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separating conjunction in an assertion quantale; interval logics, where convolution is the chop operation;

and stream interval functions, where convolution is proposed for analysing the trajectories of dynamical
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1. INTRODUCTION
Algebraic approaches are fundamental to mathematics and computing. Universal con-
structions, such as products, quotients or adjunctions, can, for instance, be presented
and investigated in algebra or category theory in simple generic ways. We investi-
gate the notion of convolution or Cauchy product from formal language theory [Droste
et al. 2009; Berstel and Reutenauer 1984] as such a universal algebraic construct. It
supports a generic development of objects and calculi interesting to mathematics and
computing, and provides a unified structural view on various computational models.
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A:2 B. Dongol, I.J. Hayes and G. Struth

This is interesting both conceptually and for designing modular mathematical compo-
nents in theorem proving environments.

The operational content of convolution is simple: an entity is decomposed in all pos-
sible ways into two parts, two functions are applied separately or in parallel to each of
these pairs, their outputs are composed, and all possible compositions are summed.

Hence suppose f and g are functions from a suitable algebra S with composition ◦
into algebra Q with composition � and summation Σ. Then, for any x ∈ S, the convo-
lution of f and g is given by

(f ⊗ g)x =
∑
x=y◦z

f y � g z.

This language-theoretic form of convolution differs slightly from convolution in other
fields of mathematics, and it is an algebraic analogue of the Day convolution of func-
tors from a monoidal category into the category Set [Day 1970]. In formal language
theory, total functions of type S → Q are called (formal or rational) power series. They
map elements of the free monoid S = X∗ with alphabet X into a semiring (Q,+,�, 0).
Because finite words can only be split into finitely many prefix/suffix pairs, the sum in
convolution is finite, and hence well defined. A standard example of Q is the boolean
semiring, where + is disjunction and � is conjunction. Power series then become char-
acteristic functions; they indicate whether or not a word is in a language. Convolution
in this case specialises to the language product. More generally, Q can model probabil-
ities or weights associated to words; a Handbook is devoted to the subject [Droste et al.
2009].

We complement this body of work by generalising the type of power series, rebal-
ancing the assumptions on source algebras S and target algebras Q, while avoiding
the machinery of enriched categories [Kelly 1982]. This shifts the focus to other appli-
cations. Among those are separation logic (cf. [Ishtiaq and O’Hearn 2001; Reynolds
2002]), where convolution becomes separating conjunction, interval temporal log-
ics [Moszkowski 2000], where convolution becomes chop, and combinations of these
with new notions of spatial, temporal and concurrent composition. The power series
approach captures the algebra of convolutions and allows derivation of compositional
inference systems for each of these applications in a uniform manner. Compared to
approaches based on enriched categories it is conceptually simpler and more suitable
for mechanised reasoning [Dongol et al. 2015].

Our main contributions are as follows:

— For power series from partial semigroups into quantales, we present a generic lifting
construction to power series quantales with convolution as multiplication.

— For non-commutative convolution we construct, as examples, the quantales of lan-
guages, binary relations, matrices, sets of traces or interval functions as instances.

— For commutative convolution we construct assertion quantales for separation logic
from resource monoids, multisets, heaplets or finite vectors.

— We generalise the lifting construction to partial quantales, to bi-semigroups and bi-
quantales, as well as two-dimensional power series. Based on this we outline a new
algebraic approach to the interval-based analysis of dynamic and real-time systems,
where convolution yields spatial, temporal and concurrency operators as an example.

— We explain how predicate transformer algebras and Hoare calculi arise in the power
series approach in generic fashion and discuss some extensions and some ramifica-
tions of deriving concurrency rules in this setting.

Our lifting constructions are simple and generic: after setting up a suitable partial
semigroup S (for instance words under concatenation, closed intervals under concate-
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Convolution as a Unifying Concept A:3

nation, resources under aggregation operations) the space of functions from S into a
quantale Q itself forms a quantale with convolution as multiplication. When the tar-
get quantale Q is the two-element boolean quantale B, power series are predicates and
multiplication in the booleans is conjunction u. Convolution then becomes

(f ⊗ g)x =
∑
x=y◦z

f y u g z

where
∑

denotes join or existential quantification in B. If S is a set of resources and ◦
a commutative operation of resource aggregation, then convolution is separating con-
junction. If S is a set of closed intervals and ◦ concatenates adjoining intervals, then
convolution is chop. Our lifting result then guarantees that the predicates over S form
an assertion quantale — of separation logic, interval logics and so forth. But it covers
models beyond the booleans as well, such as probabilistic or weighted predicates or lin-
ear transformations on vectors. In general, convolution admits spatial or concurrent
interpretations whenever both compositions ◦ and � are commutative.

The remainder of this article is organised as follows. Section 2 recalls the basic alge-
braic structures needed. Section 3 introduces our approach to power series with par-
tial semigroups as source algebras and quantales as target algebras; it also proves
our basic lifting result. Section 4 discusses the case of power series into the boolean
quantale, when convolution becomes a possibly non-commutative notion of separating
conjunction. Sections 5 and 6 present non-commutative and commutative instances
of our lifting lemma, respectively; Section 5 discussing, among others, the chop op-
eration over intervals and Section 6 focusing on variants of separating conjunction.
Section 7 presents a lifting result for power series into partial quantales with an ex-
ample, while Section 8 considers formal power series that are partial functions, with
applications to sparse and non-square matrices. Section 9 generalises the lifting result
to bi-semigroups and bi-quantales and presents two examples. Section 10 generalises
the result to power series from two semigroups into a bi-quantale; and presents in
particular the quantale of stream interval functions, which is based on this general-
isation. Section 11 further generalises the approach to applications with finite and
infinite behaviours. Section 12 shows that the interchange laws of concurrent Kleene
algebras fail in general power series quantales. Section 13 discusses extensions and ap-
plications of the approach, including how predicate transformer algebras and generic
Hoare logics with a frame rule can be obtained from power series quantales. Section 14
concludes the article.

Additional material, including more detailed proofs and examples, can be found in
an extended report [Dongol et al. 2014b].

2. ALGEBRAIC PRELIMINARIES
This section briefly recalls the most important algebraic structures used in this article:
partial semigroups and monoids, their commutative variants, semirings and dioids as
well as quantales. We also consider such structures with two operations of composition
or multiplication: bi-semigroups, bi-monoids, bi-semirings and bi-quantales.

A partial semigroup is a structure (S,D, ·) such that S is a set, D ⊆ S × S is the
domain over which the binary operation · is defined, and it is an operation of type D →
S that satisfies the usual associativity law in the sense that if either side is defined
then so is the other side and both are equal [Bergelson et al. 1994]. A partial semigroup
can be embedded into a (total) semigroup (S,�,⊥) with the adjoined element ⊥ /∈ S
denoting undefined, where x� y = x · y if (x, y) ∈ D, and x� y = ⊥ otherwise.

A partial monoid is a partial semigroup with multiplicative unit 1. A generalised
partial monoid is a structure (S,D, I, ·) such that (S,D, ·) is a partial semigroup, I ⊆ S
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A:4 B. Dongol, I.J. Hayes and G. Struth

is a set of generalised units such that for each x ∈ S there exist e, e′ ∈ I such that
e · x = x = x · e′. A very similar axiomatisation has been used by Jónsson and Tarski
[1952] for generalised Brand groupoids. Alternatively, generalised partial monoids can
be identified with small categories whereas partial semigroups have been called semi-
groupoids in category theory.

We often write (S, ·) for partial semigroups and (S, ·, 1) for partial monoids, leaving
D and ⊥ implicit. A (partial) semigroup S is commutative if x · y = y · x for all x, y ∈ S.
Henceforth, we write · for a general multiplication and ∗ for a commutative one.

An important property of semigroups is opposition duality. For every partial semi-
group (S, ·), the structure (S,�) with x � y = y · x for all x, y ∈ S forms a partial
semigroup; the opposite of S. Similarly, the opposite of a partial monoid is a partial
monoid.

The definitions of semigroups and monoids generalise to n operations, but we are
mainly interested in the case n = 2. A partial bi-semigroup is a structure (S, ◦, •) such
that (S, ◦) and (S, •) are partial semigroups. Partial bi-monoids (S, ◦, •, 1◦, 1•) can be
defined as usual by postulating a unit element for each semigroup operation.

