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ABSTRACT 
Here we report bone phosphate oxygen (δ18Op) values from perinates/neonates and 

infants (<3.5 yrs; n=32); children (4-12 yrs; n=12); unsexed juveniles (16-18 yrs; n=2) 

and adult bones (n=17) from Wharram Percy, North Yorkshire, England, in order to 

explore the potential of this method to investigate patterns of past breastfeeding and 

weaning. In prior studies, δ15N and δ13C analyses of bone collagen have been utilised 

to explore weaning age in this large and well-studied assemblage, rendering this 

material highly appropriate for the testing and development of this alternative method 

targeting the inorganic phase of bone. Data produced reveal 18O-enrichment in the 

youngest perinatal/neonatal and infant samples, and an association between age and 

bone δ18Op (and previously-published δ15N values), with high values in both these 

isotope systems likely due to breastfeeding. After the age of 2-3 years, δ18Op values are 

lower, and all children between the ages of 4 and 12, along with the vast majority of 

sub-adults and adults sampled (aged 16 to >50 years), have δ18Op values consistent with 

the consumption of local modern drinking water. The implications of this study for the 

reconstruction of weaning practices in archaeological populations are discussed, 

including variations observed with bone δ15Ncoll and δ18Op co-analysis and the influence 

of culturally-modified drinking water and seasonality. The use of this method to explore 

human mobility and palaeoclimatic conditions are also discussed with reference to the 

data presented.  
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 Breastfeeding and weaning practices in past populations have become an 

increasingly important and studied area of archaeology and anthropology in recent 

years. It has been suggested that the natural age for the cessation of human 

breastfeeding lies between approximately 2.5 and 7 years (Dettwyler 1995; Dettwyler 

2004), based on anthropological literature and various predictions concerning human 

physiology and reproduction (see review in Dettwyler 2004). However, incidences of 

breastfeeding beyond 4 years of age are unusual, with weaning most commonly 

occurring between 2-3 years amongst modern humans living in non-industrialised and 

traditional, natural fertility societies (Alvarez 2000; Sellen 2001, 2007; Kennedy 2005). 

Prior to the cessation of breastfeeding, most infant diets also include complementary 

liquid and solid foods, in many cases before the age of 6 months (Sellen 2001). 

However, practices are varied (Sellen 2001; Kennedy 2005), and cultural factors are 

known to strongly influence the duration and nature of breastfeeding (and 

complementary feeding) in past and present societies (Stuart-Macadam and Dettwyler 

1995; Dettwyler 2004). Therefore, the investigation of breastfeeding (including the 

processes by which other foods are introduced to the infant and breastfeeding declines 

and ceases) can illuminate past cultural practices and lifeways in earlier societies, 

particularly aspects of life pertaining to children and women. These practices also have 

broader implications for our understanding of human ecology, health, population 

dynamics and demographics in the past. As well as providing total nutritional 

requirements in early life (Butte et al. 2002), breast milk provides immunological 

protection to infants, primarily against gut/diarrheal diseases but also against extra-

intestinal diseases (e.g. Arifeen et al. 2001; Duijts et al. 2010; see review in Horta and 

Victora 2013a) and (possibly) even longer-term conditions (e.g. Rich-Edwards et al. 

2004; see review in Horta and Victora 2013b), and may also have benefits for a child’s 
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cognitive development (e.g. Quinn et al. 2001). Lactation can also determine fertility 

in breastfeeding females (through ovulation suppression) and therefore influence birth 

spacing, and through this, impact maternal health (Vitzhum 1994). 

 In archaeological case studies, nitrogen isotope analyses of tooth and bone 

collagen are commonly used to reconstruct breastfeeding and weaning practices (e.g. 

Fogel et al. 1989; Mays et al. 2002; Richards et al. 2002; Fuller et al. 2003, 2006a; Jay 

et al. 2008), given the established trophic level effect on δ15N and subsequent drop in 

δ15N during/following weaning. This effect has been evidenced in modern experimental 

studies on humans (hair and fingernails; Fogel et al. 1989; Fuller et al. 2006b) and 

controlled feeding experiments on domestic animals (dentinal collagen; Balasse et al. 

2001), as well as studies of blood plasma and milk proteins in lactating females and 

nursing offspring of a range of wild species (e.g. Jenkins et al. 2001; Polischuk et al. 

2001). In contrast, the application of oxygen (δ18O) isotope techniques to 

archaeological, anthropological and palaeoecological case studies have largely focused 

on reconstructions of palaeotemperature and palaeoclimate (e.g. Longinelli 1984; 

D'Angela and Longinelli 1990; Bryant et al. 1994; Sánchez Chillón et al. 1994; Delgado 

Huertas et al. 1995; Stuart-Williams and Schwarcz 1997; Genoni et al. 1998; Longinelli 

et al. 2003; Mannino et al. 2003; Hoppe et al. 2004; Hoppe 2006; Bernard et al. 2009) 

and also, through this, their use as a tool to determine geographical provenience and 

mobility in humans (e.g. White et al. 2000; Evans et al. 2006a,b; Eckardt et al. 2009; 

Chenery et al. 2010) and wild and domestic animals (e.g. Evans et al. 2007; Pellegrini 

et al. 2008; Britton et al. 2009). These approaches are all based on the premise that the 

oxygen isotope composition of tissues developed during life will be directly related to 

that of local drinking water, the latter being primarily controlled by local air 
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temperatures and, therefore, geographic setting (Dansgaard 1964; Darling and Talbot 

2003). 

 A small number of studies have also employed oxygen isotope analysis to 

investigate breastfeeding practices and determine weaning age in past societies. These 

applications are based on the premise that – due to isotopic fractionation – the breast 

milk of a lactating mother will be isotopically-enriched in the heavier isotope (18O) 

compared to the water she ingests, inducing elevated δ18O values in infant tissues. 

Studies have targeted both the oxygen-bearing carbonate and phosphate components of 

tooth enamel (Wright and Schwarcz 1998, 1999) and, in a single study, the phosphate 

component of bone (White et al. 2004; n=3 infant bones). Generally considered to be 

less prone to diagenetic alteration than the oxygen-bearing carbonate fraction of the 

skeleton (Kolodny et al. 1983; Luz et al. 1984; Nelson et al. 1986; Kohn et al. 1999), 

analysis of oxygen isotope ratios in bone phosphate offers the potential for the 

reconstruction of breastfeeding and weaning practices where collagen is not preserved. 

Furthermore, analysis of bone phosphate in adult humans could permit the 

reconstruction of mean annual temperatures, as demonstrated in other mammalian 

species (Longinelli 1984; Luz et al. 1984; Ayliffe and Chivas 1990; Sánchez Chillón et 

al. 1994; Stuart-Williams and Schwarcz 1997). However, despite the strength of the P-

O bonds within the PO4 component, the recrystallization of the nano-crystalline bone 

bioapatite and isotope exchange with ambient pore fluids may render the material 

unsuitable for such studies due to chemical alteration in the burial environment (Tütken 

et al. 2008). Furthermore, recent studies have demonstrated that the composition of diet 

or even food culinary practices (such as stewing and brewing) can influence the δ18O 

of ingested water, and therefore could have the potential to induce isotopic enrichment 
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or depletion in body water and, ultimately, in bodily tissues (Daux et al. 2008; Brettell 

et al. 2012).  

