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Abstract 

Friedreich’s ataxia (FRDA) is an autosomal recessive disorder, caused by reduced 

levels of the protein frataxin. This protein is located in the mitochondria, where it 

functions in the biogenesis of iron-sulphur clusters (ISCs), which are important for 

the function of the mitochondrial respiratory chain complexes. Moreover, disruption 

in iron biogenesis may lead to oxidative stress. Oxidative stress can be the cause 

and/or the consequence of mitochondrial energy imbalance, leading to cell death. 

Fibroblasts from two FRDA mouse models, YG8R and KIKO, were used to analyse 

two different categories of protective compounds: deuterised poly-unsaturated fatty 

acids (dPUFAs) and Nrf2-inducers. The former have been shown to protect the cell 

from damage induced by lipid peroxidation and the latter trigger the well-known Nrf2 

antioxidant pathway. Our results show that the sensitivity to oxidative stress of YG8R 

and KIKO mouse fibroblasts, resulting in cell death and lipid peroxidation, can be 

prevented by d4-PUFA and Nrf2-inducers (SFN and TBE-31). The mitochondrial 
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membrane potential (∆m) of YG8R and KIKO fibroblasts revealed a difference in 

their mitochondrial pathophysiology, which may be due to the different genetic bases 

of the two models. Suggesting that variable levels of reduced frataxin may act 

differently on mitochondrial pathophysiology and that these two cell models could be 

useful in reflecting the observed differences in the FRDA phenotype. This may reflect 

a different modulatory effect towards cell death that will need to be investigated 

further. 

Keywords: Friedreich’s ataxia, lipid peroxidation, mitochondria, oxidative stress; poly-

unsaturated fatty acids, nuclear factor E2 related factor.  

 

Introduction 

Friedreich’s Ataxia (FRDA) is the most common form of hereditary ataxia (Jones et 

al. 2012; Koeppen & Mazurkiewicz, 2013; Parkinson el at., 2013). It is an autosomal 

recessive disorder found mainly in Caucasians (Richardson et al., 2012), with a 

prevalence in the European population of 1: 50,000 (Velasco-Sánchez, 2011; see 

review Wilson, 2012). However, this ratio may vary depending on the population 

studied (Vankan et al., 2013). The disease is characterized by a progressive sensory 

and cerebellar ataxia, as both proprioceptive and spinocerebellar fibers are lost 

(Velasco-Sánchez et al., 2011; Parkinson el at., 2013). Cardiomyopathy, and/or 

diabetes may also occur in some patients (Pandolfo, 2009; Delatycki & Corben, 

2012; Parkinson et al., 2013). FRDA is characterised by the decrease of frataxin 

expression, which is due to the transcriptional silencing of the FXN gene. Thus, 
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causing mitochondrial iron accumulation and increased oxidative stress (see review 

Wilson, 2012; Schulz and Pandolfo, 2013). 

The strategic approaches to treat FRDA have so far included agents which 

counteract iron accumulation (Kakhlon et al., 2008; see review Martelli et al., 2012), 

promote frataxin expression (Herman et al., 2006; Velasco-Sánchez et al., 2011; 

Libri et al., 2014; Perdomini et al., 2014) or diminish hypersensitivity to reactive 

oxygen species (Perlman, 2012; Shan et al., 2013; Parkinson et al., 2013). Although 

some compounds have shown promising beneficial effects, no cure has yet been 

found for this debilitating disease.  

The hypersensitivity to oxygen radicals is one of the major causes of cell death. 

Therefore, we investigated if deuterised poly-unsaturated fatty acids (dPUFAs) and 

Nrf2-inducers (antioxidants) could act as protective compounds against cell death 

and lipid peroxidation increase, in YG8R and KIKO FRDA mouse fibroblast cell 

models (Al-Mahdawi et al., 2004; Al-Mahdawi et al., 2006; Sandi et al., 2014; 

Miranda et al., 2002). We then investigated the mitochondrial membrane potential 

(∆m) and found that the two models show a different mitochondrial dysfunction, 

possibly due to their difference in GAA repeat expansion mutations (YG8R have 190 

and 90, while KIKO have 230). YG8R cells showed a depolarization of ∆m, which 

has been found to be a mild impairment in this model (Abeti et al., unpublished data), 

while KIKO showed an hyperpolarization of ∆m, which could results in a more 

severe defect. The differences in the two models could in part recapitulate FRDA 

patient phenotypic variability and therefore be helpful for future drug screening. 

