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Abstract
We study the asymptotic response of polar ordered active fluids (‘flocks’) to small external aligning
fields h. The longitudinal susceptibility c


diverges, in the thermodynamic limit, like n-h as h 0. In

finite systems of linear size L, c

saturates to a value~ gL . The universal exponents ν and γ depend only

on the spatial dimensionality d, and are related to the dynamical exponent z and the ‘roughness
exponent’α characterizing the unperturbed flock dynamics. Using awell supported conjecture for the
values of these two exponents, we obtain n = 2 3, g = 4 5 in d=2 and n = 1 4, g = 2 5 in
d=3. These values are confirmed by our simulations.

1. Introduction

Flocking—the collectivemotion ofmany active particles—is a ubiquitous emergent phenomenon that occurs in
many living and synthetic systems over awide range of scales. Examples range frommammal herds,fish schools
and birdflocks to bacteria colonies and cellularmigrations, down to subcellularmolecularmotors and
biopolymers [1]. Over the last 20 years, studies ofminimalmodels of self-propelled particles (SPP) [2–5] and
hydrodynamic continuum theories [6–12] have shown that the behavior of typical flocking systems is essentially
determined by (i) the spontaneous breaking of continuous rotational symmetry and (ii) the far-from-
equilibriumnature of locally interactingmoving particles.While the formermechanism is common tomany
equilibrium systems (ranging from liquid crystals tomagnetic systems and superfluidHelium-4 [13])which
spontaneously align a phase or orientational degree of freedom, the latter is unique to activematter systems. The
self-propelledmotion of active particles results in superdiffusive information propagation even in systems
withoutmomentum conservation, which in turn leads tomany striking phenomena never found in equilibrium
systems, such as long-range order in two spatial dimensions [6], and anomalously large number
fluctuations [14].

However, little is known concerning the response ofmoving groups to external perturbations. This is an
important question in statistical physics: symmetry breaking systems are often characterized by their response to
a small externalfield, and studying response can also help answer the question of whether a generalized
fluctuation–dissipation relation (FDR) of some sort [15]holds inflocks. Ethologists, on the other hand, are
interested in response to external threats andmore generally in the biological significance of group response
mechanisms. Finally, understanding response is essential for controlling flocking systems, either biological or
artificial.

In equilibrium, the response of systems breaking a continuous symmetry to a small external field is a classic
problemof statisticalfield theory, first solved in [16], where it was shown that fluctuations transversal to order
couple to longitudinal ones, yielding a diverging longitudinal susceptibility in the entire ordered phase. This is a
typicalmanifestation of symmetry-breaking, and it is a natural question towonder how the far-from-
equilibriumnature offlocksmay change this fundamental result.

OPEN ACCESS

RECEIVED

17March 2016

REVISED

29May 2016

ACCEPTED FOR PUBLICATION

29 June 2016

PUBLISHED

20 July 2016

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/18/7/073039
mailto:francesco.ginelli@abdn.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/7/073039&domain=pdf&date_stamp=2016-07-20
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/7/073039&domain=pdf&date_stamp=2016-07-20
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


Until now, only a few studies,mostly numerical, have addressed these questions. Asymptotic response has
beenfirst studied numerically in thewell-knownVicsekmodel [3], but that work focused on the behavior of the
susceptibility near the transition, rather than in the ordered phase. Short time response and the dynamic FDR
has been investigated numerically in theVicsekmodel [5] and in the isotropic phase of an active dumbbells
system [17]. The response tofinite and/or localized perturbations, finally, has also been studied in [18–20].

Here we provide a different approach, combining hydrodynamic theory results with numerical simulations
to characterize the static response of orderedflocks to a small homogeneous externalfield of amplitude h.

We are particularly interested in the asymptotic longitudinal response

c
d

º
F( ) ( )h

h
, 1

where dF = F - F( ) ( ) ( )h h 0 is the change in themagnitude of the time-averaged order parameter, which in
our case is themean velocity, due to the applied field. Ourmain result is the scaling law:
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g
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1 and, using a conjecture first put forward in [6],
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for any dimension  d3 2 4, the upper critical dimension. In particular, we have n = 2 3, =z 6 5 and
g = 4 5 in d=2 and n = 1 4, =z 8 5 and g = 2 5 in d=3. For d 4, on the other hand, we
predict dF µ h.

In the remainder of this paper, wewillfirst derive the results (2) and (3) analytically, and then present
numerical simulations that confirm them.

2. Response theory

Weconsider ‘dry’ flocks, bywhichwemeanflocks whichmove over a or through a static dissipative substrate or
medium that acts as amomentum sink. Totalmomentum, thus, is not conserved, and no long ranged
hydrodynamic interactions are present in the system.Obviously, Galilean invariance is broken, since the
reference frame inwhich the static substrate ormedium is at rest is preferred.

2.1.Hydrodynamic description
The hydrodynamic theory describes flocking by continuous, coarse grained number density r ( )tr, and velocity

( )tv r, fields. The hydrodynamic equations ofmotion governing thesefields in the long-wavelength limit can be
obtained either by symmetry arguments [6–9], or by kinetic theory [10, 11] and describe the asymptotic
dynamics of polar flocks regardless of the precise nature of the interactions, provided only that they are local; in
particular, the same hydrodynamic equations apply for both ‘metric’ and ‘topological’ interactions [21, 22].
They are

r r¶ +  =· ( ) ( )v 0 4t

and, in a schematic notation

rL  ¶ + = + + + +[ ] ( ∣ ∣) [ ] ( )Uv vv v v D v F f h, , 5t P

where

l l lL    º + +[ ] ( · ) ( · ) (∣ ∣ ) ( )vv v v v v v 61 2 3
2

are all the convective-like terms permitted by the symmetries and conservation laws of the system.Here, all three
coefficients are, in general, neither zero nor one, as opposed to systemswithGalilean invariancewhere one has
simply l = 11 and l l= = 02 3 , as in the usualNavier–Stokes equations.