 Here we present the results of oxygen isotope analyses of bone and tooth 

phosphate from Medieval perinatal/neonatal, infant, juvenile and adult skeletons from 

the site of Wharram Percy, Yorkshire, UK (Mays 2007). The purpose of this study is to 

explore the application of oxygen phosphate studies of bioapatite to the investigation 

of breastfeeding and weaning in archaeological populations. This material offers the 

potential for methodological development as it allows the sampling of bone (and tooth) 

phosphate from a large number of individuals, including infants, sub-adults, and adults. 

Furthermore, studies utilising carbon and nitrogen isotope analysis of bone collagen to 

investigate weaning from the same materials have already been published (Mays et al. 

2002; Richards et al. 2002; Fuller et al. 2003), allowing for direct data comparison. 

 

THE APPLICATION OF OXYGEN ISOTOPES IN ARCHAEOLOGICAL AND 

ANTHROPOLOGICAL STUDIES 

 The ratios of 18O to 16O (18O/16O or δ18O) in precipitation are altered by natural 

environmental process through fractionation occurring at various points in the 

hydrological cycle. The isotope composition of rainfall and other types of precipitation 

is depleted in the heavier isotope (18O) compared to the ocean and other surface water. 

Evaporation from these water bodies serves to initially deplete the evaporating water, 

making it isotopically lighter than the source. Global and local meteoric processes then 

continue to bring about further depletions. These are the result of thermal and 

geographical parameters, related to local and regional climate, the biggest influence on 

the depletion of 18O in precipitation being local temperature variations (Dansgaard 

1964). Given the relationship between temperature and fractionation in precipitation, 
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there are also variations with altitude, latitude and season (Dansgaard 1964; Yurtsever 

1975; Gat 1980; Clark and Fritz 1997).  

 Oxygen isotope studies of skeletal materials are based on the correlation 

between the oxygen isotope composition of animal tissues and that of water ingested 

during life (Longinelli 1965, 1966, 1984; Longinelli and Nuti 1968, 1973). As 

endothermic homeotherms, mammals have a metabolically-controlled, relatively 

constant body temperature (~37°C), and their bioapatite (a carbonated hydroxyapatite) 

precipitates in oxygen isotope equilibrium with body water (Longinelli 1984; Luz et al. 

1984). Fractionation occurs between ingested water and body water, and this varies 

between different species. Fractionation factors have been established for a number of 

extant species, including humans (Luz et al. 1984; Levinson et al. 1987; Daux et al. 

2008), and despite demonstrable inter-specific variations, the body water-drinking 

water relationship appears to be roughly linear. Therefore the δ18O of bodily tissues 

directly reflects that of drinking water (Land et al. 1980; Longinelli 1984; Luz et al. 

1984; Ayliffe et al. 1992; Bryant and Froelich 1995; Kohn 1996; Kohn et al. 1996), 

albeit with modifications due to admixture with respiratory oxygen and chemically-

bound oxygen in ingested food, species-specific drinking strategies and metabolisms, 

and water turnover rates (e.g. Luz et al. 1984; Ayliffe and Chivas 1990; Ayliffe et al. 

1992; Bryant and Froelich 1995; Kohn 1996; Levin et al. 2006; Podlesak et al. 2008). 

 Responses in body water and tissue values within an organism are not 

instantaneous. Where the daily turnover of total oxygen is 5-10%, a time-lag of 10-20 

days can be predicted between body water and newly forming tissues (Kohn and 

Cerling 2002). The rate of body water turnover has been confirmed using tracers and 

through experimental studies using dietary switches (from depleted to enriched 

drinking waters; e.g. Sharp and Cerling 1998). Although there are intra- and inter-
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specific variations, this period of time is universally fairly restricted, with full isotopic 

equilibrium in body water reached within two weeks, and that new equilibrium being 

reflected in newly-forming tissues – such as growing tooth enamel – in just over three 

weeks (Luz et al. 1984; Podlesak et al. 2008). This could be expected to vary between 

species, depending on their degree of water-dependence or drought-resistance – with 

more water dependent species having a shorter time-lag and recording isotopic input 

variations with a greater fidelity in co-forming tissues. However, the rate of turnover in 

tissues constantly undergoing remodeling (such as bone) is far slower. For example, the 

mean annual turnover rate for adult bone is between 5% and 25% (Martin et al. 1998); 

therefore, bone phosphate oxygen isotope values can be expected to represent averaged 

isotopic inputs spanning years. This turnover rate could be expected to be higher during 

infancy and childhood (a period rapid of skeletal growth), although perhaps less rapid 

than the synthesis of the organic matrix and therefore turnover of bone collagen 

(Tsutaya and Yoneda 2013: e72327[2]).  

 Where local drinking water sources largely originate from precipitation, the 

mean δ18O of local drinking water should broadly reflect (and be characteristic of) local 

climatic conditions. Oxygen isotope ratios of modern drinking water and bodily tissues 

have been demonstrated to correlate with both the mean average and seasonally-varied 

geographic patterns in precipitation δ18O (e.g. Ehleringer et al. 2008; Kennedy et al. 

2011), leading to the application of oxygen isotope analysis to archaeological and fossil 

bone and teeth in order to reconstruct mean annual and seasonal palaeotemperatures 

(Koch et al. 1989; Bryant et al. 1994, 1996a; Fricke et al. 1998), and – through this – 

infer geographical provenance in humans (e.g. Evans et al. 2006a; Eckardt et al. 2009; 

Müldner et al. 2009; Chenery et al. 2010). Regression equations are required to convert 

bioaptite δ18O values to predicted drinking water (i.e. environmental water) values 
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(δ18Odw), although there are errors associated with these. In a recent study, Pollard et 

al. determined that even a small margin of error (e.g. 95% confidence level) for 

predicted values δ18Odw is likely to be ±1‰ and may be as high as ±3.5‰ (Pollard et 

al. 2011). This is consistent with other research, for example, that by Daux et al (2008), 

who determined the 95% error range of predicted δ18Odw values (based on their 

calibration data) to be ~1.5‰ at best. While such predicted values can perhaps be 

cautiously determined in archaeological oxygen isotope studies, the use of direct 

measured values of δ18Op (in animals or humans) as a means of comparison (which are 

only subject to measurement error, typically ±0.1‰ to ±0.4‰) rather than the use of 

predicted values is increasingly being advocated (Müldner et al. 2011; Pollard et al. 

2011). Furthermore, it should be noted that recent studies have also demonstrated that 

the composition of diet or even food preparation/culinary practices (such as stewing 

and brewing) can influence the δ18O of drinking water, and therefore could have the 

potential to induce isotopic enrichment or depletion in body water and, ultimately, in 

bodily tissues (Daux et al. 2008; Brettell et al. 2012). These studies highlight some 

potential limitations for the usefulness of the oxygen isotope analysis of adult human 

remains in provenance/mobility or palaeoclimatic studies, although the prevalence of 

this issue in the study of the past and the archaeological implications have yet to be 

explored. 

