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Abstract—Securing provenance has recently become an im-
portant research topic, resulting in a number of models for
protecting access to provenance. Existing work has focused on
graph transformation mechanisms that supply a user with a
provenance view that satisfies both access control policies and
validity constraints of provenance. However, it is not always
possible to satisfy both of them simultaneously, because these
two conditions are often inconsistent which require sophisticated
conflict resolution strategies to be put in place. In this paper we
develop a new access control model tailored for provenance. In
particular, we explicitly take into account validity constraints of
provenance when specifying certain parts of provenance to which
access is restricted. Hence, a provenance view that is granted to a
user by our authorisation mechanism would automatically satisfy
the validity constraints. Moreover, we propose algorithms that
allow provenance owners to deploy fine-grained access control
for their provenance data.

I. INTRODUCTION

In computer systems, provenance of data is information
about the origin, derivation, or history of the data, which
can be used to make informed judgements about quality and
authenticity of the data. The ability to record and exploit
provenance has now emerged as an important requirement in
a variety of systems such as databases, scientific workflow
and cloud-based storage. Rather than defining provenance
individually for each type of system, there have been efforts to
standardise a common data model [11], [13] for representing
and exchanging provenance. Typically, such a model can be
represented as a graph which captures causal dependencies be-
tween different types of entities. Examples of an entity include
a file in a file system, or a (computational) process. Thus we
use the term of provenance graph to refer to provenance that
is expressed according to a particular data model.

It has been recognised that security is a critical factor
in the wide adoption of provenance technologies [8]. Like
any data produced or consumed by computer systems, some
parts of a provenance graph may be sensitive, and will need
to be protected against unauthorised access. Simply omitting
sensitive elements may break the casual dependencies among
entities in the provenance graph. As a result, a user who
views the graph may not be able to certify the origins of
the data item. This suggests that any generated view of a
provenance graph that satisfies security policies may need to
be repaired, in order to preserve its validity in the sense that
no false (in)dependencies arise. On the other hand, changing
provenance views to preserve validity may lead to security
policies not being properly enforced.

Existing research has focused on how to transform a prove-
nance graph into a view that satisfies both security policies
and validity constraints, which is referred to as the problem
of provenance sanitization [5]. Cheney and Perera [5] review
recent work on provenance sanitization and conclude that
current methods are immature in several aspects including
semantics, formal guarantees, and techniques for detecting and
resolving conflicting policies. We believe that some of the
problems in existing work arise from the fact that satisfying
security policies and validity constraints are treated as two
separate conditions to be met. This means that it is not
clear how to satisfy both conditions in a balanced way. For
example, Missier et al. [12] have put great effort on developing
a grouping operator that enables a provenance graph to be
transformed into a valid view, given a set of vertices that
is required to be removed. However, the grouping operator
often results in a view which does not satisfy strict security
policies defined based on the Bell–LaPadula model. As another
example, the work of Dey et al. [7] requires a provenance
owner to reconcile conflicts that can occur between her secu-
rity requirements and the need to satisfy validity constraints.
While the rule-based approach they employed can successfully
resolve these conflicts, we believe that this is not necessary if
security policies can be designed taking into account validity
constraints.

In this paper we propose an authorisation model for con-
trolling access to provenance graphs. Our model is based on
the observation that an object within a provenance graph that
is to be protected should be a contractable subgraph in the
sense that contracting this subgraph would result in a valid
provenance graph. This means that, if we wish to deny access
to a particular object, we can simply supply an authorised
user with a view in which the object is contracted. Unlike
other approaches, we allow validity constraints associated with
the graph to be explicitly considered when specifying certain
regions of the graph to which access is restricted. We then
divide the whole provenance graph into a set of protection
objects that has a particular hierarchical structure for imple-
menting conflict-free access control policies. Specifically, we
present an algorithm that enables a provenance owner to create
such a hierarchy of objects, and to assign authorised roles to
each of these objects. As a result, our approach enables a
provenance owner to deploy fine-grained access control for
her provenance graph, and the effort required in specifying
policies is minimised.