The viscous terms

   º + + [ ] ( · ) ( · ) ( )D D DD v v v v v 71 2
2

3
2

reflect the tendency of localized fluctuations in the velocities to spread out because of local interactions.
The pressure term

 º - - ( · ) ( )P PF v v 8P 1 2

is the sumof ‘isotropic’ (P1) and ‘anisotropic’ (P2) pressure terms, the latter being a genuinely non-equilibrium
feature. Both terms tend to suppress local density fluctuations around the globalmean value r0. The pressures

2
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P1,2, and the convective and viscous parameters lk and >D 0k ( =k 1, 2, 3) are functions of the local density ρ
and themagnitude ∣ ∣v of the local velocity.

Fluctuations are introduced through aGaussianwhite noise f with correlations

d d dá ¢ ¢ ñ = D - ¢ - ¢( ) ( ) ( ) ( ) ( )f t f t t tr r r r, , . 9i j ij
d

This accounts in a simpleway for any source ofmicroscopic fluctuations, such as themicroscopic noise term
opposing order in simple SPPmodels4. Finally, the local termU simplymakes the local v have a nonzero
magnitude ( )v h0 in the ordered phase. It satisfies the condition >U 0 for < =∣ ∣ ( )v hv 00 ,U=0 for

=∣ ∣ ( )vv 00 , and <U 0 for >∣ ∣ ( )vv 00 . This term thereby causes the flock to spontaneously break rotational
symmetry even in the absence of an externalfield. Small departures of the statistics of the noise from these
assumptions, e.g., slightly non-Gaussian statistics, or the introduction of ‘local color’ in the sense of short-
ranged spatio-temporal correlations of the noise, change none of the long distance scaling properties of
theflock.

Equations (4) and (5) are identical to the unperturbed ones discussed in [12], except for the explicit addition
of the coarse-grained constant field h in equation (5). By analyticity and rotational invariance, this field is
linearly and isotropically proportional to the appliedmicroscopic fieldwhen those fields are sufficiently small.

2.2.Mean-field analysis
Wefirst discuss the system in the absence offluctuations. Equations (4) and (5) admit a spatially uniform steady
state solution

r r=
=

( )
( ) ( ) ( )

t

t

r

v r v h

,

, . 10
0

0

For any nonzero externalfield let êbe the unit vector along º ˆhh e, while for strictly zerofield êwill be the
direction of the spontaneous symmetry breaking.We have =( ) ( ) ˆv hv h e0 0 , with themagnitude ( )v h0 of the
homogeneous velocity ( )v h0 determined by the condition

r + =( ( )) ) ( ) ( )U v h v h h, 0. 110 0 0

SinceU is analytic in v, we have for smallfields

- µ( ) ( ) ( )v h v h0 , 120 0

where ( )v 00 is the zero field symmetry broken solution. It is well known that sufficiently deep in the ordered
phase such a zero-field solution is stable against spatial perturbations [11]. In the followingwewill restrict our
analysis to this so-called Toner–Tu (TT)phase.

To summarize: inmeanfield theory, themagnitude of the order parameter

F º á ñ( ) ∣ ( ) ∣ ( )h tv r, 13

(here and hereafter á ñ· denotes a global average in space and time) responds linearly in h.

2.3. Fluctuations
Wenowmove beyondmean field to consider the effect offluctuations; wewill show that the corrections to the
order parameterΦ due tofluctuations aremuch larger than linear ones we have just computed atmeanfield
level.

In order to do so, we allow for small fluctuations around the homogeneous solution

r r dr
d

= +
= +

( ) ( )
( ) ( ) ( ) ( )

t h t

t h h t

r r

v r v v r

, ; ,

, ; , 14
0

0

and distinguish between longitudinal and transverse velocityfluctuations, which are respectively parallel () and
perpendicular (̂ ) to ( )hv0

d d= + ^( ) ( ) ( ) ( )h t v h t h tv r r e v r; , ; , ; , , 15 

wherewe havemade explicit the field dependence offluctuations. For simplicity, wewill hereafter often not
explicitly display the space, time and field dependence of thefluctuations.

Note that, due to number conservation, drá ñ = 0, while symmetry considerations imply á ñ =v̂ 0; that is,
fluctuations can not steer the global average of á ñ( )tv r, away from the externalfield direction. This implies that
corrections to the order parameter are linear in the longitudinal fluctuations: bymaking use of equations (12),

4
One can argue that thefluctuating term arising fromdirect coarse-graining of suchmodels is typicallymultiplicative (i.e., with correlations

proportional to the density) rather than additive [21]. This difference, however, is irrelevant for the asymptotic properties discussed here,
because the local density fluctuations (not to be confusedwith the giant number fluctuations) in the TT phase are small compared to the
mean density.