 

Materials and Methods:  
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Cell Culture. Primary fibroblasts isolated from kidney of WT (C57BL6/J), Y47R, 

YG8R and KIKO mice were cultured in DMEM supplemented with 10% fetal bovine 

serum (FBS) and 1% penicillin/streptomycin and glutamine and maintained at 37°C 

in a humidified incubator with 5% CO2.  

Immunocytochemistry. Cultured fibroblasts were fixed with 4% paraformaldehyde 

(pH 7.4) in PBS, at RT for 15 min and washed three times with PBS. Cells were 

permeabilized with 0.1% Triton X-100 for 30 min and then blocked in 10% goat 

serum, 2% bovine serum albumin (BSA) and 0.01% Triton X-100 in PBS and then 

incubated with primaries antibodies: mouse anti-hFrataxin antibody [18A5DB1]; 

1:100 in blocking solution (Abcam) for Y47R and YG8R, mouse anti-mFrataxin for 

WT and KIKO 1:100 in blocking solution (Abcam). Rabbit polyclonal apoptotic 

inducing factor (AIF) as a mitochondrial marker (1:250; Abcam), Phalloidin 633 nm 

(1:300) and 300 nM DAPI. The secondary antibodies used were: anti-mouse Alex 

Fluor 568 nm (red; molecular probes; 1:500 dilution in blocking solution), anti-rabbit 

Alexa Fluor 488 nm (green; molecular probes; 1:500 dilution in blocking solution). 

Fluorescence images were acquired with a Zeiss LSM 710 confocal microscope 

using an inverted 40× NA 1.2 objective. The fluorescence intensity form frataxin was 

measured cell by cell and averaged. 

Imaging: Cells were plated on glass coverslips (5x105 cells in each well) 24 hours 

prior to the experiments. Afterwards, cells were pre-treated differentially with: 100 μM 

L-1, L-2, d2-PUFA, d4-PUFA, 50 nM SFN or 50 nM TBE-31, for 24 hours and then 

incubated briefly in 1 mM H2O2. Coverslips were mounted on microscopy chambers 

with 250μL clear HBSS. Lipid peroxidation: Lipid peroxidation was estimated by 

using C11-BODIPY (581/591) (Molecular Probes). Cells were incubated with 10 µM 

C11-BODIPY (581/591) for 10 minutes at RT. C11-BODIPY (581/591) was excited 



5 

 

using the 488 and 563 nm laser line, and fluorescence measured with two band 

pass, 505 to 550 nm and 570 and 630 nm. Images were recorded every 10 s using a 

Zeiss 710 CLSM confocal microscope. The rate of the resulting slope was calculated 

cell by cell. Mitochondrial membrane potential assays: The basal mitochondrial 

membrane potential (∆m) level was measured with tetramethyl rhodamine methyl 

ester (TMRM, 25 nM, Invitrogen), by exciting the fluorophore at 560 nm and 

collecting the images with a 590 nm long pass filter. With Z-stacks configuration the 

fluorescence peaks from the mitochondrial network were collected and analysed. 

The maintenance of ∆m was measured by using TMRM in ‘‘redistribution mode’’ 

(Duchen et al., 2003). After the equilibration of the dye, which was kept continuously 

in the solution, 2 µg/mL oligomycin, 1 µM rotenone and 1 µM Fccp were sequentially 

added. TMRM distributes between cellular compartments in response to different 

potentials and, at concentrations <50 nM, in healthy cells the fluorescent signal 

shows a mitochondrial localisation, where is retained until mitotoxins induced 

depolarization.  

Cell viability: Cells were plated on 96 well plates, each well with 15,000 cells. 

Compounds were added for 24 hours, and then incubated for 2 hours with 1mM 

H2O2. 20μL of MTT (500μg/ml), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide, was added to each well and incubated for 3 hours. MTT was then 

discarded and the obtained formazan crystals were dissolved in 100μL dimethyl 

sulfoxide (DMSO) to be read at the spectrophotometer at 570nm. 

 

Results:  

Frataxin expression levels in FRDA fibroblasts  
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The levels of frataxin expression were assessed in fibroblasts of KIKO and YG8R 

FRDA mouse models, compared with their appropriate controls: WT and Y47R. The 

KIKO mouse contains 230 GAA repeat expansion mutation within the mouse Fxn 

gene. The YG8R mouse, instead, contains a human FXN genomic transgene with 

GAA repeat expansion mutations (190 and 90 GAAs), whereas the Y47R mouse has 

only 9 GAAs, and both mice are homozygous for the mouse frataxin knockout (Pook 

et al., 2001; Cossee et al., 2000). By using immunofluorescence, we detected a 

difference in frataxin levels between WT and KIKO, Y47R and YG8R cells. Frataxin 

expression is in KIKO, compared to WT and in YG8R compared to Y47R (Fig. 1A). A 

quantitative analysis of the immunofluorescence data obtained by confocal 

microscopy confirmed that the differences in frataxin level were significant, showing 

that KIKO has 62.4±16.8 % frataxin and that YG8R has a 39.18±10.03 % frataxin 

levels compared respectively to WT and Y47R fibroblasts (**p<0.001; ***p< 0.0001; 

Fig.1B).  