 The application of oxygen isotope analyses to studies of breastfeeding and 

weaning relies on the principal that – due to isotopic fractionation – the breast milk of 

a lactating mother will be isotopically-enriched in the heavier isotope (18O) compared 

to the water she ingests. This is because the oxygen in body water is enriched in 18O 

relative to drinking water, largely due to the discrimination against 18O during the 

expiration of water vapour (Bryant and Froelich 1995; Kohn et al. 1996; Wright and 
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Schwarcz 1998). Given that breast milk is formed from 18O-enriched body water, it is 

isotopically-heavier compared to the mother’s drinking water. In a recent study 

comparing δ18O in raw cows’ milk to that of water from the same farms, milk δ18O was 

on average ~4‰ elevated compared to water δ18O (Lin et al. 2003: 2191). It is therefore 

anticipated that – given that breast milk would constitute the main source of ingested 

water for offspring prior to weaning – mineral tissues formed prior to weaning, either 

tooth enamel or bone bioapatite, will reflect this enrichment and exhibit elevated δ18O 

values until after the complete cessation of breastfeeding. When weaning occurs, the 

oxygen isotope values in successively forming tissues (new enamel formation, or bone 

growth/remodelling) should decrease. Past studies have suggested δ18O in 

archaeological teeth can be related to breastfeeding and weaning, with early-forming 

teeth demonstrating enrichment of between 0.5‰ and 1.2‰ in enamel carbonate and/or 

phosphate compared to adult averages (Wright and Schwarcz 1998, 1999). Another 

prior study also included a limited number of infant bones from Nubian mummies (<3 

yrs; n=3) suggested more extensive 18O-enrichment (+~2‰, compared to the adult 

average in the same study; White et al. 2004). However, metabolic differences 

associated with ill health, extensive intra-annual climatic variability, birth seasonality, 

and immigration could all potentially influence oxygen isotope values in infants and 

may limit the application of these techniques to archaeological case studies (White et 

al. 2004). 

 The purpose of this study was to further explore the potential application of 

oxygen phosphate studies of bone bioapatite to the investigation of breastfeeding and 

weaning in archaeological populations, through the analyses of bone (and a limited 

number of teeth) from perinatal/neonatal, infant, juvenile and adult skeletons from the 

Medieval site of Wharram Percy. This large and well-studied assemblage represents a 
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temporally and geographically-definable group – the inhabitants of the village and 

nearby parishes. We hypothesise that – provided local, ‘culturally-unmodified’ water 

was consumed by adult females in Medieval Wharram Percy, and bone phosphate is 

not subject to diagenetic alteration in this instance (see ‘Materials’) – bone phosphate 

oxygen ratios should be elevated in infants who died prior to the cessation of 

breastfeeding and lower in older infants who died post-weaning. Furthermore, with the 

same provisos, the older juvenile and adult bone phosphate at Medieval Wharram Percy 

should reflect local predicted environmental oxygen isotope values. 

 

MATERIALS 

Wharram Percy, United Kingdom 

 Wharram Percy is a deserted Medieval village in North Yorkshire in the North-

East of England, close to the modern city of York (Figure 1). The site has been the 

subject of detailed investigation in recent decades, including long-running 

archaeological excavation (Beresford and Hurst 1990; Mays et al. 2007) and a number 

of associated research projects (e.g. Sofaer Derevenski 2000; Mays et al. 2002; 

Richards et al. 2002; Fuller et al. 2003). The human skeletal assemblage from Wharram 

Percy is extensive, with 688 articulated skeletons (including 328 infants, juveniles and 

sub-adults) excavated from St Martin’s church and churchyard. This large assemblage 

dates from the 10th to 19th centuries AD, with the bulk (including those utilised in this 

study) dating from the 11th-14th century AD (Mays et al., 2007).  The skeletal remains 

represent the population of the village and local rural parish, a chronologically- and 

geographically-defined group.  

 

Bone and tooth samples 
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 Rib bone was selected from 63 individuals, including perinates/neonates and 

infants (<3.5 yrs; n=32); children (4-12 yrs; n=12); unsexed juveniles (16-18 yrs; n=2) 

and adult bones (n=17; females n=10, males n=7). Each of the human bones involved 

in this study has previously been the subject of bone collagen isotope studies, 

demonstrating good preservation of collagen (Mays et al. 2002; Richards et al. 2002; 

Fuller et al. 2003). In addition to the organic component, primarily collagen, bone is 

principally comprised of inorganic material (~70% by dry weight), largely a composite 

of calcium phosphate minerals. The mineral fraction of bone bears close similarities to 

naturally-occurring hydroxyapatite but, due to a lack of stoichiometry, small crystal 

size, structural disorganisation and a high incidence of substitutions in the apatite 

crystal lattice, it is often referred to as biological hydroxyapatite, or ‘bioapatite’. 

Substitutions commonly occur at the phosphate (PO4) and hydroxyl (OH) sites, often 

with carbonate (CO3), therefore resulting in a range of potential oxygen-bearing sites 

in bioapatite (Martin et al. 1998). 

 Despite the relative ease with which oxygen can be extracted and analysed from 

the carbonate component, phosphate is normally preferentially selected for oxygen 

isotope analysis, due to the strong correlation between phosphate oxygen and the 

oxygen isotope composition of ingested water (Kolodny et al. 1983; Luz et al. 1984), 

and the strength of the P-O bonds within the PO4 component of bioapatite, resulting in 

a greater resistance to diagenetic alteration than carbonate components from the same 

samples (Kolodny et al. 1983; Luz et al. 1984; Kohn et al. 1999). It has also been 

demonstrated that, although carbonate components are often diagenetically-altered 

through the more frequently-occurring chemical contamination in the burial 

environment, it is the less common biological and enzymatic attack that is more likely 

to affect the phosphate component (Zazzo et al. 2004a).  Although currently there are 
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no comprehensive chemical pre-treatments to remove the effects of diagenesis or 

quality indicators to identify diagenetically-altered samples (akin to those for bone 

collagen, e.g. Ambrose 1990; van Klinken 1999), there are a range of techniques that 

are commonly used for evaluating diagenesis in ancient bones. Although scanning 

electron microscopy of selected material from Wharram Percy has previously 

suggested preservation of histological detail is poor (Nielsen-Marsh and Hedges 2000; 

Turner-Walker and Syversen 2002), which can be related to the activities of soil-

dwelling microorganisms, this does not appear to have influenced mineral integrity of 

bone at Wharram Percy (measured as Ca: P ratios), which resemble that of modern bone 

(Mays 2003: 733-734). 