3
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(13) and (15)wehave

d dF = + á ñ = + á ñ +( ) ( ) ( ) ( ) ( ) ( ) ( )h v h h v v h O hv 0 . 160 0 

In order to compute longitudinal fluctuations, we have to expand the hydrodynamic equations (4) and (5) in
the smallfluctuations dr, dv and v̂ .We are interested only influctuations that vary slowly in space and time
(indeed the hydrodynamic equations are only valid in this limit), so that space and time derivatives of the
fluctuations are always of higher order than the fluctuations themselves. The details of this surprisingly subtle
calculation are given in the appendix, but (fortunately) they are identical to order hwith those for the zero-field
case in [12]. The only difference atO(h) is that

r » - ¹( ( ) ) ( )U v h
h

v
, 0. 170 0

0

Because slowmodes dominate the long-distance behavior, and, it therefore proves, the smallfield response, we
can eliminate the longitudinal fluctuations from equation (22), since they are a fastmode of the dynamics. The
subtle details of this elimination are given in the appendix; the result is that the longitudinal velocity fluctuation
becomes ‘enslaved’ to the slowmodes (that is, its instantaneous value is entirely determined by the instantaneous
values of those slowmodes) via the relation

d m dr m m dr m» - + + ¶ + ¶ +  +^
^ ^

∣ ( )∣
( )

( ) · ( ) ( )v
h

v
O h

v
v

2 0
. 18t

2

0
1 2 3 4 

Here m1 is a constant which depends on the formofU. In typical flockingmodels withmetric interactions
m > 01 [11], so that density fluctuations are positively correlatedwith longitudinal fluctuations at the local level.
In equation (18), ̂ denotes spatial derivatives in the transverse directions, and the constants m2, m3 and m4
depend on the original parameters of the hydrodynamic equations (4) and (5). Full details, together with the
derivation of equation (18), can be found in the appendix, but the exact formof these constants is unimportant
here. Since these derivative terms are linear in dr and v̂ , they vanish once averaged over space and time, so that
from equation (18)wehave

dá ñ » -
á ñ

+^∣ ( )∣
( )

( ) ( )v
h

v
O h

v

2 0
19

2

0


which links the global average of transversal and longitudinal fluctuations and is the analog of the so-called
principle of conservation of themodulus in an equilibrium ferromagnet [16]. From equation (16)wefinally have

F » -
á ñ

+^( ) ( ) ∣ ( )∣
( )

( ) ( )h v
h

v
O h

v
0

2 0
200

2

0

and

dF º F - F »
á ñ - á ñ

+^ ^( ) ( ) ( ) ∣ ( )∣ ∣ ( )∣
( )

( ) ( )h h
h

v
O h

v v
0

0

2 0
. 21

2 2

0

Weare then left with the problemof determining the fluctuations of the transverse velocity v̂ in the
presence of a non-zero field h.Wewill do so by analyzing the equations ofmotion for v̂ and dr, which follow
from inserting (18) into the velocity equation ofmotion (5) projected transverse to the direction ofmean
motion, and into the density equation ofmotion (4), and expanding infields and derivatives. Again, details are
relegated to the appendix; the result is:

dr dr¶ = ¶
¶ = ¶ -

=

^ ^ = ^

[ ]
[ ] ( )hv v v , 22

t t h

t t h v

0

0

wherewe have introduced the rescaled field

º
( )

( )h
h

v 0
23v

0

and dr¶ =[ ]t h 0 and ¶ ^ =[ ]vt h 0 are the terms originally given by equations (2.18) and (2.28) of [12] for the zero field
case. For later use, we denote collectively the parameters appearing in those terms as m{ }( )

i
0 .While the exact

forms of equation (22) are not important for what follows, for completeness we also give them in the appendix.

2.4. Renormalization group
Wehave shown so far that the response dF is determined by the global average of transversal fluctuations,
equation (21). To compute this quantity, we proceed by a dynamical renormalization group (DRG) analysis [23]
of equation (22). Once again, this standard analysis is almost identical to that carried out in [12] for the zero field
case.We start by averaging the equations ofmotion over the short-wavelength fluctuations: i.e., thosewith
support in the ‘shell’ of Fourier space L L-

^
∣ ∣ b q1 , whereΛ is an ‘ultra-violet cutoff’, and b is an arbitrary

4
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rescaling factor. Then, one rescales lengths, time, dr and ^v in equation (22) according to = ¢a
^ ^

bv v ,

dr dr= ¢ab , = ¢̂
^ br r , = ¢zr b r 

, and = ¢t b tz to restore the ultra-violet cutoff5 toΛ. The scaling exponentsα,

ζ, and z, known respectively as the ‘roughness’, ‘anisotropy’, and ‘dynamical’ exponents, are at this point
arbitrary.

This DRGprocess leads to a new, ‘renormalized’ pair of equations ofmotion of the same form as (22), but
with ‘renormalized’ values of the parameters, m m{ } { }( ) ( )

i i
b0 . For a suitable choice of the scaling exponentsα,

ζ, and z, these parameters flow tofixed, finite limits as  ¥b ; that is, m m¥{ } { }( ) * ;i
b

i this is referred to as a
‘renormalization groupfixed point’. The utility of this choicewill be discussed in amoment.