 

Preventing cell death in FRDA fibroblasts 

Fibroblasts from YG8R and KIKO mice were cultured and the effects of d-PUFAs 

and Nrf2-inducers were analysed for cell death. The cells were pre-treated with the 

protective compounds for 24 hours, and subsequently challenged with oxidant (H2O2 

1mM), in order to measure cell death. Four types of PUFAs were used, two 

containing hydrogen and two containing deuterium: Linoleic acid-1 and 

Linolenic acid-2 and d2-PUFA and d4-PUFA, respectively (Fig. 2; Angelova et 

al., 2015). Although they are all classified as polyunsaturated fatty acids, 

previous studies have showed that those manipulated with deuterium are more 
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effective antioxidants than those containing hydrogen (Shchepinov et al., 2011). 

The isotopic reinforcement by deuteration of the bisallylic sites, which are most 

susceptible to oxidation in PUFAs, should provide at least partial protection against 

oxidative stress in particular, at the membrane levels, such as lipid peroxidation. We 

also tested the protective effect of two compounds, Sulphoraphane (SFN; Fig.2), and 

Tricyclic bis(cyanoenone) (TBE-31; Fig. 2) (Honda et al., 2011) that trigger the 

nuclear factor-E2-related factor-2 (Nrf2) antioxidant pathway. Nrf2 is a transcription 

factor of the antioxidant response elements (ARE). Under physiological conditions, 

Nrf2 is kept in the cytosol by a cytoskeletal protein known as Keap 1. However, during 

oxidative stress, Keap 1 releases Nrf2, which then translocates to the nucleus and 

activates ARE, leading to the expression of antioxidant enzymes (Hayes et al., 2010; 

Shan et al., 2013). Our cell viability experiments first showed that YG8R and KIKO 

fibroblasts both exhibit significantly increased sensitivity to H2O2. We then showed 

that this effect was prevented by application of d4-PUFA, SFN and TBE-31 to YG8R 

fibroblasts (Fig. 3A; YG8R H2O2 180%±5, d4-PUFA 99%±4.2, SFN 95%±4.8 and 

TBE31 98%±4.3; **p<0.005; n=6 independent experiments for each condition) or by 

application of d2-PUFA, d4-PUFA, SFN and TBE-31 to KIKO fibroblasts (Fig. 3B; 

KIKO H2O2 170%±4.1, d2-PUFA 56%±3.4, d4-PUFA 67%±4.6, SFN 72%±4 and 

TBE31 80%±4.4; **p<0.005; n=6 independent experiments for each condition). In 

contrast, the hydrogenated PUFAs (L-1 and L-2) did not display any significant 

protection against cell death. These findings show that d4-PUFA, SFN and TBE-31 

have a protective effect on fibroblasts from FRDA models, preventing cell death. We 

then wondered if the beneficial effect of these compounds on FRDA was induced by 

preventing lipid peroxidation. 
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Lipid peroxidation in FRDA fibroblasts 

To investigate lipid peroxidation as a cause of death, we analysed YG8R and KIKO 

fibroblasts with C-11 BODIBY (581/591). Cells were loaded and then challenged with 

the oxidant to induce oxidative stress (1 mM H2O2).  

In both FRDA cell types lipid peroxidation was increased compared to their 

respective controls (Y47R and WT), both in untreated and in H2O2 treated cells. 

Interestingly, d4-PUFA, SFN and TBE-31 were all found to prevent peroxidation in 

both YG8R and KIKO cells (Fig.4A; YG8R 230%±2.6, YG8R H2O2 320%±3, d4-PUFA 

150%±3.2, SFN 135%±6 and TBE31 110%±4,;*p<0.05, **p<0.005; n=6 independent 

experiments for each condition; Fig.4B; KIKO 184±1.5, KIKO H2O2 301%±2.3, d4-

PUFA 110%±3.2, SFN 120%±2.1 and TBE31 105%±4; **p<0.005, ***p<0.005; n=6 

independent experiments for each condition).  

∆m in FRDA fibroblasts.  