A semiring is a structure (S,+, ·, 0) such that (S,+, 0) is a commutative monoid, (S, ·)
a semigroup, and the distributivity laws x ·(y+z) = x ·y+x ·z and (x+y) ·z = x ·z+y ·z
as well as the annihilation laws 0 · x = 0 and x · 0 = 0 hold. A semiring is unital if
the multiplicative reduct is a monoid (with unit 1). A dioid is an additively idempotent
semiring S, that is, x + x = x holds for all x ∈ S. The additive reduct of a dioid thus
forms a semilattice with order defined by x ≤ y ⇔ x + y = y. Obviously, the classes of
semirings and dioids are closed under opposition duality.

A bi-semiring is a structure (S,+, ◦, •, 0) such that (S,+, ◦, 0) and (S,+, •, 0) are
semirings; a trioid is an additively idempotent bi-semiring. A bi-semiring or trioid is
unital if the underlying bi-semigroup is a bi-monoid.

A quantale is a structure (Q,≤, ·) such that (Q,≤) is a complete lattice, (Q, ·) is a
semigroup and the distributivity axioms

x · (
∑
i∈I

yi) =
∑
i∈I

(x · yi) and (
∑
i∈I

xi) · y =
∑
i∈I

(xi · y)

hold, where
∑
X denotes the supremum of a setX ⊆ Q. Similarly, we write

∏
X for the

infimum of X, and x+y and xuy for the supremum and infimum of {x, y}, respectively.
The distributivity laws imply, in particular, · is isotone in both arguments:

x ≤ y ⇒ z · x ≤ z · y and x ≤ y ⇒ x · z ≤ y · z.

A quantale is commutative and partial whenever the underlying semigroup is; unital
if the underlying semigroup is a monoid; and distributive if the distributivity laws

x u (
∑
i∈I

yi) =
∑
i∈I

(x u yi) and x+ (
∏
i∈I

yi) =
∏
i∈I

(x+ yi)

hold. A boolean quantale is a distributive quantale in which every element has a com-
plement. The boolean unital quantale B of the booleans, where multiplication · coin-
cides with meet, plays an important role in this article.

A bi-quantale is a structure (Q,≤, ◦, •) such that (Q,≤, ◦) and (Q,≤, •) are quantales.
It is unital if the two underlying semigroups are monoids.

It is easy to see that every (unital) quantale is a (unital) dioid and every (unital) bi-
quantale a (unital) trioid. In addition, 0 =

∑
i∈∅ xi and annihilation laws as in dioids

follow from this as special cases of distributivity.
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Convolution as a Unifying Concept A:5

3. POWER SERIES QUANTALES
Formal (or rational) power series [Berstel and Reutenauer 1984] have been studied
in formal language theory for decades. For brevity, we call them power series in this
article. In formal language theory, a power series is simply a total function from the
free monoid X∗ over a finite alphabet X into a suitable algebra Q, usually a semiring
or dioid (Q,+, ·, 0, 1).

Operations on f, g : X∗ → Q are defined as follows. Addition is lifted pointwise, that
is, (f + g)x = f x+ g x. Multiplication is given by the convolution or Cauchy product

(f · g)x =
∑
x=yz

f y · g z,

where yz denotes word concatenation and the sum in the convolution is finite since fi-
nite words can only be split in finitely many ways into prefix/suffix pairs. Furthermore,
the empty power series O maps every word to 0, whereas the unit power series 1 maps
the empty word to 1 and all other words to 0.

We write QX
∗

for the set of power series from X∗ to Q and, more generally, QS for
the class of functions of type S → Q. The following lifting result is well known.

PROPOSITION 3.1. If (Q,+, ·, 0, 1) is a semiring (dioid), then so is (QX
∗
,+, ·,O,1).

This construction generalises from free monoids over finite alphabets to arbitrary
partial semigroups or monoids. The sums in convolutions then become infinite due
to infinitely many possible decompositions of elements. Here, due to potential diver-
gence, these sums may not exist. However, we usually consider target algebras in
which addition is idempotent and sums correspond to suprema. The existence of ar-
bitrary suprema can then be covered by completeness assumptions.

We fix algebraic structures S and Q. First, we merely assume that S is a set, but for
more powerful lifting results it is required to be a partial semigroup or partial monoid.

For a family of functions fi : S → Q and i ∈ I we define

(
∑
i∈I

fi)x =
∑
i∈I

fi x,

whenever the supremum in Q on the right-hand side exists. This comprises

(f + g)x = f x+ g x.

Another special case is

(
∑
i∈∅

fi)x =
∑
i∈∅

fi x = 0.

Hence, in particular,
∑
i∈∅ fi = λx. 0 and we write O for this function.

We define the convolution

(f ⊗ g)x =
∑
x=y◦z

f y � g z,

with multiplication at the levels of S, Q and QS . Again, this requires that the supre-
mum on the right-hand side exists in Q. Hereafter, for simplicity, we overload ⊗, ◦ and
� with a single multiplication symbol ·. Finally, whenever S is endowed with suitable
generalised units, we define 1 : S → Q as

1x =

{
1, if x ∈ I,
0, otherwise.
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In the case of partial monoids, the condition x ∈ I specialises to x = 1.
Note that the pointwise lifting (f + g)x = f x + g x can be seen as a special case of

convolution with partial semigroup (S, ·) and composition defined by x ·y = x whenever
x = y and undefined if x 6= y, for all x, y ∈ S.

Theorem 3.4, the main result in this section, shows that quantale laws lift from the
algebra Q to the function space QS of power series under these definitions. On the way
to this result, we recall that semilattice and lattice structures lift to function spaces,
a fundamental result of domain theory [Abramsky and Jung 1994]. The proofs of the
next two lemmas are straightforward exercises and may be found in [Dongol et al.
2014b].

LEMMA 3.2. Let S be a set. If (L,+, 0) is a semilattice with least element 0, then so
is (LS ,+,O). If L is a complete lattice, then so is LS .

Infima, if they exist, are defined like suprema by pointwise lifting as

(
∏
i∈I

fi)x =
∏
i∈I

fi x,

thus (f u g)x = f x u g x. Lemma 3.2 can then be strengthened as follows.

LEMMA 3.3. Let S be a set. If (L,+,u, 0) is a (distributive) lattice with least element
0, then so is (LS ,+,u,O). Completeness and infinite distributivity laws between infima
and suprema lift from L to LS .

The final lifting result in this section deals with the multiplicative structure as well.
This requires S to be a partial semigroup instead of a set.

THEOREM 3.4. Let (S, ·) be a partial semigroup. If (Q,≤, ·) is a (distributive) quan-
tale, then so is (QS ,≤, ·). In addition, commutativity inQ lifts toQS if S is commutative;
unitality in Q lifts to QS if S is a generalised partial monoid.

PROOF. Since Q is a quantale, all suprema and infima exist; in particular those
needed for convolutions.

The lifting to complete (distributive) lattices is covered by Lemma 3.3. It therefore
remains to check the multiplicative monoid laws, distributivity of multiplication and
annihilation. For left distributivity, for instance,

(f ·
∑
i∈I

gi)x =
∑
x=y·z

(f y ·
∑
i∈I

gi z) =
∑
i∈I

∑
x=y·z

(f y · gi z) =
∑
i∈I

(f · gi)x.

The proof of right distributivity is opposition dual.
Left distributivity ensures associativity, the proof of which lifts as with rational

power series (Proposition 3.1). The restriction to partial semigroups is insignificant
because in x = y · z, it is required that (y, z) ∈ D. The same holds for unitality proofs.

Commutativity lifts from S and Q as follows:

(f · g)x =
∑
x=y·z

f y · g z =
∑
x=z·y

g z · f y = (g · f)x.

For the right unit law,

(f · 1)x =
∑
x=y·z

f y · 1 z =
∑

x=x·e,e∈I
f x · 1 e = f x · 1 = f x.

The proof of the left unit law is opposition dual.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Convolution as a Unifying Concept A:7

The distributivity laws on QS imply the annihilation laws O · f = O and f ·O = O for
all f : S → Q. When only finite sums are needed, Q can be assumed to be a semiring
or dioid instead of a quantale. The following corollary to Theorem 3.4 provides an
example.

COROLLARY 3.5. Let (S, ·) be a finite partial semigroup. If (Q,+, ·, 0) is a semiring,
then so is (QS ,+, ·,O). In addition, idempotency of + in Q lifts to QS ; commutativity of
multiplication · in S and Q lifts to QS ; unitality in Q lifts to QS if S is a generalised
partial monoid.

As another specialisation, Proposition 3.1 is recovered easily when S is the free monoid
over a given alphabet and Q a semiring or dioid.

Corollary 3.5 indicates the two different kinds of liftings used in the constructions
of QS . That of additive properties is pointwise; it depends only on properties of quan-
tale Q. That of multiplicative properties, by contrast, uses convolution; it depends on
properties of quantale Q as well as semigroup S.