 In addition to bone, enamel was also analysed from a limited number of the 

individuals included in this study, comprising of deciduous second molars from three 

children, and permanent canines and third molars from three adults. The crowns of 

deciduous second molars begin forming at about 6 months in utero and are complete 

by the age of about 11 months post-natal; permanent canine tooth enamel begins 

mineralising around the age of 4-5 months, completing at around the age of 6 years 

(Gustafson and Koch 1974). The third molar crowns form between the ages of about 9 

and 14 years (Garn et al. 1962; Anderson et al. 1976; Levesque et al. 1981). Ages and 

sexes were determined for a previous study on the same materials, and details of the 

methodologies used can be found in Richards et al. (2002: 206). It should be noted that, 

although crown formation times can provide brackets for the period of childhood 

represented by isotopic values obtained from specific teeth, the timing and periodicity 

of mineralisation (i.e. when the majority of oxygen in the tooth enamel is incorporated) 

are poorly understood. Although enamel formation may take a number of years in 

specific teeth, mineralisation may occur over a more restricted time within that 
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framework, and therefore isotopic data from enamel could represent isotopic 

contributions from a considerably shorter period (Montgomery 2002: 53). 

 

Establishing local isotope ranges 

 In order to assess any nursing or weaning signal in the infant bones and teeth, it 

is first necessary to determine the likely oxygen isotope values of local waters. The 

oxygen isotope composition of modern surface water and groundwater has been well 

characterised for the UK by previous studies, and contour maps have been produced 

(e.g. Darling et al. 2003; Darling and Talbot 2003). These modern values can be applied 

to archaeological case studies as groundwater reflects averaged rainwater inputs over 

periods of tens and hundreds of years, and it has been suggested that (despite small-

scale climatic variations) there has been little variation in ground and surface water 

values throughout the Holocene (Darling et al. 2003: 191-192). Groundwater in Britain 

has a measured range of around 4‰, from -9.0‰ and -4.5‰, with the least negative 

values being exhibited in areas of the extreme west (e.g. the Western Isles of Scotland). 

The area of North Yorkshire surrounding Wharram Percy is situated within the -8.0‰ 

to -7.5‰ contour for UK groundwater (Darling et al. 2003), but close to the <-8.0‰ 

region – a small area proximal to the site. Recently measured tapwater δ18O 

compositions in the region surrounding the site include values of -8.1‰ and -8.3‰ 

(Darling et al. 2003: 193). Therefore, the total range of mean annual local water values 

in this area, and the surrounding parts of Britain, can be conservatively considered to 

be between -8.5‰ and -7.5‰. 

 Various regression equations have been proposed to convert skeletal phosphate 

values (δ18Op) to approximate drinking water values (δ18Odw) and vice-versa 

(Longinelli 1984; Luz et al. 1984; Levinson et al. 1987; Daux et al. 2008). Such 
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equations are required given that isotopic fractionation occurs in the body as water is 

metabolised, which enriches the bioapatite in the heavier isotope (18O) relative to the 

drinking water. Using the likely total range of average local water values for this area 

(-8.5‰ to -7.5‰, see above) and on the recommendations of Daux et al. (2008: 1143, 

equation 6), local and regional bioapatite (δ18Op) values for humans drinking local 

water might be expected to lie between 16.4‰ (δ18Odw=-8.5‰) and 17.0‰ (δ18Odw=-

7.5‰). However, as discussed above, error ranges associated with such conversion 

equations are high (in this instance, ±~2‰), and can therefore encompass all predicted 

British variability (Pollard et al. 2011). Directly measured values of δ18Op from 

previous studies (local humans or animals) can provide a useful means for comparison 

and aid in the estimation of local bioapatite values (Müldner et al. 2011; Pollard et al. 

2011). Previously measured archaeological enamel (δ18Op) of ‘local’ individuals from 

the site of West Heslerton, North Yorkshire, which lies less than 10 miles north-west 

of Wharram Percy determined a mean value of 17.1±0.4‰ (2σ) (Budd et al. 2004, 

recalculated in Chenery et al. 2010: 161) are in line with the range calculated above. 

These values, and the predicted values, also correspond well with the broader bioapatite 

δ18Op British ‘baseline’ suggested in Chenery et al. (2010) of 16.8‰ to 18.6‰ 

(mean=17.7‰±0.9 [2σ]), who calculated this range from previously-published data on 

archaeological humans with ‘local’ 87Sr/86Sr isotope values from West Heslerton and 8 

other UK sites (Chenery et al. 2010: 153, 161). The same mean value of 17.7‰±1.4‰ 

(2σ; n=615) was recently reported in Evans et al. (2012), with the corollary that further 

sub-population control groups, eastern and western Britain, can be characterised by 

means of 17.2‰±1.3‰ (2σ; n=83) and 18.2‰±1.0‰ (2σ; n=40) respectively, due to 

differences in rainfall levels. It should be noted however, that Chenery et al. utilised a 

different conversion equation from that used here, favouring that of Levinson et al. 
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(1987) and including a 1.4‰ ‘method bias correction’ due to the difference between 

mean reported values of the now commercially-unavailable standard material NBS120b 

in Levinson’s study and that of those determined at NIGL (Chenery et al. 2010: 160). 

Although justified in this instance, given that new studies are unlikely to incorporate 

this exhausted standard, such method bias corrections (which could be expected to vary 

between different laboratories and with different precipitation techniques) would be 

difficult to determine. However, as Chenery et al. note, the δ18Odw values calculated 

using the Levinson et al. (1987) equation (including corrections) are very similar to the 

values computed using the equations published by Daux et al. 2008 (Chenery et al. 

2010: 160 and Figure A.1). Furthermore, Daux et al. (2008) report values for 

commercially-available standard material NBS120c, allowing any method bias to be 

corrected, where necessary, through the preparation of this standard material alongside 

archaeological materials. In light of the above, and the agreement between the predicted 

δ18Op ‘local’ values calculated here and those values δ18Op values measured in 

bioapatite from proximal sites, we advocate the use of Daux et al.’s equation (2008: 

1143, equation 6). Therefore, encompassing both previously-measured values of 

individuals with local 87Sr/86Sr values from the Anglo-Saxon site of West Heslerton 

(17.1±0.4‰) and the predicted local bioapatite values calculated here (16.4-17.0‰), 

local and regional bioapatite (δ18Op) values for humans drinking local water at 

Wharram Percy might be expected to lie between 16.4‰ and 17.5‰.  

 

METHODS 

 Tooth and bone samples were prepared for isotopic analysis in the 

Archaeological Chemistry Laboratories, Max Planck Institute for Evolutionary 

Anthropology (Department of Human Evolution). Rib bones were sampled using a 
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diamond-coated circular drill bit and split; and interior and exterior surfaces were 

cleaned prior to grinding using air abrasion, including the removal of cancellous bone. 

Individual samples were ground and homogenized using an agate pestle and mortar. 

Bone samples were then prepared for oxygen isotope analysis following methods 

described in Tütken et al. (2006) modified after O’Neil et al. (1994) and Dettman et al. 

(2001: Appendix, GSA Data Repository item 20018). Due to the high organic content 

of bone (including archaeological bone), it was necessary to pre-treat samples to 

remove organics (including oxygen-bearing organic components). In order to remove 

organics, samples were agitated in 30% hydrogen peroxide (H2O2; 40µl/1mg of bone 

powder) at room temperature for 48 hours in microcentrifuge tubes sealed with 

Parafilm® M and pierced in order to prevent gas accumulation. Powdered bone samples 

were rinsed in (4x) Milli-Q (ultrapure) water and dried (24hrs, 50°C) prior to dissolving 

in 2M HF. 

