A new approach to planning *in vitro* and *in vivo* experiments for cardiovascular stents – II. Planning of experiments

M.A. Atherton¹, D.J. Doorly², M.W. Collins¹ and U. Sigwart³

¹School of Engineering Systems & Design, South Bank University, London, UK. ²Department of Aeronautics, Imperial College, London, UK. ³Department of Invasive Cardiology, Royal Brompton Hospital, London, UK.

Abstract

Within our overall project to improve the design of stents in terms of reduced rates of re-stenosis, there are three main methods, namely computer simulation and *in vitro* and *in vivo* experiments. These methods are closely integrated using contemporary design procedures described below, especially to accommodate patient-to-patient variation. Clinical experience shows that a small variation has considerable effects on flow characteristics of stents and in engineering terms may be described as a 'geometric risk factor'. The Robust Engineering Design procedure readily incorporates this factor which may thus become a component feature in our experimental planning. We envisage that this approach could be applied to other invasive implants with a view to enhancing their quality.