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Abstract

We summarize properties of the spatial sign covariance matrix and especially consider
the relationship between its eigenvalues and those of the shape matrix of an elliptical
distribution. The explicit relationship known in the bivariate case was used to construct
the spatial sign correlation coefficient, which is a non-parametric and robust estimator
for the correlation coefficient within the elliptical model. We consider a multivariate
generalization, which we call the multivariate spatial sign correlation matrix. A small
simulation study indicates that the new estimator is very efficient under various elliptical
distributions if the dimension is large. We furthermore derive its influence function under
certain conditions which indicates that the multivariate spatial sign correlation becomes
more sensitive to outliers as the dimension increases.
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1. Introduction

Let X1, . . . ,Xn denote a sample of independent p dimensional random variables from a
distribution F and s : Rp → Rp with s(x) = x/|x| for x 6= 0 and s(0) = 0 the spatial sign,
then

Sn(tn,X1, . . . ,Xn) =
1

n

n∑
i=1

s(Xi − tn)s(Xi − tn)T

denotes the empirical spatial sign covariance matrix (SSCM) with location tn. The canonical
choice for the location estimator tn is the spatial median

µn = argmin
µ∈Rp

n∑
i=1

||Xi − µ||.

Besides its nice robustness properties like an asymptotic breakdown-point of 1/2, the spatial
median has (under regularity conditions, see Kemperman 1987) the advantageous feature that
it centres the spatial signs, i.e.,

1

n

n∑
i=1

s(Xi − µn) = 0,
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so that Sn(µn,X1, . . . ,Xn) is indeed the empirical covariance matrix of the spatial signs of
the data. If tn is (strongly) consistent for a location t ∈ R, it was shown in Dürre, Vogel, and
Tyler (2014) that under mild conditions on F the empirical SSCM is a (strongly) consistent
estimator for its population counterpart S(X) = E(s(X − t)s(X − t)T ), for X ∼ F. Results
about S(X) have been derived for continuous elliptical distributions F , i.e. if F possesses a
density of the form

f(x) = det(V )−
1
2 g((x− µ)TV −1(x− µ))

for a location µ ∈ Rp, a symmetric and positive definite shape matrix V ∈ Rp×p and a function
g : [0,∞)→ [0,∞), which is often called the elliptical generator. Prominent members of the
elliptical family are the multivariate normal distribution and elliptical t-distributions (e.g.
Bilodeau and Brenner 1999, p. 208). If second moments exist, then µ is the expectation of
X ∼ F , and V a multiple of its covariance matrix. The shape matrix V is unique only up
to a multiplicative constant. In the following, we consider the trace-normalized shape matrix
V0 = V/tr(V ), which is convenient since S(X) also has trace 1. If F is elliptical, then S(X)
and V share the same eigenvectors and the respective eigenvalues have the same ordering.
For this reason, the SSCM has been proposed for robust principal component analysis (e.g.
Locantore, Marron, Simpson, Tripoli, Zhang, and Cohen 1999; Marden 1999). In the present
article, we study the eigenvalues of the SSCM.

In the following we discuss properties of the SSCM and extend it to correlation estimation. In
Section 2 we summarize results about the eigenvalues of the SSCM and illustrate by means of
two examples how the eigenvalues of the SSCM are connected with those of the shape matrix.
In Section 3 a new estimator for the correlation matrix based on the SSCM is introduced,
which we call the multivariate spatial sign correlation matrix. We describe a fixed-point
algorithm to calculate the estimator numerically. Furthermore we investigate the efficiency of
the spatial sign correlation matrix in a small simulation under different elliptical distributions
and derive its influence function under specific assumptions.