 Dried samples (~10mg) were dissolved in 0.8ml 2M HF and agitated in solution 

for 24 hours at room temperature. The resultant phosphate solution and the residue 

(comprised of CaF2) were separated by centrifugation, and the phosphate solution was 

pipetted into fresh microcentrifuge tubes that had been previously weighed. In each 

instance, the CaF2 residue was washed with ~0.1ml of Milli-Q (ultrapure) water after 

the phosphate solution had been pipetted off, these were then centrifuged with the 

additional solution being added to the phosphate solution to maximise recovery of 

soluble components. A single drop of indicator (Bromothymol Blue, or BTB), was 

added to each sample (yellow: acidic solution). In order to neutralise each sample, 25% 

ammonia solution (NH4OH) was added using a Microliter™ fixed needle syringe 

(Hamilton Bonaduz AG, Switzerland) drop for drop until a colour change (yellow to 

green) was observed (~180µl). Then 0.8ml of 2M silver nitrate (AgNO3) solution was 
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added to each sample, forming a yellow silver phosphate (Ag3PO4) precipitate. The 

precipitate was separated by centrifugation, and the liquid fraction was discarded. The 

precipitate was rinsed 4x with Milli-Q (ultrapure) water, dried (24hrs, 50°C) and 

weighed into silver capsules for oxygen isotope analysis. Un(pre)treated samples of 

NBS120c were also prepared alongside the samples. NBS120c, although not certified 

for oxygen isotope values, is an international standard material commonly used in many 

laboratories as a reference material during phosphate oxygen isotope analysis as its 

composition and matrix is more similar to bio-phosphates than other reference materials 

(Chenery et al. 2010: 159), and has a broadly accepted value of ~21.7‰ (Chenery et al. 

2010 and references therein) 

 Phosphate δ18O values were determined by CF-IRMS, measured with a 

Thermo-Quest TC-EA connected to a Thermo-Quest Delta Plus XL mass spectrometer, 

at the Department of Geology, University of Tübingen. Mean values and standard 

deviations (1σ) were provided by the analysing laboratory, calculated from the analysis 

of each sample in triplicate (Table 1 and Table 2). In some instances, these values were 

provided from duplicate measurements, due to sample size, sample loss, loss of sample 

integrity or through internal data quality control checks in Tübingen (for exceptions, 

see Table 1 and Table 2). Long-term laboratory reproducibility was reported as ±0.3‰ 

(1σ). Samples were calibrated to δ18O values relative to V-SMOW using internal 

standards, including TU-1 (δ18O=21.1‰); TU-2 (δ18O=5.4‰) and 130-0.5-1 (δ18O= -

1.1‰) (Vennemann et al. 2002). Repeat analysis of prepared samples of NBS120c 

(n=5) gave a mean δ18Op value of 21.6±0.4‰ (1σ), which is the same as previously 

reported values (e.g. Tütken et al. 2006) and within error of the mean reported values 

from 19 previous publications (cited in Chenery et al. 2010: 161, Table A3; 

21.7±0.5‰[1σ]) and a weighted mean value reported in a recent inter-laboratory 
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calibration (21.79±0.15‰[1σ]; Halas et al. 2011: 582). Therefore, we deem it not 

necessary to apply a method correction bias to our data (see ‘Establishing local isotope 

ranges’). 

 

RESULTS AND DATA INTERPRETATION 

 Bone oxygen isotope data analysed from Wharram Percy are shown in Table 1, 

and δ18Op values from tooth enamel phosphate are shown in Table 2. The total range of 

bone δ18Op values exhibited varies from 15.1‰ to 19.7‰ (total range: ∆4.6‰), with 

the highest value observed in an infant (individual WCO104 [s-eva-16808]) and the 

lowest in an adult female (individual G760 [s-eva-16852]). The mean δ18Op value for 

the infants (<3.5 yrs; n=32) is 17.7±0.8‰ (1σ), the mean for children aged 4 to 12 yrs 

(n=12) is 16.9±0.4‰ (1σ) and the mean value for all adults (males and females, >18 

yrs, n=17) is 16.5±0.6‰ (1σ) and therefore ~1‰ lower than the mean infant δ18Op 

value. Tooth enamel phosphate values range from 16.7‰ to 18.5‰, with the mean 

value for infant deciduous second molars being 18.2‰ (±0.2‰, 1σ), mean values for 

permanent canines and third molars being 17.3‰ (±0.6‰, 1σ) and 17.2‰ (±0.3‰, 1σ), 

respectively. 

 

Comparison of δ18O (bone and enamel phosphate) to δ15N (bone collagen) in 

infants and juveniles (<12 years) 

 Figure 2 shows the infant and juvenile (<12 yrs) bulk bone phosphate δ18O data 

(primary y-axis) plotted against age (years; x-axis), with δ15N data obtained from bone 

collagen from the same individuals plotted on a secondary y-axis (δ15N bone collagen 

data from Richards et al. 2002). The range of estimated local water values (see above), 

converted to predicted bioapatite values for local humans, are also depicted, along with 
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previously-measured ‘local’ bioapatite values. The most elevated δ18Op values are 

observed in some of the youngest individuals, and there is a non-linear correlation 

between δ18Op and age (r2=0.32, polynomial regression). Notably, the 

perinates/neonates (G492, NA220, G470 and G579; aged 41-46 weeks in utero), exhibit 

a mix of values, two within the normal adult range and two with bone δ18Op values 

slightly higher than the mean adult range. While it might be anticipated that individuals 

in utero should exhibit values in the normal adult range, with the foetus forming in 

equilibrium with the mother’s blood values, this may evidence the influence of seasonal 

or other compositional changes in the δ18O of drinking water (and therefore, the 

mother’s body water δ18O). 

 In order to explore differences in mean δ18O values between individuals under 

the age of three (excluding the four perinates/neonates) and older children, a t-test was 

used, confirming that these differences are statistically significant (t=4.87, p<0.01). 

After the age of approximately 3 years, δ18Op values are lower, within the expected 

regional range and comparable to the adult mean value. The correlation between higher 

δ15N bone collagen values and age also shown in Figure 2 (r2=0.57) has been 

documented previously at Wharram Percy (Mays et al. 2002; Richards et al. 2002) and 

elsewhere (Fogel et al. 1989; Jay et al. 2008), and has been attributed to 15N enrichment 

in infancy during the period of breastfeeding. Enrichment in 18O in tooth enamel 

(carbonate) formed in childhood has also been attributed to breastfeeding (Wright and 

Schwarcz 1998, 1999). The limited number of deciduous teeth sampled from Medieval 

individuals at Wharram Percy in this study demonstrate similar enrichment (Figure 3), 

and are 18O-enriched compared to teeth formed later in childhood (canines and third 

molars from different individuals, Figure 3) and adult bone phosphate (Figures 3-4). 