Prior to presenting our model, we introduce some pre-
requisite concepts from graph theory, and define the open
provenance model.

II. BACKGROUND

A. Definitions and Notation
A directed graph (or digraph) is a pair G = 〈V,E〉, where

V is a non-empty set of elements called vertices, and E ⊆
V ×V is a collection of ordered pairs of vertices called edges.
If e = 〈v, w〉 is an edge of G, then vertices v and w are called
end-vertices of e, and e is said to join v to w. We also say
that e is incident from v and incident to w. For convenience,
we will denote edge 〈v, w〉 by vw. A path is a sequence of
edges v1v2, v2v3, . . . , vk−1vk. A path is a cycle if it starts and
ends in the same vertex. In this paper we will be concerned
with digraphs containing no cycles: namely, directed acyclic
graphs (DAGs).

If uv and vw are two edges of G, we say that u is an in-
neighbour of v, and w is an out-neighbour of v. We write
N i

G(v) = {u ∈ V | uv ∈ E} to denote the set of vertices that
are in-neighbours of v in the graph G. Similarly, No

G(v) =
{w ∈ V | vw ∈ E} denotes the set of vertices that are out-
neighbours of v in the graph G.

Let G = 〈V,E〉 be a digraph. We say G′ = 〈V ′, E′〉 is a
subgraph of G if V ′ ⊆ V and E′ ⊆ E. If G′ contains all
edges of G that have end-vertices in V ′, then G′ is said to
be the subgraph induced by V ′. In this case we also say that
G′ is an induced subgraph of G and is denoted by G[V ′].
Let G = 〈V,E〉 be a digraph, and let e = vw ∈ E. The
contraction of edge e in G is a process that removes e and
merges its end-vertices vw into a new vertex u in such a way
that u is an end-vertex of all those edges which were originally
incident to v or incident from w. We write G/e to denote a
graph that is obtained by contracting an edge e in G. Let
G′ = 〈V ′, E′〉 be a subgraph of G. The contraction of G′

in G is essentially a process that obtains a graph from G by
contracting all edges in E′, and is denoted by G/G′.

Let L be a set of labels. A labelled digraph is a pair Gl =
〈V,El〉, where El ⊆ V ×V ×L is a set of labelled edges. We
will omit the subscript l when it is obvious from context.

B. The Open Provenance Model
There have been many efforts to define a data model for

provenance, aiming to support inter-operable interchange of
provenance information in heterogeneous environments. The
Open Provenance Model (OPM) [13] is one of the results of
these efforts, which then served as a basis for the specification
of the W3C PROV Data Model [11]. In this paper we have
adopted OPM as the basis upon which our security model
is built, because it provides core features for representing
provenance that other models, such as PROV, inherit. Also,
there exist a variety of systems that have implemented OPM.
We now introduce core elements of OPM using a graph-based
formulation.

Definition 1. OPM is comprised of three types of entities T :
agent (ag), process (p) and artifact (a), three relationship

labels L: used, wasGeneratedBy (wgb) and wasControlledBy
(wcb), and a labelled DAG G = 〈T,E〉, where E =
{(p, a, used), (a, p,wgb), (p, ag ,wcb)}.

Intuitively, an edge (p, ag ,wcb) ∈ E means that process
p was controlled by agent ag , an edge (a, p,wgb) ∈ E
means that artifact a was generated by process p, and an
edge (p, a, used) ∈ E means that artifact a was used by
process p, also written as p used a. Figure 1a shows the core
structures of OPM, depicting the types of entities and their
relationships that the OPM graph can support. Note that two
additional dashed edges labelled with wasDerivedFrom and
wasTriggeredBy respectively represent inference rules defined
in OPM, which are not considered in the construction of our
security model, and are omitted henceforth.

Definition 2. Given the OPM 〈T, L,G〉, an OPM instance is
defined by a provenance graph Gi = 〈Vi, Ei〉, where Vi is
a set of entities and Ei ⊆ Vi × Vi × L. Let τ : Vi → T
be a function that maps an entity to its type, we say Gi is
valid if for each entity v ∈ Vi, τ(v) ∈ T , and for each edge
(v, v′, l) ∈ Ei, (τ(v), τ(v′), l) ∈ E.

