends on the
maximum number of bits it can handle (nmax) and the
scalable word size (w). All designs are built for
nmax =160-bits. Changing w give different scalable
designs areas as shown in Fig. 2; this compares
between all new scalable designs and the old scalable
ones of [8]. It is clear for all designs that as w increases
the area is getting larger.

4. Delay Comparison

 The exact computation time is estimated by the
number of cycles multiplied by the clock cycle period.
It was found from the VHDL synthesis that the new
hardware clock period is not affected by the shifting
modification of this work, which made the clock period
of the new hardware depend on the value of w, exactly
as the clock period of the original old hardware of [8].

 The number of clock cycles for all designs
depends completely on the data and its computation.
The computation time of the new hardware to run the
AlmMonInv algorithm is estimated by probability
study as in [8]. See the AlmMonInv algorithm (HW-
Alg1) represented earlier. Simulating this algorithm
proofed that almost 25% of the k cycles is consumed
by step 2 and 25% is for step 3. Steps 4, 5, and 6 are a
sequence that runs consuming 50% of the k iteration.
After the k iterations, step 9 is performed once which
needs to considered in the time estimation too. Note

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

4 8 16 32 64 128
Scalable word size (w-bits)

A
re

a
(g

at
es

)

Old hardware
New hardware

Figure 2: Area comparison of all scalable designs for 160-bits

that each shifting operation is performed in one cycle
independent to the number of words the hardware is
having, while the addition and subtraction needs to be
performed within ⎡n/w⎤ cycles. These points made the

lmMonInv Computation Time as follows: A

 Cycles for steps 4,5,6 = 0.5 k (⎡n/w⎤+1)
 Cycles for step 9 = ⎡n/w⎤
 Cycles for steps 2,3 = 0.5 k
 Total AlmMonInv Clock Cycles =
 0.5 k (⎡n/w⎤+1)+ ⎡n/w⎤ + 0.5 k

 The computation time of correction phase
algorithm (HW-Alg2) depend on the total number of
iterations and some extra cycles within the iterations
due to scalability. The single bit shifting number of
iterations is 2n-k-1, assuming on average k=1.5n, will
result: 2n-1.5n-1≈ 0.5n [8].

 HW-Alg2 will need this number of iterations to
process step 13 followed by step 14. Step 14 needs the
xtra scalability cycles of ⎡n/w⎤ as detailed below: e

 Cycles for step 13 = 0.5 n
 Cycles for step 14 = 0.5 n * ⎡n/w⎤
 Total CorPh Clock Cycles = 0.5 n + 0.5 n * ⎡n/w⎤

 Several scalable hardware configurations are
designed depending on different w parameters. Each
configuration can have different computation time
depending on the actual number of bits, n, used. For
example, Fig. 3 compares the delay of six scalable
hardware designs of both types, the new hardware and
the old ones of [8]. All architectures are designed for
maximum bits of nmax=160 bits, however, in reality the
ECC actual number of bits (n) can be less. Note that
the difference in n affects on the speed of the designs.
i.e., as n reduces, the overall computing time of any
scalable design reduces. This is a major advantage of
the scalable hardware over all other non-scalable
designs. In this scalable hardware, the computation
time is relate to the actual number of bits and do not
depend on the hardware capability of nmax=160 bits.

 Fig. 3 shows that the computation time of all new
designs are less than the old ones in all cases.
However, as the value w goes large compared to the
actual number of bits n, the computation time increase
fast, which is a situation that loses the speed benefit of
scalability. In other words, as w gets bigger the total
time decreases fast, which is true in all different
scalable designs as long as n ≥ w.

Figure 3: Delay comparison of all scalable designs for 160-bits

10

100

1000

10000

8 16 32 64 128 160
n (bits)

A
re

a
* T

im
e

New hardware, w = 4

New hardware, w = 8

New hardware, w = 16

New hardware, w = 32

New hardware, w = 64

New hardware, w = 128

Figure 4: AT figure of merit of different new hardware designs

5. Best Scalable Hardware

 Choosing the appropriate scalable design is
depending on the importance of speed and area.
Consider the area study, Fig. 2, and the delay one, Fig.
3, as we increase in terms of area we gain in most of
the cases in speed. However, is the speed gained worth
the area paid?
To estimate an evaluation standard that relates between
area and time, a figure of merit: AT (Area×Time) is
used to decide the best design. It is assumed that as AT
value reduces as the design is better.