The higher values observed here in infant bone (~+1.2‰, compared to adult bone 
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values) are consistent with previous studies on tooth enamel (Wright and Schwarcz 

1998, 1999; White et al. 2004) and a single limited study on infant bone phosphate 

(White et al. 2004; n=3). We propose that the higher values observed in infant bone 

phosphate (compared to Medieval adult values, and predicted ‘local’ values) from 

Wharram Percy, along with the deciduous molars, presented in this study are also 

attributable to the consumption of breast milk. The timing in the decrease in δ18Op 

values of bone phosphate and that of δ15N values of bone collagen measured in the 

same materials are comparable but the period in which δ18Op values decrease in all 

individuals is a little more extended. After the age of ~2 years, all bone collagen δ15N 

values of children are within the adult range (Fig. 2; Mays et al. 2002; Richards et al. 

2002), which appears to be in agreement with limited Medieval documentary evidence 

of weaning practices (Fildes 1986: 45-58, 66). However, although elevated δ18Op values 

peak in early infancy (between 4 and 12 months), between the ages of 2 and 3 years 

there are still a small number of individuals with δ18Op values higher than the adult 

range. These differences may be consistent with a slower rate of turnover in the mineral 

phase due to the synthesis of organic matrix being faster than the mineralization process 

during ontogeny (Tsutaya and Yoneda 2013: e72327[2]), metabolic/physiological 

factors (which may influence δ15Ncoll values in infants, see review in Beaumont et al. 

2013), or the fact that these two isotope ratios reflect different inputs (primarily protein 

source in the case of δ15Ncoll and ingested water in the case of δ18Op) and are not 

interdependent. Figure 5 shows bulk bone phosphate oxygen isotope values (δ18Op) 

plotted with bulk bone collagen nitrogen isotope values (δ15N) from the same 

individuals in three groups (infants <3.5 yrs, children 4-12 yrs and adults 18+ yrs). 

Although both δ18Op and δ15Ncoll are, on average, elevated in the infants compared to 

the other individuals, the correlation coefficient between δ18Op and δ15Ncoll is low 
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(r2=0.02). This value is far lower in the children over four years of age (r2<0.01) and 

negligible in adults (r2<0.0001), suggesting no significant correlation between δ18Op 

and δ15Ncoll values in early or later life. This lack of agreement between elevated δ15Ncoll 

and δ18Op values is also exemplified by some individual cases, for example, infant 

G327 (s-eva-16824; 1.5 yrs) in which one of the highest δ15Ncoll values in this study 

was determined (12.3‰) while the δ18Op value was similar to the adult mean (16.6‰). 

This serves to reiterate that, despite an apparent general shared trend in elevated δ18Op 

and δ15Ncoll in early infancy (pre-weaning), the two isotope ratios measured are 

independent systems, reflecting different inputs – in infancy as well as in adulthood. 

Furthermore, as the values of some perinates/neonates demonstrate, birth timing and 

timing of death (in terms of season) could reasonably influence δ18Op in 

perinates/neonates and young infants undergoing rapid growth/tissue mineralization.  

  

Bone phosphate δ18O in Medieval adults 

 As shown in Figure 4, after the age of approximately 3 years, δ18Op values in 

both children and adults from Medieval Wharram Percy are similar (16.9±0.4‰[1σ], 

and 16.5±0.6‰[1σ], respectively). These values correspond well with both the 

predicted ‘local’ bioapatite range of 16.4‰ to 17.0‰ (based on contours in Darling et 

al. 2003; and Daux et al. 2008: 1143, equation 6), and values from the proximal early 

Medieval site of West Heslerton (17.1±0.4‰ [2σ]), published in Budd et al. (2004), 

recalculated by Chenery et al. (2010: 161). Slight differences are observable in the adult 

male and female mean bone δ18Op values (16.8±0.5‰ [n=7] and 16.3±0.6‰ [n=10], 

respectively). It is also notable that two females (G760 and G635) have bone δ18Op 

values less than 16‰, which is unusual for the UK. These differences could be due to 

slight variations in the treatment/type of dietary water, lifetime mobility or 
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metabolic/physiological differences. However, given the small sample size, and a lack 

of statistical significance (t-test assuming equal variance; t=1.78, p=0.1), care should 

be taken not to over-interpret any inter-sex difference. In light of errors associated with 

conversion equations (used to predict ‘local’ δ18Op; see above and Pollard et al. 2011), 

similar caution should be applied to the interpretation of data from marginal outliers. 

 In the case of Medieval Wharram Percy, after early childhood enrichment 

(likely due to a residual breastfeeding signal in the bone, see above), human bone 

phosphate δ18O values generally correlate well with both values predicted from modern 

local precipitation, and also with values measured in ‘local’ enamel bioapatite. A 

notable exception is individual NA185 (s-eva-17034), an unsexed individual of around 

16.5 years. This high value of 19.6‰ is more than 3‰ above the mean adult value at 

the site (16.5±0.6‰[1σ]), and beyond both the expected local range and the predicted 

range of British values (as defined in Chenery et al. 2010; Evans et al. 2012). Although 

visual assessment did not suggest the sample should be excluded from analysis due to 

bacterial action and collagen yielded from the same sample met quality indicators 

(suggesting good preservation), post-mortem chemical (diagenetic) alteration of the 

sample could account for this high value. Alternatively, this individual may be a recent 

migrant to the area from a region with 18O-enriched water values, where bone phosphate 

has not yet adjusted to the local values. A further explanation could be that this 

particular individual’s drinking water was consistently influenced by some particular 

culinary practice prior to ingestion. Recently, new experimental data have 

demonstrated that culturally-mediated behaviours – such as boiling, stewing and 

fermentation – can influence the isotopic composition of ingested fluids and thus 

potentially serve to influence body water (and, consequently, body tissue) values, 

causing them to deviate from local expected drinking water values (Brettell et al. 2012). 
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Experimentally stewed, boiled and brewed liquids have all demonstrated a resultant 

enrichment in the heavier isotope, to varying degrees (Brettell et al. 2012). Where such 

products contributed to, or even dominated fluids ingested, a subsequent enrichment 

should be anticipated in co-forming tooth enamel or bone bioapatite. Other fermented 

beverages, such as wine could induce a similar enrichment, along with ruminant milk 

(sheep/goats and cows) which is also 18O-enriched relative to local water by ~2-4‰ 

(e.g. D'Angela and Longinelli 1990; Fricke and O'Neil 1996; Lin et al. 2003; Camin et 

al. 2008). However, bone collagen δ15N and δ13C values from this individual (8.4‰ 

and -19.6‰, respectively) fit well with adult mean values at Wharram Percy 

(δ15N=8.6±1.3‰, δ13C=-19.7±0.4‰), and do not suggest a dietary difference (at least 

in terms of source of dietary protein). Further study of this individual, for example 

utilising oxygen and strontium isotope analyses of tooth enamel or sulphur isotope 

analysis of bone collagen (both useful in identifying potential immigrants) may help to 

further illuminate the migration history of this individual. 