Since all terms except the h term in equation (22) are rotation invariant, they can only generate other rotation
invariant terms in thefirst (averaging) step of theDRG.Hence, they cannot renormalize h, which breaks rotation
invariance. Thus, the only change in the h term in equation (22) occurs in the second (rescaling) step. Since the
coefficient hv scales as the inverse of time, this is easily seen to lead to the recursion relation

= ¢- ( )h b h , 24v
z

v

which—for the reasons just given—is exact to linear order in h.
By construction, theDRGhas the property that correlation functions in the original equations ofmotions

can be related to those of the renormalized equations ofmotion via a simple scaling law. The example of interest
for our problem is of course the correlation function

m º á ñ - á ñ^ ^ ^( { } ) ∣ ( )∣ ∣ ( )∣ ( )C L L h hv v, , , 0 . 25i v
0 2 2



Here L⊥ and LP are respectively the transverse and longitudinal system size. TheDRG scaling law obeyed byC is
thus

m m= a z
^

-
^

-( { } ) ( { } ) ( )C L L h b C b L b L b h, , , , , , 26i v i
b z

v
0 2 1

 

which follows simply from the fact thatC involves two powers of v̂ , each of which gives a factor ab .
In order to examine the scaling ofCwithfield amplitude h, we use the completely standard6 [23, 24]

renormalization group trick of choosing the scaling factor b such that b hz
v is equal to some constant reference

field strength *hv , whichwewill always choose to have the same value regardless of the bare value of hv. This

implies that =
-( )*b h

h

z1
v

v
. Note that for small h—and thus small hv—this choice implies b 1 , and that the

parameters m{ }( )
i
b

flow to m{ }*i , their fixed point values.Hence, in the limit of small h, the scaling function (26)
can be reduced to

m = a z
^

-
^( { } ) ( ) ( )C L L h h g L h L h, , , , , 27i

z z z0 2 1
 

where

mº ºa z- -( ) ( { } ) ( ) ( )* * *g x y b C b x b y h b h v, , , , with 0 , 28z z z
i v v0

2
0

1
0 0 0

is a universal scaling function (sincewe alwaysmake the same choice of *hv ).
Note that this expression only applies for small h, since it is only in that limit that  ¥b , and, hence

m m{ } { }( ) *
i
b

i . Hence, we expect this scaling law to break down for largefields, and, in fact, it does.
We now focus our attention on roughly square systems, with ~ ~L̂ L L . Assuming an anisotropy

exponent z< <0 1 (as expected [6–9, 12] for spatial dimensions <d 4), we have for smallfields

µ z
^ ( )Lh L h L h 29z z z1 1  

so thatfinite-size scaling is controlled by the transverse flock extension L̂ andwe can replace gwith the universal
scaling function º ¥( ) ( )w x g x, . Above the upper critical dimension dc=4, where z = 1 [6], the transverse
and longitudinal directions scale identically andwe choose instead º( ) ( )w x g x x, . Doing so, we finally obtain
the scaling law

= n-( ) ˜ ( ) ( )C L h h w Lh, , 30z1 1

where

n a= + ( )z1 2 . 31

It is now straightforward to relate the order parameter change dF( )h to this scaling law. From equation (21)we
have

5
One couldmore generally rescale dr with a different rescaling exponent ar from the exponentαused for v̂ . However, sincefluctuations

of dr and v̂ have the same scalingwith distance and time, they prove to rescale with the same exponentα [12]. Note also that the exponent
we callα here is calledχ inmost of the literature; we have broken this convention here to avoid confusionwith the susceptibilityχ.
6
For an excellent discussion of precisely the logicwe use here, see, e.g., [24].
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dF µ +( ) ( ) ( )C L h O h, . 32

Note that for n > 0 (again a conditionwe expect, as discussed below, to be satisfied for <d 4), we have
( ) ( )C L h O h,  and the corrections due tofluctuations dominate themeanfield ones. To lowest order in h

dF = á ñ - á ñ = n
^ ^

-

( )
[ ∣ ( )∣ ∣ ( )∣ ] ( ) ( )

v
h h w Lhv v

1

2 0
0 . 33z

0

2 2 1 1

In the thermodynamic limit, Lh 1z1  for any non-zero field and  ¥ =( ) ( )w Lh w constantz1 , yielding

the asymptotic result µd nF -h
h

. In practice, in any system large enough, the externalfield suppresses transverse
fluctuations, thus increasing the scalar order parameter according to equation (20), an effect that below the
upper critical dimension dc=4 proves stronger thanmeanfield corrections linear in h. Above dc, on the other
hand, it is known [6] that a = - d1 2 and z=2, which implies n = - d2 2 0; therefore corrections due
tofluctuations no longer dominate themeanfield ones. Hence, ordinary linear response c  constant as
h 0 is recovered for >d 4.
So far, we have kept our discussion ofDRG at a qualitative level, independent of the precise formof the zero-

field terms in equation (22). To bemore quantitative for <d 4, we need the actual values of the scaling
exponentsα, ζ, and z for which theDRGflows to afixed point in those dimensions. These values actually do
depend on the formof equation (22) (and, in particular, to the nature of their relevant nonlinear terms), but
luckily for smallfields h they have to coincide with their zero-field values. Indeed, there is no reason forwhich
these zero-field values should be affected by a sufficiently small rescaled field, *h hv v .

In [6], it was argued that for any dimension  d3 2 4 these zero-field exponents are

a z=
-

=
+

=
+( ) ( )d

z
d d3 2

5
,

2 1

5
,

1

5
. 34

It has since been since realized [12] that the original arguments leading to these values are flawed.However, the
simple conjecture that the only relevant nonlineaarity at the fixed point is the termproportional to l1 in
equations (5) and (6) leads to precisely these values for the exponents.While this conjecture has never been
proven, there is solid numerical [5, 7] and even experimental [25] evidence supporting the above scaling
exponent values for d=2 and, to a lesser extent, d=3. In the followingwewill assume this conjecture holds,
verifying it a-posteriori by numericalmeasures of asymptotic response in theVicsek [2]model.

Above the upper critical dimension dc=4, finally, the scaling exponents take the exact linear values z=2,
z = 1 and a = - d1 2.