As mitochondria are known to be affected in FRDA, we then investigated 

mitochondrial function by looking at ∆m, which was used as a read out of 

mitochondrial health. We first measured the basal level of the ∆m in control and 

FRDA mouse cells. Interestingly, the YG8R and KIKO models seem to reflect a 

different type of mitochondrial pathophysiology. Analysing the basal level of ∆m, 

YG8R fibroblasts showed depolarization, while KIKO fibroblasts showed an 

increased ∆m (Fig. 5 A-B; YG8R 70%±4.6; *p<0.05; n=6 independent experiments; KIKO 

133.5±3.4; *p<0.05; n=6 independent experiments). By pre-treating the cells with d-
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PUFA and Nrf2-inducer compounds and we found that the detrimental mitochondrial 

phenotype in YG8R cells was recovered by d4-PUFA, SFN and TBE-31 (Fig.5 A-B). 

However, no such protective effect was identified with KIKO cells; indeed, SFN was 

shown to exacerbate the ∆m hyperpolarisation (Fig.5 B). The different phenotypes 

and responses to treatment of the two FRDA mouse models may in part be due to 

the fact that one model has reduced levels of human transgenic frataxin (YG8R), 

while the other has reduced levels of endogenous mouse frataxin (KIKO) and a 

larger GAA repeat expansion.  

By looking at the dynamic signal of the ∆m, using mitotoxins to analyse the ability of 

the cells to maintain the mitochondrial potential we found, again, that YG8R cells 

were depolarised, under administration of oligomycin (inhibitor of the ATP synthase) 

whilst KIKO were slightly hyperpolarised (Fig. 5 C-D). By using d4-PUFA, SFN and 

TBE-31, only YG8R showed a significant difference with cells pre-treated with the 

protective drugs (Fig. 5 E; 0.81±0.017 YG8R; 1.09±0.15 YG8R-d4PUFA; 1.027±0.13 

YG8R-SFN; 1.04±0.11 YG8R-TBE-31; *p=0.0074). KIKO cells did not show any 

significance of the differences in ∆m (Fig. 5 F; 1.18±0.14 KIKO; 1.12±0.15 KIKO-

d4PUFA; 1.10±0.11; KIKO-SFN; 1.16±0.12 KIKO-TBE-31), suggesting that, perhaps 

both models show mitochondrial sensitivity to the lowering of frataxin expression but 

that the cell death pathway is triggered in two different ways.  

Conclusion  

FRDA is a neurodegenerative disorder caused by an intronic GAA repeat expansion 

in the FXN gene, which leads to its transcriptional silencing and the decreased 

expression of the protein frataxin. The function of this protein is still under 
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investigation, however, there is evidence that it is involved in cellular iron 

homeostasis and ISC biogenesis, which has an effect on enzymes of the 

mitochondrial electron transport chain (complexes I, II and III) (Gonzáles-Cabo et al., 

2005) and aconitase (Bulteau et al., 2004). The main biochemical defects that 

frataxin deficiency leads to are observed in the mitochondria in the form of iron 

accumulation and high sensitivity to oxidative stress (Barnham et al., 2004). 

Oxidative stress has an important role in the degeneration of the specific neurons 

involved in the disease. Based on insights of frataxin function and the major 

biochemical defects in FRDA, several therapeutic methods have been investigated. 

There have been attempts to tackle the iron accumulation by using iron chelators 

(Goncalves et al., 2008, Pandolfo M et al 2014). Increasing frataxin gene 

transcription by applying HDAC inhibitors (Hebert, 2008; Libri et al., 2014; Soragni et 

al., 2014) has been found to be promising, whereas treatment with erythropoietin did 

not show significant frataxin upregulation (Mariotti el al 2013). Part of the clinical 

research on FRDA is considering the use of antioxidants, which seem to be the less 

invasive approach compared to other drugs with more side effects. The present work 

shows that fibroblasts of FRDA mouse models have a hypersensitivity to oxidation, 

which can be prevented by reducing lipid peroxidation or activating the Nrf2 pathway.  

The differences in the length of GAA repeats and the different genetic backgrounds 

of the two models (one is based on human frataxin and the other on mouse frataxin), 

may be the cause of the observed mild (YG8R) and severe (KIKO) mitochondrial 

bioenergetics defects. This different behaviour could perhaps reflect a different 

modulatory effect produced by the inhibitor factor 1 (IF1), a protein that modulates 

ATP synthase (Campanella et al., 2008). Therefore, further investigation in these 

models will examine the presence and the modulatory effect of IF1 in order to better 
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understand the signalling involved in the two models, which ultimately may lead to a 

more specific target to treat patients with FRDA.  