A construction similar to the one in Theorem 3.4 is well known in category the-
ory [Day 1970]: the functors SetC form a (symmetric) monoidal category whenever
C is a (symmetric) monoidal category. The tensor on this functor category is known as
Day convolution; it is defined in terms of a coend. The precise relationship to our lifting
result and its consideration in the setting of enriched categories is beyond the scope of
this article.

4. POWER SERIES INTO THE BOOLEAN QUANTALE
In many applications, the target quantale Q is formed by the booleans B. Power series
are then of type S → B and can be interpreted as characteristic functions or predicates.
In fact, BS is isomorphic to the power set 2S of S as well as the set of all predicates
over S, identifying predicates with their extensions.

Theorem 3.4 then specialises to the powerset lifting of a partial semigroup or monoid
S. For each x ∈ S, the boolean value f x expresses whether or not x is in the set
corresponding to f . Powerset liftings have been studied widely in mathematics since
the late nineteenth century (cf. [Goldblatt 1989; Brink 1993]). They are ubiquitous in
program semantics, for instance as power domains (cf. [Abramsky and Jung 1994]).

COROLLARY 4.1. Let S be a partial (commutative) semigroup. Then BS forms a
(commutative) distributive quantale where BS ∼= 2S , ≤ corresponds to ⊆ and convolu-
tion, for all X,Y ⊆ S, to the complex product

X · Y = {x · y ∈ S | x ∈ X ∧ y ∈ Y }.

If S has generalised units in I, then BS has unit 1 = I.

Various instances of Corollary 4.1 are discussed in Sections 5 and 6. Jónsson and
Tarski [1952] have shown that the powerset lifting of a generalised Brand groupoid
yields a complete atomistic relation algebra, of which Corollary 4.1 is a special case.
Even more generally, they have studied powerset liftings of relational structures to
boolean algebras with operators [1951], which foreshadows the construction of predi-
cate transformer semantics from relational ones.

The power quantale BS carries a natural logical structure with elements of BS cor-
responding to predicates, suprema to existential quantification, infima to universal
quantification and the lattice order to implication. In particular, + corresponds to dis-
junction and u to conjunction.
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More interesting is the logical interpretation of convolution

(f · g)x =
∑
x=y·z

f y · g z

in the power quantale BS . The expression x = y · z denotes the decomposition or sepa-
ration of the semigroup element x into parts y and z. The composition f y ·g z = f yug z
in B models the conjunction of predicate f applied to y with predicate g applied to z. Fi-
nally, the supremum

∑
models the existential quantification over these conjunctions

with respect to all possible decompositions of x.
The commutative case of Corollary 4.1 is immediately relevant to separation logic.

In this context, the partial commutative semigroup (S, ∗) is called a resource semi-
group [Calcagno et al. 2007]; it provides an algebraic abstraction of the heap. Its pow-
erset lifting BS captures the algebra of resource predicates that form the assertions of
an extended Hoare logic — the assertion quantale of separation logic. In this assertion
quantale, separating conjunction is precisely convolution: the product x = y ∗ z on the
resource semigroup S separates the resource x into y and z and the product f y u g z
in B conjoins f y and g z. The concrete case of the heap is considered in more detail in
Example 6.2.

It seems interesting to characterise the properties that can be lifted from algebras
S and Q to QS . For Q = B it is well known that an equation s = t can be lifted if and
only if each variable in that equation occurs only once both in s and t or else s and t are
identical (cf. the discussion in Brink [1993]). It follows, for instance, that idempotency
of multiplication in S does not lift to BS and therefore not to QS in general.

In sum, the power series approach yields a simple algebraic view on a lifting to
function spaces in which convolution into the booleans allows various interpretations,
including that of a complex product, that of separating conjunction — commutative or
non-commutative — and that of separating conjunction as a complex product according
to Corollary 4.1. In the commutative setting it gives a simple account of the category-
theoretical approach to O’Hearn and Pym’s logic of bunched implication [1999], where
separating conjunction is Day convolution [Day 1970] and proofs require the Yoneda
lemma. This bridges the gap between the logic of bunched implications and the more
elementary algebraic approach outlined by Calcagno et al. [2007]. The relative sim-
plicity of power series is evidenced in the implementation of a lightweight program
construction and verification tool for separation logic in Isabelle/HOL [Dongol et al.
2015]. Reasoning with monoidal categories in such interactive theorem provers would
be much more complicated and probably infeasible.

5. NON-COMMUTATIVE EXAMPLES
After the conceptual development of the previous sections, we now discuss a series
of examples that underpin the universality and relevance of convolution in comput-
ing. All of them can be obtained as instances of Theorem 3.4 after setting up partial
semigroups or monoids appropriately. For all these structures, the lifting to the func-
tion space is then generic and automatic. The booleans form a particularly interesting
target quantale. This section considers only examples with a non-commutative notion
of convolution; for commutative examples see Section 6. More details on the construc-
tions outlined can be found in a report [Dongol et al. 2014a]. First we revisit the formal
languages example in the quantale setting.

Example 5.1 (Formal Languages). Let (X∗, ·, ε) be the free monoid generated by
the finite alphabet X with ε denoting the empty word. Let Q form a distributive unital
quantale. Then by Theorem 3.4,QX

∗
forms a distributive unital quantale as well. More

precisely, because the suprema in convolutions are always finite, one obtains the unital
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dioid (QX
∗
,+, ·,O,1) by lifting from a dioid (Q,+, ·, 0, 1). This is the well known rational

power series dioid of formal language theory. For Q = B one obtains, by Corollary 4.1,
the quantale BX

∗
of formal languages over X.

Our next set of examples is based on a product construction at the semigroup level.

Example 5.2 (Matrices). Square matrices are functions f : A × A → Q from an
index setA×A into a suitable coefficient algebraQ. (Non-square matrices are discussed
in Section 8.) Consider the generalised partial monoid (A × A,D, I, ·) over set A with
D = {(p, q) ∈ (A × A) × (A × A) | π2 p = π1 q}, where π1 and π2 are the projections to
the first and second coordinate of an ordered pair, I = {(i, i) | i ∈ A} and composition
p · q = (π1 p, π2 q). Then matrix addition (f + g) (i, j) = f (i, j) + g (i, j) corresponds to a
pointwise lifting to QA×A; matrix multiplication (f · g) (i, j) =

∑
k∈A f (i, k) · g (k, j) is

a convolution on that function space. This requires suitable restrictions to guarantee
the existence of sums. The zero and unit matrices are defined by 1 (i, j) = δij (the
Kronecker delta) and O (i, j) = 0.

Theorem 3.4 then shows that quantales are closed under matrix formation. It can
easily be adapted to showing that square matrices of finite dimension over a semiring
form a semiring or that matrices over a dioid form a dioid.

Example 5.3 (Binary Relations, Probabilistic Relations, Automata).

(a) The quantale of binary relations is formed by boolean matrices, which have type
A×A→ B.

(b) The quantales of probabilistic or fuzzy relations are formed by matrices of type
A×A→ [0, 1] with suitable weight algebras defined on the unit interval.

(c) An extension of Corollary 3.5 shows that any Kleene algebra K is closed under
formation of matrices of type A × A → K. The necessary treatment of the Kleene
star is beyond the scope of this article. Transition relations of finite automata over
state space V and alphabet X are finite matrices of type V × V → Rex(X) into the
Kleene algebra Rex(X) of regular expressions over X. It is well known that regular
languages need not be closed under general unions, hence do not form quantales.
The approach generalises to probabilistic or weighted automata. See [Dongol et al.
2014b] for details.

Finally, we study examples based on fusion products.

Example 5.4 (Interval Functions). Let (P,≤) be a linear order and IP the set of
closed intervals over P — the empty interval is open by definition. We impose a gener-
alised partial monoid structure on IP by definingD = {(x, y) ∈ IP×IP | maxx = min y},
I = {[a, a] | a ∈ P} as the set of all point intervals and the fusion product x · y = x ∪ y.
It follows that the set QIP of all interval functions into a distributive quantale Q forms
a distributive quantale. Like matrices, the unit interval function is 1 [a, b] = δab. The
quantale of interval functions then becomes unital.

Interval predicates are interval functions of type IP → B. Convolution

(f · g)x =
∑
x=y·z

f y u g z

of interval predicates f and g is known as the chop operation [Moszkowski 2000]: the
predicate f · g holds over the interval [a, c] if this interval can be split into intervals
[a, b] and [b, c] such that f [a, b] and g [b, c] both hold.