2.5. Finite size effects and longitudinal response
Weconclude this section the discussing finite size effects. The scaling form (33) implies that transverse
fluctuations are suppressed by thefield h on length scales

µ -( ) ( )L L h h . 35z
c

1

In small systems such that L Lc (or equivalently for smallfield µ -( )h h L L z
c ), however, this suppression

is ineffective, and leading corrections to the order parameter should revert to linear order in the external field h.
We can include this behavior in a single universal scaling function f by requiring that ¥ µ ¥ =( ) ( ) ( )f w O 1
and µ n( )f x x z for x 1 . Thisfinally gives

dF = µn
n

g
-

- -

-( ) ( )
⎧⎨⎩h f h L

h h L
hL h L

, ,
, ,

36z
z

z
1

1 


with g n= z . This scaling holds for externalfields not too large. For > *h hv , on the other hand, the smallfield
approximation discussed here is no longer valid, and saturation effects change the scaling (36). Once expressed
in terms of the longitudinal susceptibility c d= F h , our results imply equation (2), with the scaling exponents
given by equation (3) (according to conjecture (34)).

3.Numerical simulations

We test our predictions (36) in two and three dimensions by simulating thewell knownVicsekmodel [2] in an
external homogeneous field h. Each particle—labeled by = ¼i N1, 2, , —is defined by a position ri

t and a unit
direction ofmotion v i

t . Themodel evolves with a synchronous discrete time dynamics

åJ= +w
+

Î

( ◦ ) ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟v v h , 37i

t

j S
j
t1

i
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= ++ ( )vr r v , 38i
t

i
t

m i
t1

where vm is the particle speed7, J =( ) ∣ ∣w w w is a normalization operator and w performs a random rotation
(uncorrelated between different times t or particles i) uniformly distributed around the argument vector: w w
is uniformly distributed around w inside an arc of amplitude pw2 (in d= 2) or in a spherical cap spanning a
solid angle of amplitude pw4 (d= 3). The interaction is ‘metric’: that is, each particle i interacts with all of its
neighbors within unit distance. In the following, we adopt periodic boundary conditions and choose typical
microscopic parameters so that the system lies within the TT phase [5]: vm=0.5, r = =N L 1d

0 and
w = 0.18 (d= 2) or w = 0.11 (d=3). In both dimensions, this choice yields a zero-field order
parameter F »( )0 0.8.

We perform simulationswith different externalfield amplitudes andwith different linear system sizes L.
After discarding a transientT0 sufficiently long for the system to settle into the stationary state, we estimate the
mean global order parameter

åF =
=

( )
N

v
1

39
i

N

i
t

t1

and its standard error, given by s=S nE , withσ being the standard deviation and n the number of
independent data points.We estimate n as the total number of stationary pointsT divided by the autocorrelation
time τ of themean order parameter timeseries, t=n T . In equation (39), á ñ· t denotes time averages,
performed over typicallyT=106∼ 108 time steps. In particular, as the precision of the zero-field order
parameter affects all response and the autocorrelation time decreases with h, in our numerical simulationswe
take care to estimate the zero-field order parameter over times as large as possible.

We begin addressing response in the large system size (or largefield) regime hL 1z  , where our theory
predicts dF ~ n-h1 .Measuring this power law is a particularly difficult task, as it is sandwiched between
saturation effects at larger values of h and the crossover to linear behavior at -h L z .We proceed by
extrapolation, choosing a (somewhat arbitrary) h range of two decades and bymeasuring the effective power law
exponent n-1 eff by linear regression. The resulting response dF( )h is plotted infigure 1 for increasing system
sizes L. As one expects, as system sizes increases, response curves approach the expected size-asymptotic
behavior dF ~ n-h1 . Infigure 1(a), for instance, the d=2 response approaches the expected power-law

n- =1 1 3. In the inset offigure 1(a)we further quantify this convergence plotting n n-∣ ∣eff versus the system
size L. This shows that the effective exponent approaches the predicted onewith corrections of order L1 .We

Figure 1. Size-asymptotic regime—order parameter change versus the applied field amplitude for different system sizes. (a) For
d=2, frombottom to top, =L 32, 64, 128, 256, 512, 1024. The dashed red linemarks the expected asymptotic power lawbehavior
dF ~ h1 3, while the dashed blue linemarks the upper bound for the d=2 equilibrium response dF ~ h1 15. In the inset: absolute
difference between themeasured effective exponent neff (see text) and its expected asymptotic value ν as a function of system size. The
dashed black linesmarks a power law decay as L1 . (b) For d=3, frombottom to top, =L 40, 60, 80, 100, 120. The dashed red
linemarks the expected asymptotic power law behavior dF ~ h3 4, while the dashed blue line correspond to the d=3 equilibrium
response dF ~ h1 2. Inset: d=3 data as in the inset of panel (a). The dashed black linesmarks a power law decay as -L 1.5. Error bars
measure standard errors (see text). All graphs are in a double logarithmic scale.

7
Note that vm=0 is the equilibrium limit of thismodel [26], which is singular.
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repeated the same procedure in d=3. As shown infigure 1(b), the approach to the expected asymptotic
exponent n- =1 3 4 is faster, and the difference n n-∣ ∣eff vanishes faster, as -L 1.5. In d=3 our simulations
are obviously limited to amuch smaller range of linear size values, but it should be noted that in d=3 finite size
effects vanish quicker (being the exponent z larger)while the asymptotic exponent n- =1 3 4 is already quite
close to the value dF ~ h expected at low values of h. A faster approach of neff to its asymptotic value is therefore
not completely surprising.