Figure 1b shows an example of a valid provenance graph
which will be used as the basis for all further examples in
this paper. Note that this is a simplified version of provenance
graphs in which vertices ag and edges wcb are excluded. We
refer to it as a simple provenance graph, and denote it by
Gs

i . We write Gc
i to denote a complete provenance graph that

includes all the core elements of OPM as defined above. We
will omit the subscript i when it is obvious from context. In
the next section we start by introducing our security model on
the basis of Gs, and then discuss how our approach can be
easily extended to support Gc in Section IV.

III. AN ACCESS CONTROL MODEL

A. Protection Objects

As in classical access control, we define a protection object
(or simply object) to be data for which an access control
policy is specified. In a provenance graph, objects can be
parts of the graph that satisfy an important property in terms
of authorisation: a view of the provenance graph that a user
is authorised to view has to be valid. This means that we
need to transform the graph to obtain a valid view in which
those regions of the graph that the user is denied access to
are hidden. One extreme case that satisfies this property is
to define each vertex of the graph as an object, which can be
simply replaced by a new vertex of the same type when access
control policies are enforced. While this provides fine-grained
access control, it is unlikely that managing access control for
every single vertex of a graph is a feasible solution, given that
the number of vertices in a provenance graph is likely to be
very large. In general, however, we would like to consider an
object to be a subgraph whose edge set is not an empty set,
and these objects are the focus of this paper.

Given a subgraph G′ of a provenance graph G, we use
the contraction of G′ in G as a way to hide the graph G′ in
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Figure 1. OPM and provenance graph

G. It is important to note that the type of a new vertex that
replaces the contracted graph G′ cannot be artifact, because
there must exist some vertex p in G′ with edge (p, ag ,wcb),
then contracting G′ into a vertex a of type artifact gives rise to
an edge (a, ag ,wcb) which is not valid with respect to OPM.
Thus, unless otherwise stated, the contraction of G′ always
results in a new vertex of type process.

Definition 3. Let Gs = 〈V,E〉 be a provenance graph, and
let G′ = 〈V ′, E′〉 be a subgraph of Gs. We say G′ is an object
of Gs if both G′ and a graph obtained by contracting G′ in
Gs are valid provenance graphs.

Figure 2 illustrates three possible objects that can be identi-
fied within the provenance graph shown in Figure 1b. Given a
provenance graph, we need to consider an appropriate choice
of objects with respect to the specification of access control
policies. At first sight, it seems reasonable that there should
be no partial overlap between different protection objects.
Consider two objects o1 and o2 shown in Figure 2a and
Figure 2b that share a common process vertex p5. Suppose
that objects o1 and o2 are associated with a set of authorised
users U1 and U2 respectively, where U1∩U2 = ∅. When a user
u ∈ U1 requests to access object o1, it is not clear whether to
return o1 with vertex p5 included, since u is denied access to o2
that contains vertex p5. A conflict resolution strategy such as
DenyOverride or AllowOverride can be put in place to resolve
this situation. However, given a large provenance graph, it is
not practical to define objects with such overlapping structure,
because this requires considerable effort in policy design.

There is one situation where overlapping objects would be
reasonable; that is, when one object is completely contained
within the other. In this case, objects that have a hierarchical
structure can be used to organise authorisation into a hierar-
chy, thereby providing fine-grained access control. Taking an
example in Figure 2, we could grant a user u access to object
o3 but deny access to object o1. In other words, u would only
be able to access the graph o3/o1 where o1 is contracted.
While this achieves the same effect as defining two partially

overlapping objects o1 and o2 with the DenyOverride strategy
being employed, it requires less effort to define objects in
general.

Definition 4. Let Gs = 〈V,E〉 be a provenance graph. We
say H = {H1, . . . ,Hn}, where Hi is an object of Gs, is
a protection partition of Gs if Gs =

⋃n
i=1Hi, and for all

Hi, Hj ∈ H, one of the following conditions holds: (i) Hi ∩
Hj = ∅, (ii) Hi ⊆ Hj , (iii) Hj ⊆ Hi.