Interval predicates typically involve modal operators. For instance, the interval
predicate (3p)x means that property p holds at some point in x, whereas (2p)x means
that p holds at all points in x [Moszkowski 2000]. Consequently, (2p) · (2¬p) is always
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false, since p and ¬p cannot hold at the fusion point. Such effects can be avoided by
basing the construction of the interval functions quantale on compositions of arbitrary
bounded intervals [a, b], (a, b], [a, b) or (a, b) [Dongol et al. 2014a]. Alternatively, the du-
ration calculus uses an interval predicate that holds almost everywhere on an interval
[Zhou and Hansen 2004]. Others have defined ‘jump conditions’ leaving the possibility
of both f and ¬f holding at the fusion point open [Höfner and Möller 2009]. The model
of trajectories by Höfner and Möller [2009] can be encoded as convolution in a straight-
forward manner, and because their theory encapsulates hybrid automata [Henzinger
1996], so does our algebraic treatment in this paper.

Interval functions have also been studied in terms of incidence algebras formed by
real-valued functions of two variables ranging over locally finite posets, which are
posets in which all closed intervals are finite [Rota 1964]. Incidence algebras form asso-
ciative algebras over the real field with convolution as multiplication. Rota attributes
the idea of interval functions to Dedekind and Bell in the late nineteenth century.

Example 5.5 (Traces, Paths, Words).

(a) Let V be a finite set of state symbols and X a finite set of transition symbols. A
trace over V and X [Eilenberg 1974] is a word in T = V · (X · V )∗, i.e., states
and symbols alternate, starting and finishing with a state. A generalised partial
monoid is obtained with D = {(τ1, τ2) ∈ T × T | last τ1 = first τ2}, I = V and for any
state s fusion product τ1 s ·s τ2 = τ1 s τ2. Thus the set QT of trace functions into the
(distributive) quantale Q forms a (distributive) quantale. If Q is unital, then QT

is unital with 1 defined in the standard way. Setting Q = B yields the well-known
quantale of sets of traces with unit V .

(b) When |X| = 1, traces are isomorphic to sets of paths, which are finite sequences
of state symbols, and the constructions of the quantale QV

+

of path functions over
the generalised partial monoid V + of non-empty paths follows the trace case.

(c) When |V | = 1, traces are isomorphic to words, trace fusion becomes the total op-
eration of word concatenation and the element of V yields the empty word, which
is a unit of composition. The trace function quantale then specialises once more to
the formal language quantale.

The fusion-based constructions generalise from intervals, traces, paths and so forth
to equivalence classes of labelled bounded linear orders in which partial orders with
the same labelling and order structure are identified — c.f. (bounded) linear pom-
sets [Gischer 1988; Grabowski 1981]. Relation D then holds between two such pomsets
p1 and p2 if the label of lub p1 is equal to the label of glb p2. The fusion product p1 · p2
makes every element in p1 precede every element p2 with its lower bound removed.
Trace, path and word functions are instances obtained with appropriate labelling dis-
ciplines. The formal construction of such equivalence classes is known from the theory
of pomsets and leads beyond the scope of this article. A unification of the product and
fusion based construction can possibly be obtained within category theory.

The examples in this section show that the generic lifting construction in Theo-
rem 3.4 allows a uniform treatment of various mathematical objects, including rela-
tions, formal languages, matrices and sets of intervals. In each case, a (partial) com-
position on the underlying objects needs to be defined, e.g., on words, ordered pairs,
traces, paths or intervals. Lifting to the function space is then generic.

6. COMMUTATIVE EXAMPLES
This section provides instances of Theorem 3.4 and Corollary 4.1 for the commutative
case. As discussed in Section 4, this typically arises when the composition of the under-
lying semigroup (S, ∗) is used to split resources in a spatial fashion, which is in contrast
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to the previous section where f · g meant that there was a dependency between f and
g, which often carries a temporal meaning. One can sometimes think of convolution
instantiated to such a spatial separation in terms of parallelism or concurrency.

In particular we instantiate Theorem 3.4 to four kinds of resource monoids based
on multisets under multiset addition, sets under disjoint union, partial functions un-
der union and vectors. Notions of separating conjunction as convolution arise in all
these examples in a natural way. In the disjoint union and vector examples, the re-
lationship between convolution, separation and concurrency becomes more apparent.
Previously, this observation of separating conjunction as a notion of concurrency with
a strongly spatial meaning has been one of the motivations for concurrent separation
logic [O’Hearn 2004] and concurrent Kleene algebra [Hoare et al. 2011b].

Example 6.1 (Separating Conjunction on Multisets). The free commutative
monoid (X(∗), ∗, 0) generated by the alphabet X is isomorphic to the set of all multisets
over X with ∗ being multiset addition ]. By Theorem 3.4, QX

(∗)
forms a commutative

quantale if Q does; distributivity and unitality lift as usual.
Convolution (f ∗ g)x separates the multiset or resource x in all possible ways and

then applies the functions f and g in parallel to the result, depending on the inter-
pretation of multiplication in Q. For Q = B, the function space BX

(∗)
forms the re-

source predicate quantale over multisets. Convolution is separating conjunction based
on multiset addition as a separator: (f ∗ g)x =

∑
x=y]z f y u g z.

In many contexts, multisets form a paradigmatic data type for resources.

Example 6.2 (Heaplets, Sets, Vectors).

(a) Let (S,D, ∗, 0) be the partial commutative monoid of partial functions (heaplets),
η : A9 B where D = {(η1, η2) ∈ S × S | dom(η1) ∩ dom(η2) = ∅}, η1 ∗ η2 = η1 ∪ η2,
and 0 : A 9 B is the empty heaplet. By Theorem 3.4, QS forms a commutative
distributive unital quantale whenever Q does. In particular, BS forms an algebra
of heap assertions with convolution as separating conjunction over the heap.

(b) The free commutative idempotent monoid generated by the alphabet X is iso-
morphic to 2X under union and the empty set. Defining disjoint union based on
D = {(x, y) | x ∩ y = ∅} turns this set into a partial commutative monoid. The
quantale lifting is then similar to the heaplet case.

(c) Consider n-dimensional vectors as finite functions of type [1, n]→ A and define the
support of a vector v as supp(v) = {i ∈ dom(v) | v(i) 6= 0}. In this case D = {(v, w) |
supp(v)∩ supp(w) = ∅} and v ∗w = v+w define a partial commutative monoid with
the all zero vector as unit. The quantale lifting is as before.

Beyond these instances of separating conjunction, the resource semigroups consid-
ered in this section allow for an interpretation of convolution f ∗g applied to a resource
x that is naturally concurrent: programs f and g are executed in parallel on the re-
sources y and z allocated by decomposing x. Their outputs after execution are then
composed by f y · g z. In the case of a powerset lifting, this composition may yield a
global resource. The sum over all these compositions yields the possible behaviours of
the parallel execution f ∗ g on x in terms of their outputs.

Further notions of resource monoid and lifting to assertion algebras have been stud-
ied in the Views framework [Dinsdale-Young et al. 2013]. Their generic soundness
results for Hoare logics seem to arise as instances of the constructions in this article.

Quantales are automatically residuated with respect to their monoidal operations.
Order-theoretically, these are upper adjoints of the functions λy. x · y and λy. y · x. The
two residuations coincide in the commutative case. In separation logic, this residuation

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 B. Dongol, I.J. Hayes and G. Struth

is known as the magic wand operation. More generally, all convolutions studied in this
article have upper adjoints, and hence it is also possible to characterise adjoints for
the examples in Section 5, providing operations analogous to the magic wand in non-
commutative settings.

7. POWER SERIES OVER PARTIAL QUANTALES
This section generalises Theorem 3.4 to situations in which the target algebra Q is
a partial quantale in the sense that its multiplication is partial. Now, partiality of
composition shows up not only in the decomposition x = y · z, but also in the product
f y · g z in convolutions. By definition of suprema and infima, only elements that are
defined contribute, and in particular the supremum of the empty set (which does not
contain any defined elements) is equal to 0. This means that all suprema are defined.

It turns out that the quantale structure of the target algebra is preserved in the
function space, including partiality.

As an example we consider linear transformations of certain vectors implemented by
matrices, in which vectors that are separated can be transformed in parallel fashion
by matrices which can be separated into non-zero blocks along the diagonal. This is
a particular manifestation of the correspondence between separation and concurrency
in the context of convolution.

PROPOSITION 7.1. Let (S, ·) be a partial semigroup. If (Q,≤, ·) is a (distributive)
partial quantale, then so is (QS ,≤, ·). In addition, commutativity lifts from S and Q to
QS and unitality lifts if S is a generalised partial monoid.