In d=3, we can also easily compare the response behaviorwith the equilibriumprediction dF ~ h [16]
(dashed blue line infigure 1(b)). This clearly shows that the far-from-equilibriumnature of theVicsekmodel
makes the susceptibility exponent very different from that in equilibrium ferromagnets. In d=2 equilibrium
systemswith a continuous symmetry cannot develop long range order, but, rather, exhibit only a quasi-long
range ordered phase, characterized by scaling exponents that vary continuously with temperature [13, 27]. The
equilibrium susceptibility exponent [27, 28] in d=2 is given by

n
h
h

=
-
-

( )4 2

4
, 40

where the order parameter correlation exponent η is bounded: h 0 1 4, which implies that the
susceptibility exponent ν varies over an extremely narrow range: n 14 15 1. Our predicted value of
n = 2 3 for 2dflocks lies well outside this range; far enough, in fact, that our simulations both support the
theory presented here, and rule out any equilibrium interpretation.

Next, we consider the linear behavior dF µ h predicted for small system sizes (or smallfields), hL 1z  .
This inequality imposes a (severe) upper limit on the range of h, while there is a lower limit set by our numerical
precision in evaluating responses of the order of 10−4 or smaller. Nevertheless, our numerical simulations reveal
in both d=2 (figure 2(a)) and d=3 (figure 2(b)) a linear growth of the response overmore than one decade in
thefield amplitude h, especially for small system sizes.

By selecting a single h value lying in the linear regime for all accessible system sizes L, one is also able to test
the saturation exponent g dF ~ gh L, . This is done infigures 2(c) and (d), where response values at different
linear sizes L are compared to the predicted power-lawwith (respectively) g = 4 5 for d=2 and g = 2 5 in
d=3.We obtain a good agreement in d=2 (the best linear fit being g = ( )0.79 5 , while data in d=3 is less
clear, in rough agreementwith the expected power-law behavior only for sizes L�60, with a best linear fit
of g = ( )0.48 7 .

Wefinally consider the full range of accessible external fields values infigures 3(a) and (b), which shows data
for the accessible range of externalfield values in both two and three dimensions. Fields h larger than »h 0.1s , of
course, are out of the smallfield regime and show saturation effects, while due to statistical fluctuationswe have
been unable to obtain reliable estimates for externalfields smaller than » -h 10 4.Within this range,
comparisonwith the predicted scaling (2) (as given by the dashed lines) is overall satisfactory, especially in d=2.
By a proper rescaling,making use of the three scaling exponents (3), we can also collapse our data at different
sizes on roughly a single curve, as shown infigures 3(c) and (d).

To summarize, numerical simulations are in good agreementwith our theoretical predictions, at least in
d=2. Results in d=3 are prone to larger errors and obviously explore amore limited range of linear sizes, but
nevertheless are still compatible with our predictions.

We also performed a few additional numerical studies of response (not shownhere)with different parameter
values (but still in the TT phase), and in the ordered phase of the so-called topological Vicsekmodel [29],
confirming the generality of these results.

It is alsoworth commenting on theway the externalfield is implemented in themicroscopic Vicsek
equation (38). In [5] it was argued that differentmicroscopic implementations could lead to different response,
and in particular it was recommended to choose one bywhich the external fieldwas normalized by the local
order parameter value, such as in

åJ J= +w
+

Î

( ◦ ) ( )
⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥v v h , 41i

t

j S
j
t1

i

However, we do not expect thesemicroscopic details to change the structure of the hydrodynamic equations (4)
and (5), and thus we do not expect qualitative differences between the twomicroscopic external field
implementations. Indeed, our preliminary simulations of equation (41) (not shown here) showno qualitative
difference from the response extensively discussed above for equation (38).
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4. Conclusions

So far, we have only considered the longitudinal susceptibility, which characterizes the response of the
magnitude of the order parameter to a small externalfield. Simple considerations, based on symmetry, imply
that the flock polarization vector will eventually alignwith any non-zero stationary external field, including one
applied transversal to the initial polarization. Thus, for the transvere susceptibility we have, trivially

c ~^
( ) ( )v

h

0
420

as in equilibrium systems.
In this paper, we have fully characterized the static response of homogeneous ordered flocks to small

externalfields for any dimension >d 3 2. In particular, below the upper critical dimension dc=4, our results
in the thermodynamic limit  ¥L show a diverging longitudinal response for h 0, i.e. a diverging
susceptibility. This is ultimately a consequence of the spontaneous symmetry breaking of the continuous
rotation symmetry, albeit the far-from equilibriumnature offlocks yields different results from, say,
equilibrium ferromagnets in =d 2, 3 [13].We have also fully characterized finite size effects—typically of great
importance in biological applications of collectivemotion—and verified our results via numerical simulations.
We believe that the finite numerical values reported in [3] for the longitudinal susceptibility are entirely due to
finite size effects.

Incidentally, our numerics thereby also provide further evidence supporting the conjecture (34) for the
scaling exponent values [6].

Figure 2. Linear regime. (a) and (b) order parameter change versus the applied field amplitude in the linear regime for different system
sizes (the cyan arrow indicates increasing system sizes): (a) for = =d L2 32, 64, 128, 256, 512. (b) For = =d L3 40, 60, 80,
100, 120. The dashed linesmark the linear relation dF ~ h. Error barsmeasure data standard errors (see text). (c) d=2Response at
fixed h—as shown by the red arrows in panel (a)—and different system sizes in the linear regime. The dashed black linemarks a power
lawwith the predicted slope 0.8. (d) Same as in (c), but for d=3. The dashed black linemarks a power lawwith the predicted slope
0.4. All graphs are in a double logarithmic scale.