In other words, given a provenance graph Gs, a protection
partition H of Gs consists of a set of objects, where every pair
of objects has no intersection or one is completely contained
in the other. Clearly, H = {Gs} is a trivial set of objects.
Note that the set of objects H is partially ordered by subset
inclusion, denoted by 〈H,⊆〉. Given a provenance graph Gs,
there may exist many possible protection partitions of Gs.
Ideally, we wish to create the most appropriate protection
partition automatically, which depends on the semantics of
the underlying system and its authorisation requirements.
Undoubtedly, this is a hard problem to solve in a general way,
and will be the subject of future work when provenance graphs
are represented using RDF. Instead, in the next section we
introduce an approach that operates directly on the provenance
graphs and allows a provenance owner to define a protection
partition at her discretion.

B. Constructing a Protection Partition
Given a provenance graph Gs, we first look at how to

identify the smallest objects of Gs that are to be subject to
access restrictions. If G is a smallest object, then any graph
G′ that is a subgraph of G is not an object, which implies that
a graph obtained by contracting G′ from Gs is not valid. For
example, in Figure 2, o1 and o2 are the two smallest objects
of the provenance graph shown in Figure 1b.

We propose an algorithm (Figure 3) that is able to find a
smallest object, given a provenance graph Gs and a vertex a
of type artifact, denoted by SmiObj(G, a). The vertex a is
used to identify those regions of Gs where the object lies. In
order to find an induced subgraph of Gs, Algorithm SmiObj
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Figure 2. Examples of protection objects for the OPM graph in Figure 1b

Require: A provenance graph Gs, an artifact vertex a
Ensure: An induced subgraph G of Gs

1: initialise an empty queue Q
2: initialise an empty set V and an empty set E
3: insert a in Q
4: while Q is not empty do
5: remove a from the top of Q into V
6: initialise an empty set A and an empty set A′

7: for all p ∈ N i
Gs(a) \ V do

8: insert p in V
9: insert pa in E

10: insert No
Gs(p) \ {a} in A

11: end for
12: for all p ∈ No

Gs(a) \ V do
13: insert p in V
14: insert ap in E
15: insert N i

Gs(p) \ {a} in A′

16: end for
17: if A ∩A′ 6= ∅ then
18: insert all a ∈ A ∩A′ into Q
19: end if
20: end while
21: return G = 〈V,E〉

Figure 3. SmiObj: Finding a smallest object

works by storing all the vertices that are the out-neighbours
and in-neighbours of a and all the associated edges (lines 7-
16). The algorithm then repeats the process with a new artifact
vertex a′ that shares both its out-neighbours and in-neighbours
with the last artifact vertex a being examined (lines 17-18),
until all such artifact vertices are discovered. This algorithm
is essentially a simple modification of a breadth-first search.

Theorem 1. Given a valid provenance graph Gs and an
artifact vertex a in Gs, graph G obtained from the algorithm
SmiObj(Gs, a) is a smallest object.

Proof: We first prove that G is an object. Suppose, for
contradiction, that G is not an object. Then, by Definition 3,
Gs/G must not be valid since G is valid due to being a
subgraph of valid Gs. This means that there exists an edge
pp′ or p′p in Gs/G, where p′ is a process vertex into which

G is contracted. But this is not true since vertex p has been
included in G when SmiObj(Gs, a) executed. Hence G is an
object as required.

We now prove that G is a smallest object. Suppose, for
contradiction, G is not smallest but is an object as we proved
above. Then there must exist a subgraph G′ ⊂ G that is a
smallest object. By Definition 3, G/G′ is valid since both G
and G′ are objects. Since G′ ⊂ G, if there exists an artifact
vertex a in G, which is not in G′. Then there must exist process
vertices p and p′ in G′ such that pa and ap′ in G. Hence G/G′

results in a cycle p′′a and ap′′ that contradicts G/G′ being
valid, where p′′ is a vertex that replaces G′. Similarly, we can
show G/G′ is not valid when G contains a process node p or
an edge pa or ap that is not in G′. Thus G′ is not an object
and so G must be the smallest object.