The proof follows the lines of Theorem 3.4.

Example 7.2 (Linear Transformations of Vectors). Consider again the partial semi-
group (S, ∗) on n-dimensional vectors from Example 6.2. We assume that addition is
idempotent in the coefficient algebra. It is easy to check that S actually forms a partial
commutative dioid under multiplication ∗ and standard vector addition. Distributivity
x ∗ (y + z) = (x ∗ y) + (x ∗ z) follows immediately from the definition.

Proposition 7.1 then implies as a special case that the functions of type S → S form
a commutative dioid; they form a trioid with the other multiplication being function
composition. The sum in the convolution is obviously finite since there are only finitely
many ways of splitting a vector of finite dimension. In addition, the functions f and
g in a convolution are not only applied to separate parts y and z of vector x, but they
must map to separate parts f y and g z of the resulting vector as well.

It is easy to check that the unit with respect to ∗ on SS is defined as 1x = δx0.
For further illustration consider the linear transformations on n-dimensional vectors

given by multiplying n-dimensional vectors with an n × n matrix. To obtain idempo-
tent addition we consider vectors and matrices over a dioid or Kleene algebra, as in
Example 5.3(c). The matrices in this example correspond to the transition relations of
finite automata, whereas the vectors store partial languages starting from some ini-
tial state [Conway 1971]. As a simple example of a term contributing to a convolution
consider (

a1 b1
c1 d1

)(
x
0

)
∗
(
a2 b2
c2 d2

)(
0
y

)
=

(
a1x
c1x

)
∗
(
b2y
d2y

)
,

which is not defined, whereas(
a1 b1
0 d1

)(
x
0

)
∗
(
a2 0
c2 d2

)(
0
y

)
=

(
a1x
0

)
∗
(

0
d2y

)
=

(
a1x
d2y

)
.
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This shows that matrices contributing to convolutions must essentially be of the form(
M1 M3

O M2,

)
or

(
M1 O
M3 M2,

)
.

The concurrent flavour of ∗ is particularly apparent when matrices consist of two
non-trivial blocks along the diagonal modulo (synchronised) permutations of rows and
columns. That is, they are of the form(

M1 O
O M2,

)
,

where O represents zero matrices of appropriate dimension. Each pair of vectors re-
sulting from a decomposition can be rearranged such that the first vector consists of
an upper block of non-zero coefficients and a lower block of zeros, whereas the second
vector consists of an upper zero and a lower non-zero block, and such that the two
non-zero blocks do not overlap. One must be able to decompose matrices and vectors of
the linear transformation into the same blocks to make convolutions non-trivial.

The transformations implemented by the above block matrix on rearranged vectors,
and more generally all linear transformations, can clearly be executed independently
or in parallel by the matrices M1 and M2 on parts of a vector if the convolution is non-
trivial. In this sense the convolution ∗ on linear transformations over suitable vectors
is a notion of concurrent composition.

8. PARTIAL POWER SERIES
Another form of partiality is where the function, f : S 9 Q, representing the power
series is partial. The definition of convolution f⊗g can be revised to handle this case by
requiring that, if x = y ◦z, then both y ∈ dom(f) and z ∈ dom(g) for that decomposition
of x to contribute to the sum.

(f ⊗ g)x =
∑

y∈dom(f)
z∈dom(g)
x=y◦z

f y · g z

Example 8.1 (Sparse matrices). Sparse matrices can be represented as partial
functions, f : A × A 9 Q, from index set A × A into a suitable coefficient algebra
Q. The generalised partial monoid (A × A,D, I, ·) is the same as for Example 5.2. A
non-square matrix f ∈ A1 × A2 → Q, for A1, A2 ⊆ A, can be viewed as a partial func-
tion f ∈ A×A9Q, where dom(f) = A1×A2, and hence this example covers non-square
matrices as well.

9. POWER SERIES OVER BI-SEMIGROUPS
Theorem 3.4 shows that the quantale structure Q is preserved at the level of the func-
tion space QS provided that S is a partial semigroup. This can easily be adapted from
partial semigroups S to partial n-semigroups and n-quantales with n operations of
composition which may or may not be commutative. Here we restrict our attention to
bi-semigroups and bi-quantales and we discuss two examples.

PROPOSITION 9.1. Let (S, ◦, •) be a partial bi-semigroup (bi-monoid). If (Q,≤, ◦, •)
is a (distributive unital) bi-quantale, then so is (QS ,≤, ◦, •).

It is obvious that properties such as commutativity and unitality lift as before. This
setting yields two convolutions

(f ◦ g)x =
∑
x=y◦z

f y ◦ g z and (f • g)x =
∑
x=y•z

f y • g z.
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In the case of predicates these be visualised as a horizontal and a vertical composition,
as the following diagrams show.

h

(f ◦ h) • (g ◦ k)

f

k k

f

g

h

g

(f • g) ◦ (h • k)

The visualisation is made more concrete by the following example.

Example 9.2 (Functions over Two-Dimensional Intervals). Closed two-dimensional
intervals over a linear order can be defined in a straightforward way. For one-
dimensional intervals x and y, we write x × y for the two dimensional interval
{(a, b) | a ∈ x ∧ b ∈ y}. We obtain a partial bi-semigroup by defining

D◦ = {(x1 × y1, x2 × y2) | maxx1 = minx2 ∧ y1 = y2},
D• = {(x1 × y1, x2 × y2) | x1 = x2 ∧max y1 = min y2}

as well as horizontal and vertical composition

(x1 × y1) ◦ (x2 × y2) = (x1 ∪ x2)× (y1 ∪ y2) = (x1 × y1) • (x2 × y2).

Whenever the target algebra forms a bi-quantale, Proposition 9.1 applies and the
function space forms a bi-quantale as well. In particular, horizontal and vertical con-
volution can be written as

(f ◦ g) (x× y) =
∑

x=x1·x2

f (x1 × y) ◦ g (x2 × y),

(f • g) (x× y) =
∑

y=y1·y2

f (x× y1) • g (x× y2)

where x1 ·x2 and y1 ·y2 denote interval fusion. This generalises easily to n-dimensional
intervals with n convolutions that may or may not be commutative.

The impact of convolution as a concurrent composition is apparent in the next example.

Example 9.3 (Series-Parallel Pomset Languages). Let (S, ·, ∗, 1) be a bi-monoid
with non-commutative composition ·, commutative composition ∗ and shared unit 1.
Furthermore, let (Q,≤, ·, ∗, 1) be a bi-quantale with non-commutative composition ·,
commutative composition ∗ and shared unit 1. Then QS forms a bi-quantale according
to Proposition 9.1 with a non-commutative convolution given by · and a commutative
convolution given by ∗. For BS and S being freely generated by a finite alphabet X, we
obtain the series-parallel pomset languages or partial word languages over X, which
have been studied by Grabowski [1981], Gischer [1988] and others. They form a stan-
dard model of true concurrency.

10. POWER SERIES FROM MULTIPLE PARTIAL SEMIGROUPS
This section considers two separate partial semigroups or monoids (S1, ◦) and (S2, •),
which can be reduced easily to the bi-semigroup case1, and also generalised to n semi-
groups. Quite often, S2 is assumed to be commutative.

1We are grateful to an anonymous reviewer for suggesting this simplification.
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PROPOSITION 10.1. Let (S1, ◦) and (S2, •) be partial semigroups. If (Q,≤, ◦, •) is a
(distributive) bi-quantale, then so is (QS1×S2 ,≤, ◦, •). It is unital whenever Q is unital
and S1 and S2 are generalised partial monoids. A convolution onQS1×S2 is commutative
if the corresponding semigroup and quantale operations are commutative.

PROOF. Let D◦ be the domain relation for ◦ and D• that for •. We define a bi-monoid
on S = S1 × S2 with

D′◦ = {((x1, x2), (y1, y2)) ∈ S × S | (x1, y1) ∈ D◦ ∧ x2 = y2},
D′• = {((x1, x2), (y1, y2)) ∈ S × S | x1 = y1 ∧ (x2, y2) ∈ D•}

providing the domains of the two compositions defined by

(x1, x2) ◦ (y1, y2) = (x1 ◦ y1, x2) and (x1, x2) • (y1, y2) = (x1, x2 • y2).

Our result for partial semigroups then follows from Proposition 9.1

COROLLARY 10.2. Let (S1, ◦) be a partial semigroup and S2 a set. If (Q,≤, ◦) is
a (distributive) quantale, then so is (QS1×S2 ,≤, ◦). It is unital whenever Q is unital
and S1 is a generalised partial monoid. Convolution on QS1×S2 is commutative if the
compositions on S1 and Q are both commutative.