 

DISCUSSION 

 The results of this study strongly suggest that the analysis of oxygen isotope 

ratios in bone phosphate can be used as an indicator of approximate weaning age in 

archaeological populations, and are consistent with evidence from limited previously-

published studies (i.e. White et al. 2004). Unlike the nitrogen isotope analysis of bone 

collagen, this approach does not rely on the preservation of proteins and could 

potentially be applied where collagen cannot be yielded from archaeological bones (e.g. 

at older sites, or sites in warmer regions where collagen is not preserved). Although, 

we propose the lower δ18Op values observed from the age of approximately 2-3 years 

in the infants of Medieval Wharram Percy does ultimately represent the cessation of 
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breastfeeding (suggesting weaning commenced before this point), there is some 

discrepancy between the bone δ18Op values and bone δ15Ncoll data. A (predicted) slower 

rate of turnover in the mineral phase, due to the synthesis of the organic matrix being 

faster than the mineralization process during ontogeny (Tsutaya and Yoneda 2013: 

e72327[2]), could account for this disparity. Beyond this, however, although both 

elevated δ15Ncoll and δ18Op values are found in younger individuals (associated with 

age) and are both likely associated with weaning not yet being complete, it must be 

noted that the mechanisms that induce elevated values in these two systems are different 

(reflecting primary protein source, and primary water source respectively) and are not 

mutually dependant. Nitrogen isotope values of bone collagen reflect the source of 

dietary protein, so could vary with the introduction of new weaning foods, for example, 

while breastfeeding may still be ongoing (inducing lower δ15N values, but still elevated 

δ18Op values). Inter-individual variation in when (and what type) of complementary 

foods were introduced, along with when breastfeeding finally ceased to be the primary 

source of fluids, could compound any discrepancies in δ15Ncoll and δ18Op values due to 

differences in bone collagen/bone mineral tissue formation times. Patterns of variation 

in lactation and complementary feeding prior to weaning are well-documented in 

modern human groups, both between and within different natural fertility/non-

industrialised populations (e.g. Sellen 2001; Kennedy 2005). Some Medieval literary 

sources hint at variation in practices, for example, recommending that boys be weaned 

from the breast 6-12 months later than girls (Fildes 1986: 45-58, 66). The continuation 

of breastfeeding may or may not preclude the consumption of other foods at any point 

after the first few months of life, and this could also account for such within group 

variation. The nature and length of the weaning process itself, therefore, must be 

considered as this could induce a more gradual or more rapid isotopic shift in either or 
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both systems, as could the nature of the peri- and post-weaning diet itself. There is 

evidence to suggest, for example, that the consumption of ruminant milk was 

recommended for the young in the Medieval period (Brettell et al. 2012: 782 and 

references therein), which is also 18O-enriched relative to local water (Lin et al. 2003) 

and could induce elevated δ18Op values, particularly if heated (Brettell et al. 2012: 782). 

Often consumed with plant-based foods, such as bread or cereals (for example, as pap; 

Brettell et al. 2012: 782), this could be matched with a subsequent decrease in bone 

collagen δ15N. Finally, regarding δ15N, factors other than diet have been demonstrated 

to influence tissue δ15N values, such as physiological or nutritional stresses, which can 

effect protein metabolism and nitrogen elimination, and therefore influence the δ15N 

values of developing proteins in growing infants in the months before death (Fuller et 

al. 2004, 2005; Hauber et al. 2005; Huelsemann et al. 2009; Mekota et al. 2006). While 

the results of this study demonstrate an apparent shared trend in elevated δ18Op and 

δ15Ncoll in early infancy (pre-weaning), factors that dictate the δ15N values of growing 

tissues are entirely different systems from those that result in 18O-enrichment in co-

forming bioapatites.  

 Similarly, although bone δ18Op values represent averaged long-term inputs, 

given that body water δ18O (and therefore breast milk δ18O) could reasonably be 

influenced by seasonal changes in the δ18O of drinking water, birth timing and time of 

death could influence δ18O in perinates/neonates and young infants undergoing rapid 

growth/tissue mineralization. The range of bone δ18Op values in the perinates/neonates 

may be due to such a seasonal influence, which may also account for the range of values 

observed in the infants, and the slightly higher standard deviation in this group (±0.8‰) 

compared to the older children (±0.4‰) and adults (±0.6‰). Although an adult’s bone 

δ18Op represents years of averaged input, a mother’s blood during pregnancy and post-
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partum (during lactation) could be liable to change seasonally, depending on 

geographical location and water source, influencing the body water δ18O of prenatal or 

neonatal offspring. 

 While the ‘bulk’ sampling of bone provides a longer-term averaged isotopic 

value, serial-sampling of teeth is being increasingly employed to reconstruct more 

detailed time-series or seasonal trends in isotopic inputs in archaeological humans and 

animals. Although not undertaken as part of this study, such an approach to human 

tooth enamel (in combination with phosphate oxygen isotope analysis) has the potential 

to provide a higher resolution record of weaning age in archaeological individuals. 

Analysis of a small number of deciduous and adult teeth from selected individuals 

confirm that high δ18O values in early childhood is likely due to infants consuming 18O-

enriched breast milk, as previously suggested and observed in other studies on tooth 

enamel carbonate (e.g. Wright and Schwarcz 1998, 1999). However, given the 

relatively small difference between mean infant (<3.5 yrs) and adult bone phosphate 

values at Medieval Wharram Percy (~1.2‰), and the fact that meteoric water at any 

given location varies seasonally (and pronouncedly, especially at mid- to high-latitude 

regions), it seems likely that – unless a water source is isotopically-constant across all 

seasons – natural seasonal variation in a particular region may serve to obscure the more 

subtle differences in enamel δ18Op due to weaning. Few sequential oxygen isotope 

studies have been undertaken on human teeth to date, compared to herbivores for 

example, and more studies would be required to better understand how sequentially-

sampled human enamel reflects seasonal ‘baseline’ differences in water before these 

methods could be employed with greater confidence to identify weaning age in 

archaeological teeth. For example, the sequential-sampling and oxygen isotopic 

analysis of tooth enamel from multiple successively-forming teeth (e.g. whole tooth 
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rows) from single individuals, along with bone, might help to illuminate this. Co-

analysis of δ18O, both sequential and ‘bulk’, in herbivore tooth enamel (from obligate 

drinkers, such as horse or cattle) from the same site in such a study could also serve to 

provide a seasonal and local ‘baseline’ and highlight any anthropogenic modifications 

of drinking water. 

However, one clear constraint associated with the δ18O analysis of human tooth 

enamel that must be highlighted is the lack of human birth seasonality. Whereas birth 

season (which of course influences the trend of peaks and troughs in intra-tooth δ18O 

patterns) can be reasonably predicted in wild and domestic herbivores (aside from in 

instances of certain animal husbandry practices, e.g. Balasse et al. 2003; Balasse et al. 

2012a, 2012b; Blaise and Balasse 2011), this is not the case with humans. Furthermore, 

the periodicity, directionality and structural geometry of human crown mineralisation 

is currently poorly understood and likely presents additional challenges to the gaining 

of time-series isotopic information compared to hypsodont teeth. These uncertainties 

also have implications for enamel sampling procedures in mobility/palaeoclimatic 

studies using oxygen isotope analysis, in both humans and other species. Unless the 

periodicity of tooth mineralisation can be reasonably estimated, and the amount of 

enamel sampled is representative of a sufficiently long (i.e. annual) period of growth 

(and thus isotopic inputs), a ‘seasonal bias’ (with consequently low or high δ18O) could 

lead to the false identification of lifetime mobility or a lack thereof. Similarly, in 

palaeoclimatic studies, such an approach would result in falsely low or high ‘mean 

annual’ temperature reconstructions and/or a high amount of inter-sample variability. 