2. Eigenvalues of the SSCM

Let λ1 ≥ . . . ≥ λp ≥ 0 denote the eigenvalues of V0 and δ1 ≥ . . . ≥ δp ≥ 0 those of S(X).
Explicit formulae that relate the δi to the λi are only known for p = 2 (see Vogel, Köllmann,
and Fried 2008; Croux, Dehon, and Yadine 2010), namely

δi =

√
λi√

λ1 +
√
λ2
, i = 1, 2. (1)

Assuming λ2 > 0, we have δ1/δ2 =
√
λ1/λ2 ≤ λ1/λ2, thus the eigenvalues of the SSCM are

closer together than those of the corresponding shape matrix. It is shown in Dürre, Tyler,
and Vogel (2016) that this holds true for arbitrary p > 2,

λi/λj ≥ δi/δj for 1 ≤ i < j ≤ p (2)

as long as λj > 0. There is no explicit map between the eigenvalues known for p > 2. Dürre
et al. (2016) give a representation of δi as one-dimensional integral, which permits fast and
accurate numerical evaluations for arbitrary p,

δi =
λi
2

∫ ∞
0

1

(1 + λix)
∏p
j=1(1 + λjx)

1
2

dx, i = 1, . . . , p. (3)

We use this formula, which is implemented in R (R Core Team 2016) in the package sscor
(Dürre and Vogel 2016b), to get an impression how the eigenvalues of S(X) look like in
comparison to those of V0. We first look at equidistantly spaced eigenvalues

λi =
2(p+ 1− i)
p(p+ 1)

, i = 1, . . . , p,
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Figure 1: Eigenvalues of the SSCM w.r.t. the corresponding eigenvalues of the shape matrix
in the equidistant setting p = 3 (left), p = 11 (centre) and p = 101 (right).

for different p = 3, 11, 101. The magnitude of the eigenvalues necessarily decreases as p
increases, since

∑p
i=1 λi =

∑p
i=1 δi = 1 per definition of V0 and S(X). As one can see in

Figure 1, the eigenvalues of S(X) and V0 approach each other for increasing p. In fact the
maximal absolute difference for p = 101 is roughly 2 · 10−4. In the second scenario, we take
p− 1 equidistantly spaced eigenvalues and one eigenvalue 5 times larger than the rest, i.e.,

λi =


5(p−1)

p((p+1)/2+5)−5 i = 1,

p−i
p((p+1)/2+5)−5 i = 1, . . . , p− 1.

This models the case where the dependence is mainly driven by one principal component. As
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Figure 2: Eigenvalues of the SSCM wrt the corresponding eigenvalues of shape matrix in the
setting of one large eigenvalue for p = 3 (left), p = 11 (centre) and p = 101 (right).

one can see in Figure 2, the distance between the two largest eigenvalues is smaller for S(X)
than for V0. This is not surprising in the light of (2). Thus in general, the eigenvalues of
the SSCM are less separated than those of V0, which is one reason why the use of the SSCM
for robust principal component analysis has been questioned (e.g. Bali, Boente, Tyler, and
Wang 2011; Magyar and Tyler 2014). However, the differences appear to be generally small
in higher dimensions.

3. Estimation of the correlation matrix

In the bivariate case, a robust estimator for the correlation coefficient based on the SSCM
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can be obtained by inverting (1). Let

ρn = v̂12/
√
v̂11v̂22 where Vn = (v̂ij)i,j=1,2 = S2

n,

and Sn is the bivariate SSCM. We call this estimator the spatial sign correlation coefficient.
For more information, see [6]. Under mild regularity assumptions this estimator is consistent
under elliptical distributions and asymptotically normal with variance

ASV(ρn) = (1− ρ2)2 +
1

2
(a+ a−1)(1− ρ2)3/2, (4)

where a =
√
v11/v22 is the ratio of the marginal scales and ρ = v12/

√
v11v22 is the generalized

correlation coefficient, which coincides with the usual moment correlation coefficient if second
moments exists. Equation (4) indicates, that for fixed ρ, the variance of ρn is minimal for
a = 1, but can get arbitrarily large if a tends to infinity or 0.

Therefore a two-step procedure has been proposed, the two-stage spatial sign correlation ρσ,n,
which first margin-wise standardizes the data by a robust scale estimator, e.g., the median
absolute deviation (MAD), and then computes the spatial sign correlation of the standardized
data. Under mild conditions (see Dürre and Vogel 2016a), this two-step procedure yields an
asymptotic variance of

ASV(ρσ,n) = (1− ρ2)2 + (1− ρ2)3/2, (5)

which equals that of ρn for the most favourable case of a = 1. Since (5) only depends on
the parameter ρ, the two-stage spatial sign correlation coefficient is very suitable to construct
robust and non-parametric confidence intervals for the correlation coefficient under ellipticity.
It turns out that these intervals are quite accurate even for rather small sample sizes of n = 10
and in fact more accurate than those based on the sample moment correlation coefficient
(Dürre and Vogel 2016a).