As usual, properties such as commutativity and unitality can be lifted from the un-
derlying structures. In addition, the construction generalises to more than two partial
semigroups.

It is well known that the following function spaces are isomorphic: (CA)B ∼= (CB)A ∼=
CA×B ∼= CB×A. We move freely between them and use curried as well as uncurried
functions in examples.

First we present two examples in which a spatial or a temporal separation interacts
with a set, as in Corollary 10.2.

Example 10.3 (Separating Conjunction over Store-Heap Pairs). Applications of
separation logic are based on program states that are pairs (s, h) of a store s and a
heap h. The store is modelled as a set; more concretely as a function from program
variables to values. The heap is modelled as a resource monoid; more concretely
as an object similar to the one in Example 6.2(a). With Corollary 10.2, separating
conjunction on states can be defined in a simple natural way as a convolution

(f ∗ g) (s, h) =
∑

h=h1∗h2

f (s, h1) u g (s, h2)

that splits the heap and leaves the store unchanged; the function space forms once
more an assertion quantale for separation logic. Dongol et al. [2015] have implemented
and applied this construction in a verification tool for separation logic.

In addition, the store can be split using disjoint union, s = s1⊕s2, e.g., to distinguish
between local and global variables [Back and von Wright 1994]. In this case, (S,⊕)
forms a partial semigroup as well and a second convolution or separating conjunction
f ⊕g that splits the store and leaves the heap unchanged can be defined. The resulting
assertion bi-quantale is now described by Proposition 10.1.

Example 10.4 (Stream Interval Functions). Let (S1, ·) be the partial semigroup
(IP , ·) of closed intervals IP under interval fusion as in Example 5.4 and let S2 be the
set of all functions of type P → A for an arbitrary set A. It follows from Corollary 10.2
that QIP×A

P

forms a distributive quantale whenever Q is a distributive quantale. Gen-
eralised units can be lifted to a unit of QIP×A

P

along the lines of Example 5.4.
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As a typical interpretation, fix P = R with the standard order as a model of time.
Functions f : R → A can then used to model the temporal behaviour or trajectories of
some system — for instance as solutions of differential equations. In that case, F x f
evaluates the behaviour of system f in the interval x, similar to a higher-order function
in functional programming. We call F a stream interval function. The convolution

(F ·G)x f =
∑
x=y·z

(F y f) · (Gz f)

splits the interval x into all possible prefix/suffix pairs y and z, applies F to the be-
haviour of f on interval y and G to the behaviour of f on interval z and then combines
these results. There are different ways in which the application of stream interval func-
tions can be realised. Moreover, the situation generalises to arbitrary finitely bounded
intervals without fusion.

Stream interval predicates, where Q = B, have been studied by Dongol et al. [2014a]
in the context of real-time action systems, but not in the power series setting. The com-
position in the sum becomes the conjunction (F y f) u (Gz f) and convolution reduces
to chop.

A predicate F could, for instance, test the values of a function f over an interval x
— at all points of x, at some points of x, at almost all points of x, at no points of x and
so on. It could, for instance, test, whether the trajectory of system f evolves within
given boundaries, that is a flight path is within a given corridor or that a train moves
according to a given time schedule.

More concretely, let P = A = R and let f t = t3. Let

F x f = ∀t ∈ x. f t ≥ 0 and G x f = ∀t ∈ x. f t ≤ 0.

Then F [0, 10] f = 1 and G [−7,−1] f = 1, but F [−2,−1] f = 0 and G [−7, 1] f = 0.
Moreover, for instance,

(F ·G) [−1, 1] f =
∑

τ∈[−1,1]

(∀t ∈ [−1, τ ]. t3 ≥ 0) u (∀t ∈ [τ, 1]. t3 ≤ 0) = 0,

because it is impossible to split the interval [−1, 1] in such a way that t3 is first positive
and then negative. However,

(G · F ) [−1, 1] f =
∑

τ∈[−1,1]

(∀t ∈ [−1, τ ]. t3 ≤ 0) u (∀t ∈ [τ, 1]. t3 ≥ 0) = 1,

because ∀t ∈ [−1, τ ]. t3 ≤ 0 and ∀t ∈ [τ, 1]. t3 ≥ 0 hold for τ = 0, which splits the interval
in such a way that t3 is first negative and then positive.

Next we present two interval-based models with a temporal and a spatial or concur-
rent convolution.

Example 10.5 (Vector Stream Interval Functions). Let f from the previous exam-
ple now be a vector or product of functions fi such that f : P → An, or more concretely
f : R → An. One can then split f t with respect to the commutative operation ∗ on An.
For functions f, g : P → An we define (f ∗ g) t = f t ∗ g t by pointwise lifting. This turns
(S2, ∗) = ((An)P , ∗) into a partial commutative semigroup, whereas (S1, ·) is again the
partial semigroup (IP , ·). By Proposition 10.1, QS1×S2 forms a distributive bi-quantale
with commutative convolution ∗ whenever Q does.

The stream interval predicates again yield an interesting special case. Now a vector
of functions, for instance the solution to a system of differential equations, is applied
to arguments ranging over an interval and the stream interval predicates evaluate the
temporal behaviour modelled by this vector of functions on the interval.
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The convolutions (F · G)x f , which is based on splitting x = y · z, and (F ∗ G)x f ,
which is based on splitting f = g ∗h, can be visualised as vertical and horizontal splits,
respectively.

The vertical convolution evaluates the evolution of the system modelled by f over
consecutive intervals y and z, using F to evaluate f within y and then G to evaluate f
within z. In the context of interval logics this corresponds to a chop operation by which
the predicates F and G make statements about the evolution of f during consecutive
periods of time. The horizontal one evaluates the parallel evolution of the subsystems
g and h of f over the full interval x, using F for evaluating g over x and separately G
for evaluating h over x. This adds an algebraic notion of parallelism or concurrency to
interval calculi by which F and G make statements about the evolution of subsystems
g and h over a period of time.

Example 10.6 (Store-Heap Pairs over Intervals). The previous examples can be
combined into a three-dimensional one. Consider, for instance, the store and heap as
functions of time and suppose we can split the heap with respect to separating con-
junction as well as the store with respect to disjoint union. For a store/heap pair,
(s, h) t = (s t, h t). Now assume stream interval functions F shx that evaluate the
evolution of (s, h) within a given interval x. This yields three possible convolutions.
The first is separating conjunction on the store, splitting s and leaving h and x un-
changed; the second is separating conjunction on the heap, splitting h and leaving s
and x unchanged; and the third is temporal chop, splitting interval x and leaving s and
h unchanged. The function space with these three convolutions forms a tri-quantale
with three monoidal operations as a generalisation of Proposition 10.1. Generalising
from predicates to functions is straightforward when the target algebra Q is a tri-
quantale.

11. POWER SERIES OVER RESTRICTED SEMIGROUPS
This section adapts the power series approach to a case which is appropriate, for in-
stance, for languages with finite and infinite words and for intervals which may be
semi-infinite in the sense that they have no upper bounds. Such approaches are, for
instance, relevant for total correctness reasoning, where termination cannot be as-
sumed or for reactive (concurrent) systems, which may not terminate. We model these
cases abstractly with special kinds of partial semigroups.

A left-restricted semigroup (lr-semigroup) is a structure (S1, S2, D, ·) where S1∩S2 = ∅
and (S1 ∪ S2, D, ·) is a partial semigroup with D = {(x, y) | x ∈ S1 ∧ y ∈ S1 ∪ S2} and
where x · y ∈ S1 if and only if x, y ∈ S1.

These conditions imply that x · y ∈ S2 if and only if x ∈ S1 and y ∈ S2. Henceforth we
write S = S1 ∪ S2.

In that case, for f, g : S → Q, we define an extended convolution as

(f · g)x =
∑
x=y·z

(f y) · (g z) +

{
f x, if x ∈ S2,

0, if x ∈ S1.

LEMMA 11.1. Let (S, ·) be a lr-semigroup. If Q is a (distributive) quantale, then QS

is a (distributive) quantale with O : S → Q not necessarily a right annihilator and left
distributivity holding only for non-empty suprema.

PROOF. We need to verify the laws involving convolution with our new multiplica-
tion. It suffices to consider the cases where x ∈ S2; the others are covered by Theo-
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rem 3.4. For left distributivity we calculate, for I 6= ∅,

(f ·
∑
i∈I

gi)x = f x+
∑
x=y·z

(f y ·
∑
i∈I

(gi z))

= (
∑
i∈I

f x) +
∑
i∈I

∑
x=y·z

(f y · gi z)

=
∑
i∈I

(f x+
∑
x=y·z

(f y · gi z))

= (
∑
i∈I

(f · gi))x.