9

New J. Phys. 18 (2016) 073039 NKyriakopoulos et al



Our results are expected to hold generically for all collectivemotion systems showing a bona fideTTphase.
This class encompasses both systemswithmetric interactions and thosewith topological interactions. It also
includes the inertial spinmodel recently put forward in [30] to account for the turning dynamicsmeasured
experimentally in starlingflocks. This is because the long time hydrodynamic theory of the inertial spin theory
relaxes to the TT theory [31]; hence, the static response will be unchanged. Dynamical response (i.e. howquickly
theflock turns towards thefield direction), however, could be different at short times in inertial spinmodels,
while the long-time behavior should be the same.

In future work, wewill exploremore thoroughly the phase diagramofVicsek-likemodels beyond the TT
phase, investigating the disordered and phase separated regimes. Other future directions include the study of the
finite-time, dynamical reponse [32] in both overdampedVicsek-likemodels and inertial spin ones, and the study
of spatially localized perturbations.
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Figure 3. (a) and (b) order parameter change versus the applied field amplitude in both the linear and size-asymptotic regimes for
different system sizes (the arrow indicates increasing system sizes): (a) for = =d L2 32, 64, 128, 256, 512, 1024. (b) For
= =d L3 40, 60, 80, 100, 120. (c) and (d) data collapse for the longitudinal susceptibility according to equation (2) and to the

conjectured values for the scaling exponents (see text). (c) d=2 and (d) d=3. In all panels, the dashed black linesmark the linear
response (dF µ h or c ~ gL expected by our theory for ~ -h h L z

c . Dashed red lines, on the other hand,mark the nonlinear
regime predicted for h hc , dF µ n-h1 or c µ n-h .We have n = =( )d 2 2 3, and n = =( )d 3 1 4. Error barsmeasure
standard errors (see text). All graphs are in a double logarithmic scale.
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Appendix. Expansion of the hydrodynamic equations for smallfluctuations

Wefirst demonstrate that the longitudinal velocity dv is enslaved to the slowmodes dr and v̂ .We follow [12]
and beginwith the hydrodynamic equations (4) and (5)written out explicitly:

r r¶ +  =· ( ) ( )v 0, A.1t

l l l r   
   

¶ = - - - + -
- + +  + + +

( · ) ( · ) (∣ ∣ ) ( )
( · ) ( · ) ( · ) ( )

U P

P D D D

v v v v v v v v

v v v v v v f h

,

, A.2
t 1 2 3

2
1

2 1 3
2

2
2

where, as noted in themain text, the parameters l = ( )i 1 3i , the local termU, the ‘isotropic pressure’
r( ∣ ∣)P v, and the ‘anisotropic pressure’ r( ∣ ∣)P v,2 are, in general, functions of the density ρ and themagnitude

∣ ∣v of the local velocity. It is useful to Taylor expand P1 andP2 around the equilibriumdensity r0:

ås r r= -
=

¥

(∣ ∣)( ) ( )P v , A.3
n

n
n

1
1

0

år r r= = ¡ -
=

¥

( ∣ ∣) (∣ ∣)( ) ( )P P v v, . A.4
n

n
n

2 2
1

0

HereD1,D2 andD3 are all positive in the ordered state.
Again as discussed in themain text, in the ordered phase, the velocityfield can bewritten as:

d d= + = + + ^( ) ( )v v vv e v e v A.50 0  

(for simplicity, here and hereafter, wewrite º ( )v v h0 0 ).
Taking the dot product of both sides of equation (A.2)with v itself, we obtain:

l l l 

   


¶ + + + =

- - + + 
+ + +

( ∣ ∣ ) ( )( · )∣ ∣ ) ( · )∣ ∣ (∣ )∣ ∣

· ∣ ∣ · · ( · ) ·
· (( · ) ) · · ( )

U

P P D D

D

v v v v v v v

v v v v v v v

v v v v f v h

1

2

1

2
2

. A.6

t
2

1 3
2

2
2 2

1
2

2 1 3
2

2
2

In this hydrodynamic approach, we are interested only influctuations d ( )tv r, and dr ( )tr, that vary slowly
in space and time. (Indeed, the hydrodynamic equations (A.1) and (A.2) are only valid in this limit). Hence,
terms involving space and time derivatives of d ( )tv r, and dr ( )tr, are always negligible, in the hydrodynamic
limit, compared to terms involving the same number of powers offields without any time or space derivatives.

Furthermore, the fluctuations d ( )tv r, and dr ( )tr, can themselves be shown to be small in the long-
wavelength limit [12]. Hence, we need only keep terms in equation (A.6) up to linear order in d ( )tv r, and
dr ( )tr, . The ·v f term can likewise be dropped, since it only leads to a termof order ^ fv


in the ^v equation of

motion, which is negligible (since ^v is small) relative to the ^f term already there.
In addition, treating themagnitude h of the appliedfield as a small quantity, we need only keep terms

involving h that are proportional to h and independent of the smallfluctuating quantities dv and dr.
These observations can be used to eliminatemany of the terms in equation (A.6), and solve for the quantity