Having introduced the method of computing a smallest
object, we are now in a position to explore how to make a
provenance owner create a hierarchical structure of objects.
We assume that each provenance graph Gs is owned by a user
w. Our basic strategy for w to create a protection partition of
Gs is to apply the SmiObj algorithm iteratively. It means that
w only needs to choose one vertex a from Gs when generating
a particular object o. Then w repeats the same process for a
contracted graph Gs/o, terminating when the whole graph Gs

is reduced to an artifact vertex. The procedure is illustrated in
Figure 4 for the provenance graph Gs shown in Figure 1b. The
figures shows a sequence of valid provenance graphs, each of
which is derived by contracting a smallest object (w defines)
in the preceding one.

As a general approach, w should be free to choose an
artifact vertex in computing a smallest object in each iteration.
However, we propose an approach that seeks to identify as
many disjoint smallest objects as possible. For example, in
Figure 4a, our approach would suggest w to choose either a2
or a5 in generating a smallest object o2 that does not contain
vertex po1 . This approach provides w with a way to identify
different possible domains to which different access control
policies may be specified. It is easy to see that each vertex
o in Figure 4 essentially represents a smallest object. We can
construct a directed rooted tree T = 〈O,E〉 in which O are
these smallest objects and edges E reflect the containment
relation between objects. That is, (o, o′) ∈ E if and only if
po′ is a vertex in o. For example, Figure 4e shows a rooted
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Figure 4. Constructing a hierarchical structure of smallest objects from the provenance graph in Figure 1b

tree of smallest objects that are generated from the procedure
shown in Figures 4a–4d.

In order to provide fine-grained access control, our approach
makes the owner w at each iteration define an object which
is a smallest subgraph satisfying the validity property. One
may argue that it would be more suitable for w to define
objects of arbitrary size. For example, w may wish to choose
an object o3 in Figure 2c as a smallest unit to which access
is restricted, rather than its subgraph o1 or o2 in Figure 2.
To accommodate this, we can make a slight modification of
our SmiObj algorithm to take a set of artifact vertices as input
and output an object that contains these vertices. For example,
with input of {a1, a2} chosen by w, algorithm SmiObj may
compute o1 and o2 based on a1 and a2 respectively, and then
return o3 by taking union of o1 and o2.

C. Access Control Policies

In this section we explore how to specify and enforce access
control policies for the objects we have defined. We assume
the existence of a set of roles R. Users are assigned to roles
using a binary relation UR ⊆ U × R, where U denotes a
set of users. When an owner w defines an object following
the procedure described above, we allow w to define a set of
roles R′ ⊆ R who are authorised to read the object1. This
essentially gives rise to a labelled rooted tree in which each
smallest object o is associated with an access control list of
the form o← r1∨ · · ·∨ rn, where ri ∈ R. Informally, this list
can be interpreted as: any user who is assigned to one of the
roles r1,. . . ,rn is authorised to read object o.

In order to evaluate access requests in an efficient manner,
however, we need to transform these access control lists into

1Since we are only concerned with confidentiality of provenance graphs in
this paper, we restrict the access mode to read.

role-centric policies, sometimes known as capability lists. Let
us consider a system in which there are four roles r1, r2, r3, r4,
and owner w defines a rooted tree of objects as shown in
Figure 4e with its access control lists enumerated at the left
column of Table I. We can see that r3 is authorised to read two
isolated objects o1 and o3, and o3 contains a process vertex po2
that hides away object o2 which r3 is not authorised to read.
However, objects o2 and o3 which r1 is authorised to read
should not be isolated. Instead, they need to be merged into
a single graph by replacing vertex po2 in o3 with object o2.
The merging process is essentially the reverse of contracting
o2. We write o3; o2 to denote the graph that is obtained by
this process. Clearly, by Definition 3, o3; o2 is an object. Our
role-centric access control policies can, therefore, be formed
in two steps:

• Transform owner-created object-centric lists into role-
centric policies each of which has the form of r ←
o1 ∨ · · · ∨ on, where r ∈ R. It means that role r is
authorised for the objects o1, . . . , on.