For I = ∅, however (f · O)x = f x if x ∈ S2, hence in this case left distributivity fails.
For right distributivity, which is no longer opposition dual, we calculate for x ∈ S2,

((
∑
i∈I

fi) · g)x = (
∑
i∈I

fi x) +
∑
x=y·z

((
∑
i∈I

fi y) · g z)

= (
∑
i∈I

fi x) +
∑
i∈I

∑
x=y·z

(fi y · g z)

=
∑
i∈I

(fi x+
∑
x=y·z

(fi y · g z))

= (
∑
i∈I

(fi · g))x.

Left annihilation is as usual a special case of right distributivity. We calculate for
x ∈ S2,

(O · f)x = Ox+
∑
x=y·z

O y · f z = 0 + 0 = 0.

Finally, for associativity, we calculate for x ∈ S2,

(f · (g · h))x = f x+
∑
x=y·z

(f y · (g z +
∑
z=u·v

(g u · h v)))

= f x+ (
∑
x=y·z

f y · g z) +
∑
x=y·z

(f y · (
∑
z=u·v

g u · h v))

= (f · g)x+
∑

x=y·u·v
(f y · g u · h v)

= (f · g)x+
∑
x=w·v

((
∑
w=y·u

f y · g u) · h v)

= (f · g)x+
∑
x=w·v

((f · g)w · h v)

= ((f · g) · h)x.

The second last step uses the fact that w ∈ S1 because w · v = x is defined.

A treatment of right-restricted semigroups is dual and allows us to model, for instance,
semi-infinite intervals without lower bounds. The properties of right-restricted semi-
groups are also dual, i.e., left annihilation fails.

Example 11.2 (Formal Languages with Infinite Words). Let X be a finite alphabet.
Let X∗ denote the set of finite words X and Xω the set of infinite words over X. Let
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X∞ = X∗ ∪Xω. Then X∗ ∩Xω = ∅ by definition. Every language L ⊆ X∞ may contain
finite as well as infinite words. It is natural to disallow the concatenation of an infinite
word with another word, hence X∞ is endowed with an lr-monoidal structure. Writing
finL for the finite and inf L for the infinite words in L, the product of L1, L2 ⊆ X∞ is
commonly defined as

L1 · L2 = {vw | v ∈ finL1 ∧ w ∈ L2} ∪ inf L1.

This is captured by the above extended convolution with Y = B. It then follows from
Lemma 11.1 that X∞ forms a distributive quantale in which L · ∅ = ∅ need not hold
and left distributivity holds only for non-empty suprema.

Example 11.3 (Functions and Predicates over Unbounded Intervals). Let (P,≤) be
a linear order that is unbounded on the right. Let IbP stand for the set of all non-
empty closed intervals over P and let IuP denote the set of all unbounded intervals
[a) = {b | b ≥ a}. Then IP = IbP ∪ IuP and IbP ∩ IuP = ∅ and fusion product of intervals is
defined D = {(x, y) ∈ IbP × IP | maxx = min y} and x · y = x ∪ y. This turns IP into an
lr-semigroup and Lemma 11.1 implies that QIP forms a distributive quantale in which
O is not necessarily a right annihilator.

Models with finite/infinite paths and traces can be built in a similar fashion; an exam-
ple of closed and open intervals without fusion can be obtained along the same lines.
Examples of bi-quantales based on stream functions over unbounded intervals with a
notion of separating conjunction can be obtained in a straightforward way.

12. INTERCHANGE LAWS
Algebras in which a spatial or concurrent separation operation interacts with a tem-
poral or sequential one have been studied, for instance, in the context of concurrent
Kleene algebra by Hoare et al. [2011b]. In addition to the trioid or bi-quantale laws,
these algebras provide interesting interaction laws between the two compositions.

More concretely, the following interchange laws hold in concurrent Kleene algebras:

x · y ≤ x ∗ y, (1)
(x ∗ y) · z ≤ x ∗ (y · z), (2)
x · (y ∗ z) ≤ (x · y) ∗ z, (3)

(w ∗ x) · (y ∗ z) ≤ (w · y) ∗ (x · z). (4)

These hold, for instance, in shuffle languages and certain classes of partially ordered
multisets [Gischer 1988]. It has been shown that the interchange law (2) is equivalent
to a separation logic style frame rule in a certain encoding of Hoare logic [Hoare et al.
2011a]. Interchange law (4), in turn, is equivalent to a concurrency rule for Hoare
logic, which is similar to those considered by Hoare [1972; 1975], in Owicki and Gries’
logic [Owicki and Gries 1976] or in concurrent separation logic [O’Hearn 2004]. This
relationship is considered further in Section 13.

The close relationship between power series and separation logic and the similarity
between two-dimensional power series and concurrent Kleene algebras make it worth
considering the interchange laws in this setting. Two-dimensional power series are
more general than standard concurrent Kleene algebra because the units of sequen-
tial and concurrent composition may be different. Here, we obtain negative results,
refuting the interchange laws of concurrent Kleene algebra above.

PROPOSITION 12.1. There are vector stream interval predicates F,G,H,K : S1 →
S2 → B such that

(a) F ·G 6≤ F ∗G,
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(b) (F ∗G) ·H 6≤ F ∗ (G ·H),
(c) F · (G ∗H) 6≤ (F ·G) ∗H,
(d) (F ∗G) · (H ∗K) 6≤ (F ·H) ∗ (G ·K).

PROOF. Note that ≤ can be interpreted as ⇒ for stream interval predicates, and
recall the following two facts. First, parallel composition of predicates is separating
conjunction when f is a vector of functions. Second, the two multiplicative unit predi-
cates are different: that of · holds on all unit intervals [a, a]; that of ∗ holds on the all
zero vector of dimension n. In the case of a joint unit, the interchange law (4) would
imply the others. Here they require separate consideration.

(a) To refute F ·G ≤ F ∗G, let x = [−10, 10], f = (f1, f2) with

f1 t =

{
1, t ≤ 0,

0, t > 0,
f2 t =

{
0, t ≤ 0,

1, t > 0,

and

F x f = ∀t ∈ x. f1 t = 1, G x f = ∀t ∈ x. f2 t = 1.

Then (F · G)x f = 1, splitting interval x at t = 0, whereas (F ∗ G)x f = 0 since
neither F nor G holds on the entire interval x. This may be visualised using the
diagrams below, where dashed lines represent that the corresponding function has
value 0, and solid lines represent a value 1. For the right diagram, there is no
possible way for the vectors f1 and f2 to go through F and G.

f2

f1

F G
F

G

−10 100 −10 10

(b) To refute (F ∗G) ·H ≤ F ∗ (G ·H), let x = [−10, 10], f1 as in (a) and f2 = λt. 0, where

F x f = ∀t ∈ x. f1 t = 1,

G x f = ∀t ∈ x. f2 t = 0,

H x f = ∀t ∈ x. f1 t = 0 ∨ f2 t = 0.

This makes the left hand side 1 and the right hand side 0. This is visualised by the
diagram below — f1 may not go through F .

H

f2

F
f1

G

−10 100 −10 10

F

HG

(c) H · (G ∗ F ) ≤ (H ·G) ∗ F can be refuted by function

f ′1 t =

{
0, t ≤ 0,

1, t > 0,

and f2 as in (b), exploiting opposition duality between the two interchange laws
and realising that f ′1 is the “time reverse” of f1.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Convolution as a Unifying Concept A:21

(d) To refute (F ∗G) · (H ∗K) ≤ (F ·H) ∗ (G ·K), consider f = (f1, f2, f3) where

f1 t = 0, f2 t =

{
0, t ≤ 0,

1, t > 0,
f3 t = 1

and
F f x = ∀t ∈ x. f1 t = 0,

G f x = ∀t ∈ x. f2 t < f3 t,

H f x = ∀t ∈ x. f1 t < f2 t,

K f x = ∀t ∈ x. f3 t = 1.

For x = [−10, 10], the diagram on the left below shows that (F ∗G) · (H ∗K) holds.
However, in the diagram for (F · H) ∗ (G · K) on the right, there is no possible
combination of horizontal and vertical splits that satisfy f . In particular, f1 must
go through F and f3 must go through K. Function f2 must either go through F and
H, or through G and K, however, neither alternative evaluates to true.