 

 

 

 

Acknowledgments 

RA is supported by FARA and GoFar, A&C Simeone Foundation. PG has received 

funding from FARA and GoFar, A&C Simeone Foundation and the European Union 

Seventh Framework Programme (FP7/2007-2013) under grant agreement number 

242193/EFACTS. PG is supported by the National Institute for Health Research 

University College London Hospitals Biomedical Research Centre. EU and IR were 

supported by MSc scholarships. We would like to thank R. Molinari and M. 

Shchepinov (Retrotrope, Inc.) for D-PUFAs compounds, and Dr Albena Dinkova-

Kostova (University of Dundee) and Prof. Tadashi Honda (Stony Brook University, 

USA) for Nrf2-inducers. 

 

Figures 

Figure 1: Frataxin levels in fibroblasts of FRDA mouse models. A. Mouse 

frataxin was measured in WT and KIKO fibroblasts; (a, e) blue nuclear staining Dapi; 

red, monoclonal mouse antibody against mouse (for WT and KIKO) and human (for 

Y47R and YG8R) frataxin; green, apoptotic inducing factor (AIF) as a mitochondrial 

marker; light blue, phalloidin staining the cytoskeleton. WT and KIKO are depicted in 
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Panel A I and II, while III and IV show Y47R and YG8R fibroblasts. (Scale bar 10 

μm). B. Quantitative analysis of fluorescence was made cell by cell and reported on 

the histogram, which confirms that both KIKO and YG8R cells have a decrease of 

frataxin compared to their controls (respectively WT and Y47R; **p< 0.001; ***p< 

0.0001). 

Figure 2: Protective compounds. A. Linoleic and Linolenic acid. B. Poly 

unsaturated fatty acid with two and four deuterium. C. Sulpuraphane (SFN) and. 

Tricyclic bis(cyanoenone) (TBE-31).  

 

Figure 3: Preventing oxidative stress-induced cell death in FRDA fibroblasts. 

A. The histogram shows the percentage of cell death after treatment with 1 mM H2O2 

and pre-treatment with PUFAs (L-1 and L-2), d-PUFAs (d2-PUFA and d4-PUFA), 

SFN and TBE-31. Cell death induced by H2O2 (between untreated and H2O2; 

**p<0.005) in YG8R fibroblasts can be significantly prevented by the pre-treatment 

(24 h) with 100 µM d4-PUFA or Nrf2- inducers (50 nM SFN and 50 nM TBE-31; 

**p<0.005). B. The histogram shows that after treatment with H2O2 (between 

untreated and H2O2; **p<0.005) KIKO fibroblasts can be protected significantly by 

the pre-treatment (24 h) with 100 µM d2-PUFA, 100 µM d4-PUFA and the Nrf2- 

inducers (50 nM SFN and 50 nM TBE-31). **p<0.005; n=6 independent experiments 

for each condition. 

 

Figure 4: Lipid peroxidation is prevented in YG8R and KIKO fibroblasts by d-

PUFAs and Nrf2 inducers. A-B. The histogram shows the rate in % of the 

ratiometric dye, BODIBY C-11 (581/591), which is a marker for lipid peroxidation. 
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The oxidation of the polyunsaturated butadienyl portion of the dye results in a shift of 

fluorescence. A. YG8R fibroblasts show a significant increase of lipid peroxidation 

compared to Y47R fibroblasts. The addition of 1 mM H2O2 further increased lipid 

peroxidation. Cells pre-treated with d4-PUFA, SFN and TBE-31 significantly recover 

lipid peroxidation levels towards control values. B. KIKO fibroblasts show an 

increased lipid peroxidation compared to WT and further increased sensitivity to 

H2O2. KIKO fibroblasts also responded well to treatment with d4-PUFA, SFN and 

TBE-31. *p<0.05, **p<0.005, ***p<0.005; n=6 independent experiments for each 

condition.  

Figure 5: Study of ∆m in YG8R and KIKO fibroblasts. A-B. The histograms show 

the percentage of basal Δm in YG8R (A) and KIKO (B) calculated cell by cell using 

the Z-stack mode with confocal microscopy. A. YG8R cells show a significant 

decrease of Δm compared to Y47R cells, which is recovered by the treatment with 

d4-PUFA, SFN and TBE-31. B. KIKO show a significant increase of ∆m compared 

to WT control, but treatment with compounds does not have an effect of this 

mitochondrial parameter. *p<0.05; n=6 independent experiments. C-D. The graphs 

show the dynamic response of the ∆m to mitotoxins. C in YG8R cells the potential is 

decreased compared to control when treated with oligomycin, compared to Y47R; D. 

while in KIKO cells the potential increases. E-F. The histograms show the summary 

of values obtained calculation the ∆m in all the genotype with and without protective 

treatments.  
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