3.1. The multivariate spatial sign correlation matrix

One can construct an estimator of the correlation matrix R by filling the off-diagonal positions
of the matrix estimate with the bivariate spatial sign correlation coefficients of all pairs of
variables. This was proposed in Dürre, Vogel, and Fried (2015). Equation (3) allows an
alternative approach: First standardize the data marginally by a robust scale estimator and
compute the SSCM of the transformed data. Then apply a singular value decomposition

Sn(tn,X1, . . . ,Xn) = Û∆̂ÛT ,

where ∆̂ contains the ordered eigenvalues δ̂1 ≥ . . . ≥ δ̂p. One obtains estimates λ̂1, . . . , λ̂p
by inverting (3). Although theoretical results are yet to be established, we found in our
simulations that the following fix point algorithm

λ̂
(0)
i = δ̂i, i = 1, . . . , p,

λ̃
(k+1)
i = 2δ̂i

(∫ ∞
0

1

(1 + λ̂
(k)
i x)

∏p
j=1(1 + λ̂

(k)
j x)

1
2

dx,

)−1
, i = 1, . . . , p, k = 1, 2, . . .

λ̂
(k+1)
i = λ̃

(k+1)
i

 p∑
j=1

λ̃j
(k+1)

−1 , i = 1, . . . , p, k = 1, 2, . . .

works reliably and converges fast, converging usually within 5 iterations if p is large. Let Λ̂
denote the diagonal matrix containing λ̂1, . . . , λ̂p, then V̂ = Û Λ̂ÛT is a suitable estimator
for the shape of the standardized data and R̂ with ρ̂ij = v̂ij/

√
v̂iiv̂jj an estimator for the

correlation matrix, which we call the multivariate spatial sign correlation matrix. As opposed
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to the pairwise approach, the multivariate spatial sign correlation matrix is positive semi-
definite by construction.

3.2. Simulation under elliptical distributions

By a small simulation study we want to obtain an impression of the efficiency of the multi-
variate spatial sign correlation matrix. We compare the variances of the moment correlation,
the pairwise as well as the multivariate spatial sign correlation under several elliptical distri-
butions: normal, Laplace and t distributions with 5 and 10 degrees of freedom. The latter
three generate heavier tails than the normal distribution. The Laplace distribution is obtained
by the elliptical generator g(x) = cp exp(−

√
|x|/2), where cp is the appropriate integration

constant depending on p (e.g. Bilodeau and Brenner 1999, p. 209).

First we take the identity matrix as shape matrix and compare the variances of an off-diagonal
element of the matrix estimates for different dimensions p = 2, 3, 5, 10, 50 and sample sizes
n = 100, 1000. We use the R packages mvtnorm (Genz, Bretz, Miwa, Mi, Leisch, Scheipl, and
Hothorn 2015) and MNM (Nordhausen and Oja 2011) for the data generation. The results
based on 10000 runs are summarized in Table 1.

Table 1: Simulated variances (multiplied by n) of one off-diagonal element of the correlation
matrix estimate based on the moment correlation (cor), the pairwise spatial sign correlation
(sscor pairwise) and the multivariate spatial sign correlation matrix (sscor multivariate) for
spherical normal (N), t5, t10, and Laplace (L) distribution, several dimensions p and sample
sizes n = 100, 1000.

n 100 1000
p 2 3 5 10 50 2 3 5 10 50

N
cor 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
sscor pairwise 1.9 1.9 1.9 1.9 1.9 2.0 2.0 2.0 2.0 2.0
sscor multivariate 1.9 1.6 1.4 1.2 1.0 2.0 1.7 1.4 1.2 1.0

t10

cor 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.3
sscor pairwise 2.0 1.9 1.9 2.0 1.9 2.0 2.0 2.0 2.0 2.0
sscor multivariate 2.0 1.7 1.3 1.2 1.0 2.0 1.7 1.4 1.2 1.0

t5

cor 2.0 2.1 2.1 2.1 2.1 2.6 2.6 2.6 2.6 2.6
sscor pairwise 2.0 2.0 1.9 2.0 1.9 2.1 2.0 2.0 2.0 2.0
sscor multivariate 2.0 1.7 1.4 1.2 1.1 2.1 1.7 1.4 1.2 1.0