G
K

H

f2

f3

H

G

F

K

F
f1

−10 0 10 −10 10

The consideration of additional algebraic restrictions, which would allow the deriva-
tion of interchange laws, is left for future work. It is known that all interchange laws
hold in the pomset model (Example 9.3), where the unit of sequential and concur-
rent composition is shared. Other promising directions are the consideration of local-
ity assumptions, as in separation logic [O’Hearn 2004; Calcagno et al. 2007], which
are briefly explained in the following section, or the addition of dependency rela-
tions [Hoare et al. 2011b] in the definition of the semigroup operations.

13. EXTENSIONS AND APPLICATIONS
This section outlines a number of extensions and applications of the power series
framework. First we discuss how algebras of predicate transformers over boolean or
quantale-based assertion algebras can be constructed in this setting. Second, we sketch
how propositional Hoare logics, that is, Hoare logic without assignment axioms, can be
obtained in a generic fashion. In particular, one can derive a propositional Hoare logic
with the frame rule of separation logic. Finally, we outline some ramifications for de-
riving concurrency inference rules and comment on directions for future work with
power series as semantics for linear logics and other substructural logics.

Predicate Transformer Quantales. The powerset lifting discussed in Section 3 sug-
gests that state and predicate transformers can be modelled as power series as well.
A state transformer fR a = {b | (a, b) ∈ R} of type fR : A → 2B is often associated
with a relation R ⊆ A×B. State transformers are turned into predicate transformers
f̂R : 2B → 2A by the lifting f̂R Y = {x | fR x ⊆ Y }.

State transformers in (2B)A and the predicate transformers in (2A)2
B

form complete
distributive lattices [Back and von Wright 1999]. This follows by applying Lemma 3.3
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twice. First, 2B ∼= BB forms a complete distributive lattice because B forms a complete
distributive lattice. The same argument applies to 2A. By a second lifting, (2B)A and
(2A)2

B

form again complete distributive lattices. A quantale-like structure can be im-
posed by considering the monoidal operation of function composition; a full quantale
is obtained by imposing continuity f (

∑
i∈I Xi) =

∑
i∈I(f Xi) on all predicate trans-

formers. Predicate transformers arise more abstractly as endofunctions over boolean
algebras, similar to the boolean algebras with operators of Jónsson and Tarski [1951].

The approach can be adapted to predicate transformers over assertion quantales,
as they occur in separation logic [Dongol et al. 2015]. In this setting, both the con-
struction of assertion algebras from resource semigroups and of predicate transformer
algebras over assertion quantales can be obtained from power series. Once more, the
monoidal operation of the predicate transformer algebra is function composition, but
not convolution. The whole approach has been implemented in Isabelle/HOL.

Iteration. Since quantales are complete lattices, least and greatest fixpoints of iso-
tone functions exist. Moreover, due to their infinite distributivity laws, functions such
as λα. x+ α, λα. x · α or λα. α · x are continuous, hence least fixpoints of combinations
of these functions can be obtained by iteration from 0 to the first limit ordinal.

More specifically, the function ϕ = λα. 1+x·α has the least fixpoint x∗ =
∑
i∈N ϕ

i(0) =∑
i∈N x

i. This notion of finite iteration is needed for deriving a while rule for a finite
loop in a partial correctness setting. In a total correctness setting, a notion of possibly
infinite iteration is preferable, which corresponds to the greatest fixpoint of ϕ. Infinite
iteration is also useful for lr-monoids Section 11, for example, when reasoning about
reactive systems, and Hoare rules for these can be developed.

Propositional Hoare logics. Equipped with the star in the quantale setting one can
obtain propositional Hoare logics in two different ways.

First, following Hoare et al. [2011b] by adapting a previous approach by Tarlecki
[1985], one can define validity of a Hoare triple as {x}y{z} ⇔ x · y ≤ z in an arbitrary
quantale. The standard inference rules of Hoare logic except the assignment rule are
then derivable. In our setting this yields a propositional Hoare logic for each example
constructed. Instantiation to the binary relations quantale reproduces, for instance,
Tarlecki’s original soundness result. Other instances yield, in a generic way, Hoare
logics over computationally meaningful semantics based on finite words (traces in the
sense of concurrency theory), paths in graphs (sequences of events in concurrency the-
ory), paths in the sense of automata theory, or pomsets. We also obtain generic propo-
sitional Hoare logics for reasoning about interval and stream interval predicates in
algebraic variants of interval logics.

Second, validity of a Hoare triple can be defined as {p}x{q} ⇔ p ≤ f̂x q, using pred-
icate transformers as usual. The rules of propositional Hoare logic can then be de-
rived on the subspace of monotonic predicate transformers. In addition, the frame
rule {p}x{q} ⇒ {p ∗ r}x{q ∗ r} of separation logic is derivable on the subspace of
local monotonic predicate transformers, i.e. monotonic predicate transformers sat-
isfying (f p) ∗ q ≤ f (p ∗ q). These transformers form distributive pre-quantales, in
which the distributivity law f ·

∑
gi =

∑
(f · gi) is weakened to the monotonicity law

f ≤ g ⇒ h·f ≤ h·g. The approach has been implemented in Isabelle/HOL and expanded
into a verification tool for separation logic [Dongol et al. 2015].

Concurrency. For applications involving concurrency, such as the vector stream in-
terval functions in Example 10.5, additional rules are desirable. In concurrent Kleene
algebra, Owicki-Gries-style concurrency rules and frame rules in the style of separa-
tion logic can be derived. The same derivation, however, is ruled out in the general
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bi-quantale context, because the concurrency rule obtained would be equivalent to in-
terchange law (4) and the frame rule to interchange law (2), both of which have been
refuted in Proposition 12.1. Finding conditions under which such concurrency rules
can be derived, is an important avenue of future work. In the case of pomset lan-
guages, for instance, the interchange law requires down-closure of languages, which
roughly means adding pomsets with less parallelism. Intuitively, interchange law (4)
holds in that case because ≤ is interpreted as set inclusion and the left-hand side of (4)
admits less concurrency than its right-hand side.

Substructural and Linear Logics. O’Hearn and Pym’s category-theoretic construc-
tion of the assertion quantale of separation logic is an instance of similar previous
constructions of phase-space models of (intuitionistic) linear logic, which can be ob-
tained by lifting certain symmetric monoidal categories to symmetric monoidal closed
functor categories (cf. [Ambler 1991]). From an algebraic point of view, this amounts
to a powerset lifting of certain generalised partial commutative monoids to quantales,
which can be modelled by convolution.

Similar constructions for other substructural logics such as relevance logics are well
known [Urquhart 1972; Meyer and Routley 1973; Allwein and Dunn 1993], but usually
these have not been presented with convolution. In these constructions, our equational
condition x = y · z on the partial monoid S in convolutions must be generalised to a
ternary relation R(x, y, z) for Kripke frames involving S. Extensions of our approach in
these directions, both from an algebraic and a category-theoretic point of view, would
further underpin its universality.

14. CONCLUSION
The aim of this article is to demonstrate that convolution is a versatile and interesting
construction in mathematics and computer science. Used in the context of power se-
ries and integrated into lifting results, it yields a powerful tool for setting up various
mathematical structures and computational models and calculi endowed with generic
algebraic properties.

Beyond the language models known from formal language theory, these include as-
sertion quantales of separation logic (which can be lifted from an underlying resource
monoid), assertion quantales of interval logics (which can be lifted from an underlying
semigroup of intervals) and stream interval functions (which have applications in the
analysis of dynamic and real-time systems). For all these examples, the power series
approach provides a simple new approach. For the latter two, new kinds of concurrency
operations are provided.

In addition, the modelling framework based on power series can be combined with
verification approaches by deriving, in generic fashion, propositional Hoare logics for
virtually all examples considered. In particular, state and predicate transformers,
which can be used for constructing these logics, arise as instances of power series.

This article focuses mainly on the proof of concept of the relevance of convolution.
Many of the modelling examples and verification approaches featured require further
investigation. This includes in particular the derivation of more comprehensive sets of
Hoare-style inference rules for concurrency verification and interval temporal logics,
the construction of algebraic counterparts of temporal and dynamic logics [Höfner et al.
2006] and more detailed case studies with interval and stream interval algebras, and
with concurrent systems with infinite behaviours.

For all these case studies, the formalisation of the power series approach and the
implementation of modelling tools plays an important role. In fact, the basic lifting
lemma and a detailed predicate transformer approach based on power series have
already been formalised within the Isabelle/HOL proof assistant [Nipkow et al. 2002].
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The development of a power series based verification tool for separation logic has been
the first step in the tool chain [Dongol et al. 2015].
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