 Fig. 4 shows the AT results of the scalable designs
with respect to the actual number of bits n for the new
scalable 160-bits architectures. The AT values show
that depending on the actual number of bits n expected
to be used, the best hardware is chosen. For example, If
n is too small, less than 16 bits (which is unpractical),
the best design would be with w = 8 bits. When n is
within the range from 16 bits to 64 bits, the appropriate
design is the one with w = 16 bits. If the value of n is
grater than 64 bits, the suitable hardware would be with
w =32 bits, which is the practical hardware assumption
to choose. Note that the bigger designs, i.e. with

w > 32 bits are found inappropriate according to AT
estimate.

6. Conclusion

 This paper presents a modified scalable hardware
for GF(p) Montgomery modular inverse computation
to gain speed. The design is featuring scalability
allowing a specific computing module to handle
operands of any precision, where its delay depends on
the actual data used and not on the hardware capability.
The word-size that the scalable module operates can be
selected depending on the area and speed requirements.
This study found that the best 160-bits hardware to
choose is having the scalable word size of 32 bits
which has the area of around 30 k-gates.

 The proposed new hardware is a modification to
an original old hardware that performs shifting
operations within the computing unit. This shifting is
moved from the scalable computing unit to the non-
scalable memory part. The new hardware increased the
area to double the area of the original old one but
gaining interesting speedup that can reach 28%. The

results show that our scalable structure is very
attractive for crypto systems, particularly for ECC
where there is a clear need for modular inversion of
large numbers, which may differ in size depending on
security requirements imposed by applications.

Acknowledgments

 I would like to thank the British council in Saudi
Arabia, for supporting this research through their
postdoctoral program. Continuous support from
KFUPM is also appreciated. I would like also to thank
the Electrical & Computer Engineering Department of
Brunel University in Uxbridge, for hosting me during
my visit to the UK and for all fruitful discussions and
providing the facilities needed to accomplish this work.

References

[1] Rivest, Shamir, and Adleman, “A Method for
Obtaining Digital Signature and Public-Key
Cryptosystems”, Comm. ACM, February 1978,
Vol. 21, No. 2, pp. 120-126.

[2] Diffie, and Hellman “New Directions on

Cryptography”, IEEE Transactions on Information
Theory, November 1976, Vol. 22, pp. 644-654.

[3] National Institute for Standards and

Technology, “Digital signature standard (DSS)”,
Federal Register, August 1991, Vol. 56, pp. 169.

[4] Koblitz, N., “Elliptic Curve Cryptosystems”,

Math. Computing, 1987, Vol. 48, pp. 203–209.

[5] Miller, V., “Use of Elliptic Curves in
Cryptography”, Proceedings of Advances in
Cryptology (Crypto), 1986, pp. 417-426.

[6] Blake, Seroussi, and Smart, “Elliptic Curves

in Cryptography”, Cambridge University Press:
New York, 1999.

[7] Ors, Batina, Preneel, and Vandewalle,
“Hardware Implementation of an Elliptic Curve
Processor over GF(p)”, Proceedings of the IEEE
International Conference on Application-Specific
Systems, Architectures, and Processors
(ASAP’03), June 2003, pp. 433 – 443.

[8] Gutub, Adnan, and Tenca, “Efficient Scalable

VLSI Architecture for Montgomery Inversion in
GF(p)”, Integration, the VLSI Journal, May 2004,
Vol. 37, No. 2, pp. 103-120.

[9] Daly, Marnane and Popovici, “Fast Modular

Inversion in the Montgomery Domain on
Reconfigurable Logic”, Irish Signals and Systems
Conference (ISSC 2003), July 2003, pp. 362-367.

[10] McIvor, McLoone and McCanny, “Improved

Montgomery Modular Inverse Algorithm”,
Electronics Letters, September 2004, Vol. 40, No.
18, pp. 1110-1111.

[11] Guerric de Dormale, Bulens and Jean-Jacques

Quisquater, “An Improved Montgomery Modular
Inversion Targeted for Efficient Implementation
on FPGA”, International Conference on Field-
Programmable Technology - FPT 2004, pp. 441-
444.

[12] Feldhofer, Trathnigg and Schnitzer, “A Self-

Timed Arithmetic Unit for Elliptic Curve
Cryptography”, Proceedings of the Euromicro
Symposium on Digital System Design (DSD’02),
2002.

[13] Zhou, Wu, Bai and Chen, “Fast GF(p)

Modular Inversion Algorithm Suitable for VLSI
Implementation”, Electronics Letters, July 2002,
Vol. 38, No. 14, pp.706-707.

[14] Mentor Graphics Co. ASIC Design Kit.

http://www.mentor.com/partners/hep/AsicDesign
Kit/dsheet/ami05databook.html