L
cor 1.6 1.5 1.3 1.2 1.1 1.6 1.5 1.3 1.2 1.1
sscor pairwise 1.9 1.9 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0
sscor multivariate 1.9 1.6 1.4 1.2 1.1 2.0 1.7 1.4 1.2 1.1

Except for the moment correlation at the t5 distribution, the results for n = 100 and n = 1000
are very similar. Note that the variance of the moment correlation decreases at the Laplace
distribution as the dimension p increases, but not so for the other distributions considered.
The lower dimensional marginals of the Laplace distribution are, contrary to the normal and
the t-distributions, not within the same distributional class (see Kano 1994), and the kurtosis
of the one-dimensional marginals of the Laplace distribution in fact decreases as p increases.

Equation (5) yields an asymptotic variance of 2 for the pairwise spatial sign correlation matrix
elements regardless of the specific elliptical generator. This can also be observed in the simu-
lation results. The moment correlation is twice as efficient under normality, but it has a higher
variance at heavy tailed distributions. For uncorrelated t5 distributed random variables, the
spatial sign correlation outperforms the moment correlation. Looking at the multivariate
spatial sign correlation, we see a strong increase of efficiency for larger p. For p = 50 the
variance is comparable to that of the moment correlation. Since the asymptotic variance of
the SSCM does not depend on the elliptical generator, this is expected to apply also for the
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multivariate spatial sign correlation, and this claim is confirmed by the simulations. The
multivariate spatial sign correlation is more efficient than the moment correlation even under
slightly heavier tails for moderately large p.

Following a referee’s suggestion, we simulate also from other shape matrices, e.g., the equi-
correlation matrix

V =


1 0.5 . . . 0.5

0.5
. . .

. . .
...

...
. . .

. . . 0.5
0.5 . . . 0.5 1

 .

The results can be found in Table 2. Except for the general smaller asymptotic variances we
get the same picture. The asymptotic variance of the multivariate spatial sign correlation
matrix is shrinking with growing dimension and approaches that of the sample correlation
under normality, albeit more slowly than in the uncorrelated case.

Table 2: Simulated variances (multiplied by n) of one off-diagonal element of the correlation
matrix estimate based on the moment correlation (cor), the pairwise spatial sign correlation
(sscor pairwise) and the multivariate spatial sign correlation matrix (sscor multivariate) for
equi-correlated normal (N), t5, t10, and Laplace (L) distribution, several dimensions p and
sample sizes n = 100, 1000.

n 100 1000
p 2 3 5 10 50 2 3 5 10 50

N
cor 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
sscor pairwise 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
sscor multivariate 1.2 1.0 1.0 0.8 0.8 1.2 1.0 0.9 0.8 0.7

t10

cor 0.8 0.7 0.7 0.8 0.8 0.8 0.7 0.8 0.7 0.8
sscor pairwise 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
sscor multivariate 1.2 1.1 0.9 0.8 0.8 1.2 1.0 0.9 0.8 0.7

t5

cor 1.2 1.2 1.2 1.2 1.2 1.5 1.5 1.5 1.5 1.5
sscor pairwise 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
sscor multivariate 1.2 1.0 0.9 0.8 0.7 1.2 1.0 0.9 0.8 0.8

L
cor 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
sscor pairwise 1.2 1.2 1.2 1.3 1.2 1.2 1.2 1.2 1.2 1.2
sscor multivariate 1.2 1.1 0.9 0.9 0.7 1.2 1.0 0.9 0.8 0.7

An increase of efficiency for larger p is not uncommon for robust scatter estimators. It can
be observed amongst others for M -estimators, the Tyler shape matrix, the MCD, and S-
estimators (see e.g. Croux and Haesbroeck 1999; Taskinen, Croux, Kankainen, Ollila, and
Oja 2006). All of these are affine equivariant estimators, requiring n > p. This restriction is
not necessary for the spatial sign correlation matrix.