• For each policy r ← o1 ∨ · · · ∨ on, if there exists a
path oh, oi, . . . , ok, where h, i, . . . , k ∈ [1, n], in the
rooted tree, we merge these objects into a single object
oh; oi; . . . ; ok, and refine the policy with respect to the
new object as r ← o1 ∨ · · · ∨ oh; vi . . . ; ok ∨ · · · ∨ on.

For example, the right column of Table I shows role-centric
policies that are derived from the object-centric policies in the
left column.

One may argue that our approach creates a false indepen-
dency by separating two objects o4; o1 and o2 for role r2.
Obviously, in this case, we could make them a single object
by creating an wgb edge that joins a1 to p5 and removing edge
(a1, po3 ,wgb). However, in general, it may not be appropriate
to join two objects o and o′ together if there is no direct



Table I
ACCESS CONTROL POLICIES

Object-centric policies Role-centric policies
o1 ← r2 ∨ r3 ∨ r4 r1 ← o3; o2

o2 ← r1 ∨ r2 r2 ← o4; o1 ∨ o2

o3 ← r1 ∨ r3 r3 ← o1 ∨ o3

o4 ← r2 ∨ r4 r4 ← o4; o1

dependency between o and o′ in the original graph (that
is, there does not exist an edge that joins a vertex in o to
another vertex in o′). Alternatively, we can dynamically adjust
a number of roles available at each iteration based on the roles
that have been allocated to objects in preceding iterations. For
example, if r2 was assigned to o2 but not o3, then r2 becomes
unavailable for assignment to o4. While this approach prevents
false independencies from arising, it imposes a constraint on
the assignment of roles to objects. The investigation of this is
an issue for future research.

With role-centric policies in place, checking access requests
is straightforward. We employ the notion of session defined
in RBAC96 [15], but we impose the restriction that only one
role to which u is assigned can be activated in a session. This
is a well-known practice reflected in most RBAC systems to
enforce the least privilege principle [9]. Formally, a user u
may activate a role r in a session s if there exists r ∈ R such
that (u, r) ∈ UR. We then model an access request as a pair
〈r,Gs〉 representing an attempt by user u activating role r to
read provenance graph Gs. Given such a request, the access
control mechanism would locate the policy r ← o1 ∨ · · · ∨ on
and returns a set of objects {o1, . . . , on} that u is authorised
to view. Of course, if u requests to read a graph G that is
a subgraph of Gs, then the mechanism would return a set of
objects O such that for all o ∈ O, o ⊆ G

IV. EXTENSION TO A COMPLETE PROVENANCE GRAPH

In this section we explore how our approach can be ex-
tended to deal with a complete provenance graph, particularly
focusing on how a provenance owner can define a hierarchical
structure of objects. Note that, in a complete provenance graph,
an agent is only associated with vertices of type process via the
wcb relations. This indicates that a simple provenance graph
can be viewed as an inner layer of the complete one. As an
illustration, Figure 5a shows a complete provenance graph in
which the simple graph is marked with solid lines, whereas
agents and wcb relations are shown as dotted lines.

There are three forms of object we may define in a complete
provenance graph Gc. We may define an object to be an edge
e = (p, ag ,wcb), because contracting e into a process vertex
p′ results in a valid graph Gc/e. Secondly, as we did in the
previous section, an object can be a subgraph of its inner
simple graph. A graph obtained by contracting such a subgraph
in Gc remains valid. The third form of object is a kind of
combination of these consisting of all three types of entities
and relations of OPM. Again, this form of object is required to
be contracted into a process vertex in order to make sure that

Require: A provenance graph Gc, an artifact vertex a, a set
of agent vertices Ag

Ensure: An induced subgraph G of Gc

1: initialise an empty set V and an empty set E
2: if Ag = ∅ and a 6= null then
3: return G = SmiObj(Gc, a)
4: else if Ag 6= ∅ and a = null then
5: for all ag ∈ Ag do
6: if N i