U; the solution is:

l
s

dr l d = - + + + ¶ + ¶ + ¶· · ( ) ( )U
h

v
P

v v
vv v

1

2
, A.7t

0
2 2

1

0 0
4  

wherewe have defined

l l lº +( ) ( )v2 . A.84 1 3 0

Wecan now express the longitudinal velocity dv in terms of the slowmodes using equation (A.7) and the
expansion

d dr» -G + - G^∣ ∣ ( )
⎛
⎝⎜

⎞
⎠⎟U v

v

v

2
, A.91

2

0
2

wherewe have defined

r
G º -

¶
¶

G º -
¶
¶r∣ ∣

( )
∣ ∣

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

U U

v
, , A.10

v

1

0

2

0

with, here and hereafter, super- or sub-scripts 0 denoting functions of ρ and ∣ ∣v evaluated at r r= 0 and =∣ ∣ vv 0.
We have also used the expansion (A.5) for the velocity in terms of the fluctuations dv and v̂


towrite
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d d= + + +^
^∣ ∣ ∣ ∣ ( ∣ ∣ ) ( )v v

v
O vv

v
v

2
, A.110

2

0

2 4
 

and kept only terms that anDRG analysis shows to be relevant in the longwavelength limit [12]. Inserting (A.9)
into (A.7) gives:

d dr l l d

s
dr l d

- G + - G =- + + ¶

+
¡ +

¶ + ¶ + ¶

^
^ ^

∣ ∣ ·

( ) ( ) ( )

⎛
⎝⎜

⎞
⎠⎟v

v

h

v
v

v

v v
v

v
v

2

1

2
, A.12t

1

2

0
2

0
2 2

1 0
2

1

0 0
4

  

  

wherewe have kept only linear terms on the right-hand side of this equation, since the nonlinear terms are at
least of order derivatives of ^∣ ∣v 2, and hence negligible, in the hydrodynamic limit, relative to the ^∣ ∣v 2 term
explicitly displayed on the left-hand side.

This equation can be solved iteratively for dv in terms of ^v , dr, and its derivatives. To lowest (zeroth) order

in derivatives, d m dr» +
G

v h

v1
0 1

 , wherewe have defined

m = -
G
G

( ). A.131
2

1

Inserting this approximate expression for dv into equation (A.12) everywhere dv appears on the right-hand side
of that equation gives dv tofirst order in derivatives:

d m dr dr
l

dr
l » - + +

G
G

¶ -
G

¶ -
G

+
G

^
^ ^

∣ ∣ · ( )v
v v

h

v

v
v

2
, A.14t

2

0
1

2

0 1
2

5

1

2

1 0 1
 

wherewe have defined

l
s

l
l s

m l l lº
¡ +

-
G
G

+ =
¡ +

+ + +
( ) ( ) ( ) ( )

⎛
⎝⎜

⎞
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v

v v

v

v
2 . A.155

1 0
2

1

0

2

1
2

4

0

1 0
2

1

0
1 1 2 3

(In deriving the second equality in (A.15), we have used the definition (A.8) of l4.)Equation (A.14) coincides
with equation (18) in themain text with

m =
G
G

( )
v

, A.162
2

0 1
2

m
l

= -
G

( ), A.173
5

1

m
l

= -
G

( )A.184
2

1

and expresses the enslaving of dv to the slowmodes dr and v̂ .
Wefinally derive the equations ofmotion for the slowmodes. Inserting the expression (A.7) forU back into

equation (A.2), wefind thatP2 and l2 cancel out of the v equation ofmotion, leaving

l l
s

dr

l d

    



¶ = - - - + ¶ - +

+  + + ¶ + ¶ + +

( · ) (∣ ∣ ) ( ) ( · )

( · ) ( ) ( )
⎡
⎣⎢

⎤
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h

v v
P D

D D
v
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v v v v v v v

v v v v f h
1

2
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t

t

1 3
2

0
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0
1 1

3
2

2
2

0
4



 

This can bemade into an equation ofmotion for ^v involving only ^ ( )tv r, and dr ( )tr, by (i)projecting
(A.19) perpendicular to the direction ofmeanflockmotion e, and (ii) eliminating dvby inserting
equation (A.14) into the equation ofmotion (A.19) for v . Using the expansions (A.5), (A.11) and neglecting
‘irrelevant’ termswe have:

l l dr dr
r

dr

dr dr

dr

 

   



¶ =- ¶ - - ¶ - ¶ -

- + +  + ¶ + ¶

+ ¶ + -^

^ ^ ^ ^ ^ ^ ^ ^

^ ^ ^ ^ ^ ^ ^ ^

^ ^

( · )

( ) ( · )
( )

v g g
c

g D D D g

g h

v v v v v v

v v v

f v , A.20

t

B t t

v

1
0

0 1
0

1 2
0
2

0

3
2

3
2 2

  

 

 

wherewe have defined hv as in themain text, and

l l
º +

G
( )D D

v2
, A.21B 1

0 3
0

2
0

1

º + ( )D D D v , A.223 2 0
2


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2
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5
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Finally, using (A.5), (A.11) and (A.14) in the equation ofmotion (A.1) for ρ gives, again neglecting irrelevant
terms:

dr r dr dr dr dr

r m dr m dr m

 



¶ = - - - ¶ + ¶ + 

+ ¶ + ¶ ¶ - ¶ + ¶

r r
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wherewe have defined:

m rº + ( )v v , A.302 0 1 0

m
r

º ( )
v2

, A.315
0

0

r l
r mº

G
= -r ( )D A.320 5
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1
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and, last but by nomeans least

l r
r mº

G
= -r ( )D . A.33v

2
0

0

1
0 4

The parameter r̂D is actually zero at this point in the calculation, but we have included it in equation (A.29)
anyway, because it is generated by the nonlinear terms under the RenormalizationGroup. Likewise, the
parameter =w 11 , but will change from that value upon renormalization.

The equation ofmotion (A.29) is, as claimed in themain text, exactly the same as that in the absence of the
externalfield h, while the equation ofmotion (A.20) is of the form (22), with

l l dr dr

r
dr dr

dr dr



   

 
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