3.3. Sensitivity to outliers

One may expect that the efficiency gain for large p is at the expense of robustness. We
therefore investigate the influence function of one off-diagonal element of the multivariate
spatial sign correlation. The influence function is based on the concept that estimators are
functionals working on distributions. In this setting the specific estimate based on a given
dataset equals the functional evaluated at the corresponding empirical distribution. Denote ρ̌
the functional representation of the multivariate spatial sign correlation with matrix-elements
ρ̌i,j , 1 ≤ i < j ≤ p. Then the influence function IF (x, ρ̌i,j , F ) is defined as

IF (x, ρ̌i,j , F ) = lim
ε→0

ρ̌i,j((1− ε)F + ε∆x)− ρ̌i,j(F )

ε
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Figure 3: Partial influence functions of the off-diagonal element of multivariate spatial sign
correlation ρ̌12 for x = (x, y, 0, . . . , 0) under spherical distribution for p = 2 (left), p = 5
(centre) and p = 10 (right).

where ∆x denotes the Dirac measure putting its mass at x. For further explanations and
details about the influence function, see Huber and Ronchetti (2009).
Since we do not have an explicit representation for the estimated eigenvalues λ̂1, . . . , λ̂p, it
seems to be challenging to calculate the influence function for arbitrary F and x. Nevertheless,
we can get results if we restrict ourselves to the case where F is elliptical with shape V = Ip and
x lies in a special hyperplane of Rp. Furthermore we look at the case where the proportions
of the marginal scales are known, respectively the data is not standardized prior to the
computation of the SSCM. The following proposition, the proof of which can be found in the
appendix, states the influence function in the outlined situation.

Proposition 1. Let F be elliptical with shape V = Ip and µ = 0. If we let ρ̌i,j denote the
functional representation of the off-diagonal element of the multivariate spatial sign correlation
without pre-standardization and let x = (x, y, 0, . . . , 0)T with x, y ∈ R, then

IF (x, ρ̌1,2, F ) = (p+ 2)
xy

x2 + y2
. (6)

For p = 2, Proposition 1 is a special case of Proposition 4 in Dürre et al. (2015) which gives
the influence function for arbitrary V . Although Proposition 1 is restricted to the situation
where there is only contamination in the first two components, it provides evidence that the
sensitivity of the multivariate spatial sign correlation increases with increasing dimension.
One can see in Figure 3 respectively formula (6) that the influence functions are proportional
to each other and that |IF (x, ρ̌1,2, F )| increases linearly in p for fixed x = (x, y, 0 . . . , 0). This
result indicates that the multivariate spatial sign correlation is more effected by outliers if p
is large.

4. Conclusion

We have discussed properties of the spatial sign covariance matrix, in particular those concern-
ing its eigenvalues under elliptical distributions. We expand on the eigenvalue representation
as one-dimensional integrals given in Dürre et al. (2016). First we use it to investigate the
function mapping the eigenvalues of the shape matrix onto the ones of the spatial sign covari-
ance. The eigenvalues of the spatial sign covariance matrix are closer together than the ones
of the shape matrix on a logarithmic scale, see Dürre et al. (2016). Two examples suggest
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that this behaviour diminishes as the dimension increases. One may suspect that the map
between the eigenvalues of the spatial sign covariance matrix and the shape matrix converges
towards the identity modulo a multiplicative constant as the dimension tends to infinity.
Our second application of the integral representation is the construction of the multivariate
spatial sign correlation matrix. By a fixed-point algorithm one can invert the map between the
eigenvalues of the shape and the spatial sign covariance matrix and, based on this, estimate
the correlation matrix of an elliptical distributed random vector. We found the fixed-point
algorithm to work reliably and fast for various shape matrices and dimensions. Simulations
show that the resulting estimator is highly efficient in larger dimensions. Its asymptotic vari-
ance appears to approach that of the sample correlation under normality as the dimension is
growing. Asymptotics confirming the simulation results are of great interest. The calculated
partial influence function indicates that the efficiency gain of the spatial sign correlation ma-
trix is at the cost of robustness. So the estimator does not seem to be very robust in the case
of very high dimensions, but is nevertheless very efficient under heavy-tailed distributions.
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Appendix