Gc(ag) is a singleton {p} then
7: insert ag in V
8: insert pag in E
9: end if

10: end for
11: return G = 〈V,E〉
12: else if Ag 6= ∅ and a 6= null then
13: let G′ = 〈V ′, E′〉 = SmiObj(Gc, a)
14: initialise a set Q = {v ∈ V ′ | τ(v) = process}
15: for all ag ∈ Ag do
16: if N i

Gc(ag) ⊆ Q then
17: add ag in V
18: add pag in E for all p ∈ N i

Gc(ag)
19: end if
20: end for
21: return G = 〈V ∪ V ′, E ∪ E′〉
22: else
23: return “invalid input!”
24: end if

Figure 6. Obj: Defining an object

the resulting graph is valid. Our aim here is to enable owner
w, at each time, to define an object that can be in any of the
three forms, in order to support fine-grained access control. As
an illustration, w may have a requirement that user u who can
read agent ag vertex should not be able to view artifact vertices
that were generated with ag involved. This requirements leads
w to define two objects of two different forms: one as edge
(p, ag ,wcb), and the other one as a simple graph that contains
the artifact vertices.

We propose an algorithm Obj (shown in Figure 6) to com-
pute a smallest object for each of the three forms. Specifically,
the particular form of object being generated depends on what
kind of input owner w gives to the Obj algorithm. If Obj
takes input Gc and artifact vertex a, then it returns a graph
that is computed by invoking the SmiObj algorithm (lines 2-
3). For example, in Figure 5b, process vertex po1 abstracts
object o1 (from Gc in Figure 5a) that is output by SmiObj
with input a3 or a4. If w provides Gc and agents Ag as input,
Obj returns a graph that only includes those ag ∈ Ag which
have wcb relation with only one process vertex p, and its
associated edge (p, ag ,wcb) (lines 4-11). This is because a
graph G that contains edges having a common end-vertex ag
may not be an object. Consider the example of Figure 5a, if
u selects {ag2, ag5} as input to Obj, then it returns an object
o2 (illustrated as po2 in Figure 5b) that only includes edge
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Figure 5. Complete provenance graphs

(p3, ag2,wcb), since ag5 has two in-neighbours p6 and p8.
When Obj encounters input for all the parameters: Gc, a and
Ag , it first constructs a graph G′ based on SmiObj(Gc, a),
and then checks whether any of its input ag ∈ Ag has in-
neighbours who are not in G′. If this is the case, such an
ag and its associated edges are not included in the graph
being returned (lines 12-21). Again, take the example of Gc

in Figure 5a, if Obj runs on input a5 and {ag4, ag5}, then
it outputs an object o3 that is contracted into process vertex
po3 in Figure 5b. However, if w inputs a1 and {ag1}, then
the graph generated by Obj will not include vertex ag1 and
edge (p1, ag1,wcb), otherwise the graph is not an object, as
contracting the graph into process vertex po in Gc results in
an invalid edge (p2, po,wcb).

Note that the Obj algorithm reuses SmiObj to ensure that
each object computed is the smallest at its own form. This
suggests that owner w is capable of partitioning the complete
graph into very fine-grained objects by using our approach.
Similarly, we allows w to assign different roles to each object
in order to form role-centric policies for evaluating access
requests.

V. RELATED WORK

Provenance sanitization that refers to the problem of con-
trolling access to provenance graphs while preserving validity
constraints is a relevantly new topic, sometimes under other
names such as provenance abstraction [12] or provenance
redaction [3]. Our work takes inspiration from a survey paper
by Cheney and Perera [5], which examines seven approaches
to provenance sanitization, and points out shortcomings of
these approaches. We will now examine two existing ap-
proaches that are closest to ours, and discuss the merits of
our approach. For a full review we refer the interested reader
to the survey paper.

Missier et al. [12] propose provenance abstraction policies
based on the simple security property of the Bell-LaPadula

model [2], which requires that every vertex of a provenance
graph is associated with a sensitivity value, and every user
is assigned a clearance level. Hence, when a user requests
to view the provenance graph, those vertices V of the graph
whose sensitivity values are higher than the clearance level of
the user need to be abstracted. The authors introduced a graph
transformation operator Group which takes the original graph
and vertices V as input, and output a modified graph that the
user is authorised to view. In order to preserve validity, the
Group operator often abstracts away (in addition to V ) some
parts of graph that should be visible to the requester according
to the security property. In other words, the policy model they
proposed is not compatible with the mechanism for performing
abstractions over provenance graphs. In contrast, we provide
a coherent model for addressing the problem of provenance
abstraction.

The work of Cadenhead et al. [3] is also based on graph
writing techniques to define provenance redaction policies.
Specifically, regular expressions are used to identify a sensitive
region G of a provenance graph that needs to be transformed
according to redaction policies. A redaction policy consists of
two components: a production rule of the form r : L → R,
where L is a subgraph of G that will be replaced by R, and
an embedding mechanism that specifies how the rest of graph
G\L should be connected to R. This approach is not without
its problems. Firstly, there is no guarantee that the transformed
graphs would always preserve validity constraints with respect
to OPM. Moreover, as the authors themselves point out, there
inevitably exist conflicting redaction policies in their model,
but it is not clear how these conflicts are to be detected and
resolved. In contrast, our approach identifies a hierarchical
structure of provenance objects that not only provides fine-
grained access control and formal guarantees of validity, but
also yields conflict-free policies to be enforced.

In addition to the work on provenance sanitization, there is
a significant literature on the relationship between security and



provenance. Martin et al. [10] discuss how provenance can be
regarded as a security measure, playing a role in the protection
of data integrity and confidentiality. Along this line, Park et
al. [14] propose a provenance-based access control model in
which authorisation decisions are made based on the analysis
of provenance pertaining to entities appearing in an access
request. Cheney [4] offers a formal model for provenance in
which security properties such as disclosure and obfuscation
are defined, and the complexity of enforcing these policies are
explored.

Our idea is to partition a provenance graph into a hierar-
chical structure (a rooted tree) of protection objects, which
is essentially the structure of XML documents. This means
that existing work on access control models and enforcement
mechanisms for XML documents may be applied into our
context. For example, we require additional resources to store
and maintain hierarchical objects in order to efficiently enforce
access control policies associated with these objects. The work
of using cryptographic techniques [1], [6] and the dynamic
view management scheme [16] to enforce policies for XML
documents is complementary to ours in this regard.

VI. CONCLUSION

In this paper we have introduced a new owner-based access
control model for protecting access to provenance graphs.
To our knowledge, this is the first model to define protected
objects within a OPM-style provenance graph by taking into
account validity constraints of the graph. We proposed an
algorithm that enables a provenance owner to define a set of
objects that forms a nested partition of a simple provenance
graph, and to specify role-based policies for restricting access
to each of these objects. We then extended our approach
in a natural way to a complete graph that includes all the
core components of OPM. In particular, we exploited the
unidirectional causality relationship between agent and process
vertices to enable the owner to divide the complete graph
into very fine-grained objects. We believe that our approach
provides a simple and lightweight access control mechanism
for provenance graphs, and also inter-operates well with other
hierarchical access control frameworks.

Nevertheless, a considerable amount of research needs to be
done. Of immediate interest is the development of a prototype
implementation of our authorisation model for OPM, and
assessment of feasibility of our approach in a food traceability
project in which we are involved. On a more theoretical
level, we intend to undertake a more thorough investigation
of our authorisation model by considering the semantics
of provenance graphs. In particular, it would be interesting
to assign meanings to those process vertices that represent
contracted subgraphs in such a way that viewers of the
provenance graph cannot determine those regions of the graph
for which she is not authorised. This is relevant to the inference
problem raised by Thuraisingham et al. [17] in the context of
semantic web and provenance. An inference problem occurs if
someone can infer some provenance information based upon
other information she can view along with her background

knowledge. We would like to investigate how to alleviate the
possibility of such inferences by incorporating an inference
controller into our authorisation model.
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