Proof of Proposition 1: Let denote Š the functional representation of the spatial sign covari-

ance matrix Š(F ) = EF

(
XXT

XTX

)
where X has distribution F. Since Š((1 − ε)F + ε∆x) =

(1 − ε)Ip + εxxT is a block diagonal matrix, we get the following eigenvalue decomposition
Š((1− ε)F + εxxT ) = Uxy∆εU

T
xy where

Ux,y =



x√
x2+y2

y√
x2+y2

0 . . . 0

y√
x2+y2

−x√
x2+y2

0 . . . 0

0 0 1 0
. . .

0 0 0 1


and ∆ε =



1+(p−1)ε
p 0 0 . . . 0

0 1−ε
p 0 . . . 0

0 0 1−ε
p 0

. . .

0 0 0 1−ε
p

 .

We need to know how the perturbation of the eigenvalues of the SSCM translates into the
eigenvalues of the shape matrix. The function Φ : Rp → Rp which maps the eigenvalues
of the shape to the eigenvalues of the SSCM is injective (see Proposition 1 in Dürre et al.
2016). Therefore the shape matrix related to ∆ε contains only two distinct eigenvalues: λ1
and λ2 = . . . = λp. We can simplify the situation even further since the eigenvalues are not
uniquely defined and standardize them such that λ2 = . . . , λp = 1. On the other hand we have∑p

i=1 δi = 1 and therefore δi = 1−δ1
p−1 , i = 2, . . . , p. Consequently in this case the connection

between the eigenvalues can be expressed by the one-dimensional function f : [0, 1]→ [0,∞)
which maps the first eigenvalue of ∆ε to the first of the shape matrix.
Let γ : Rp×p → [−1, 1] denote the function which computes the correlation coefficient between
the first and second component given the shape matrix: γ(A) = a12√

a11a22
and denote further

k(ε) = 1+(p−1)ε
p , then straightforward calculations yields,

lim
ε→0

ρ̌i,j((1− ε)F + ε∆x)− ρ̌i,j(F )

ε
= lim

ε→0

γ
(
Uxyf

(
1+(p−1)ε

p

)
UTxy

)
ε

= lim
ε→0

1

ε

(f [k(ε)]− 1)xy√
y2 + f [k(ε)]x2

√
x2 + f [k(ε)]y2

=:
∂

∂ε
h(f [k(ε)])

∣∣∣∣
ε=0

.



Austrian Journal of Statistics 21

By the chain rule we get:

∂

∂ε
h(f [k(ε)])

∣∣∣∣
ε=0

=
∂

∂ε
h(x)

∣∣∣∣
x=1

· ∂
∂y
f(y)

∣∣∣∣
y=1/p

· ∂
∂ε
k(ε)

∣∣∣∣
ε=0

.

Whereas differentiation of h and k is straightforward, we do not have an explicit representation
of f. Since we only need its derivative, we can apply the inverse function theorem. Using (3)
and Leibniz’s rule we arrive at

∂

∂x
f(x)

∣∣∣∣
x=1/p

=
1

∂
∂xf

−1(x)|x=1

= 1/

(
1

2

∫ ∞
0

1

(1 + z)
p
2
+1
dz − 3

4

∫ ∞
0

z

(1 + z)
p
2
+2
dz

)
=:

1

A1 +A2
.

For A1 and A2 we can apply formula 3.193-3 in Gradshteyn and Ryzhik (2000):∫ ∞
0

xµ−1dx

(1 + βx)ν
dx = B(µ, ν − µ) for ν > µ > 0

where B denotes the beta function. Setting β = 1, µ = 1 and ν = p/2 + 1 for A1 respectively
µ = 2 and ν = p/2 + 2 for A2 and using the relationship between beta and gamma function
we arrive at A1 = 1

p and A2 = 3
2p(p/2+1) . Straightforward term manipulations yield the stated

formula (6).
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