The slight differences in the δ18O of canines and third permanent molars from the same 

individuals observed in this study (as well as inter-individual differences in the same 

teeth, se Figure 3 and Table 2) are likely the product of such seasonal or inter-annual 
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differences in isotopic inputs, ‘fixed’ in tissues forming over a restricted period which 

do not undergo modification (i.e. enamel). Further studies, exploring inter-individual 

differences, as well as intra-tooth differences in the same individual, will provide useful 

additional data and help to define the parameters/constraints for sampling human tooth 

enamel for weaning, mobility or palaeoclimatic studies. 

 In addition to suggesting the use of δ18O in bone phosphate to reconstruct 

breastfeeding and weaning habits in archaeological populations, the data from adults at 

Wharram Percy also demonstrate the potential for the method to be used as a 

palaeoclimatic proxy indicator, as adult bone phosphate values at the site largely 

correlate with those predicted from local patterns of precipitation and those suggested 

from other regional studies. However, although most of the adult Medieval samples 

from Wharram Percy are consistent with being local, the single adolescent outlier does 

highlight an important issue. Given that recent studies have indicated that culture-

specific culinary and dietary practices can serve to influence the values of ingested 

water (Daux et al. 2008; Brettell et al. 2012), thus potentially influencing the stable 

oxygen isotope composition of resultant tissues, such outliers cannot simply be 

presumed to be non-local. For example, Daux et al., argue that solid food consumption 

(using modern cooking processes) influence the δ18O of ingested water by up to 1.2‰ 

compared to drinking water (2008: 1145). Similarly, Brettell et al. (2012: 782) predict 

ingested fluids comprising 20% ale, 10% (boiled) ‘teas’ and 20% stews could influence 

bioapatite values by +2.3‰. In light of this, while it is unlikely this single individual 

had a unique diet, were elevated values (beyond that expected from the range of local 

water values) observed in more or all adult individuals at a site, this may not evidence 

a high rate of immigration from more exotic climes but rather a community drinking 

culturally-modified fluids (i.e. local water prepared in a manner as to significantly alter 
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its oxygen isotope ratio, and consumed in sufficient quantities relative to plain water to 

influence body tissue values). Such considerations urge caution in the use of human 

bone (or indeed, tooth) phosphate, as a palaeoclimatic proxy indicator or to determine 

provenance in archaeological or modern populations. Furthermore, sources of oxygen 

isotope fractionation as part of the respiratory cycle have been demonstrated to be 

influenced by certain physiological, metabolic and environmental factors including 

habitual smoking (Epstein and Zeiri 1998), engaging in regular exercise (Zanconato et 

al. 1992; Epstein and Zeiri 1998; Widory 2004), and iron-deficiency and sickle-cell 

anaemia (Zanconato et al. 1992; Epstein and Zeiri 1998; Reitsema and Crews 2011). 

Although the majority of bodily oxygen is gained from drinking water (~55% as 

experimentally determined in rats, Podlesak et al. 2008), the potential for these or other 

(particularly metabolic) conditions to influence the tissue oxygen isotope chemistry of 

an individual is unknown and more research is evidently required. Infant WCO104 (s-

eva-16808) is the only other individual analysed to demonstrate such elevated δ18Op 

values, exceeding the adult mean and also elevated compared to other infants, which 

may suggest the influence of some physiological or metabolic condition in this 

individual. It should be noted that both individuals, NA185 and WCO104, exhibit δ13C 

and δ15N values within 1σ of the adult and infant means respectively, not evidencing 

any unusual dietary or metabolic conditions (or, at least not any that are evidenced in 

bone collagen δ13C and δ15N values). It is recommended that, ahead of further 

interpretation, whether or not these individuals were potential immigrants should first 

be excluded through co-analysis with other isotopes, such as strontium in the case of 

tooth enamel or sulphur isotope analysis in bone collagen. 

 Lastly, although in this instance both the infant and adult bone phosphate data 

(and their correlation with tooth phosphate and regional environmental oxygen isotope 
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values) suggest that the oxygen isotope measurements are indicative of in vivo oxygen 

isotope values at Medieval Wharram Percy, the potential for diagenetic alteration in 

bone phosphate samples remains problematic for the broader application of this 

technique and elicits caution. While mineral integrity suggests diagenetic alteration in 

samples analysed from Wharram Percy is unlikely (Mays 2003), histological analysis 

suggests some microbial attack (Nielsen-Marsh and Hedges 2000), and there are no 

widely-used and universally-accepted quality control indicators or precautions for the 

avoidance of diagenetically-altered samples currently employed for this method akin to 

those employed for bone collagen studies (Ambrose 1990; van Klinken 1999). The 

success of further applications may be dependent on the further development of 

standardised protocols to identify and exclude potentially compromised samples, or the 

application of existing experimental approaches; for example, the systematic (albeit 

potentially species-variable) oxygen isotope partitioning between phosphate and 

carbonate in bioapatite (e.g. Bryant et al. 1996b; Iacumin et al. 1996; Zazzo et al. 2004b; 

Pellegrini et al. 2011; France and Owsley 2013). Carbonate and phosphate oxygen 

isotope data in modern mammalian bone are highly correlated (r2=0.98; Iacumin et al. 

1996), and deviations could indicate diagenetic change. Future analysis of oxygen 

isotope ratios (whole bone and tooth enamel, carbonate) of the samples included in this 

study will likely provide useful comparative data and illuminate this issue. 

 

CONCLUSIONS 

 In this study, elevated oxygen isotope values were observed in bone phosphate 

in young infants from the Medieval site of Wharram Percy, England; after the age of 

approximately 3 years old, child bone δ18Op values are >1‰ lower and close to the 

adult mean value. On the whole, bone δ18Op values of adults from Medieval Wharram 
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Percy reflect the range that could be expected for local individuals. The δ18Op changes 

occurring in early childhood are attributed to the cessation of breastfeeding, as the main 

source of ingested water shifts from breast milk to local drinking water. Although 

uncertainties concerning the rate of bone turnover and the length/nature of the Medieval 

weaning process in early childhood necessitate a degree of unavoidable (and perhaps, 

in light of the complex nature of the human process being explored, advisable) 

imprecision, the results of this study strongly suggest that the analysis of oxygen isotope 

ratios in bone phosphate can be used as an indicator of approximate weaning age in 

archaeological populations. Although the disparities between ‘bulk’ bone δ15Ncoll and 

δ18Op indications of weaning age are not fully understood, we suggest that δ18Op data 

provides important alternative lines of enquiry, and likely evidences different aspects 

of the weaning process. Wherever possible, we would advocate the determination of 

both δ15N values of bone collagen and bone δ18Op values in the same individuals in 

future studies, in order to provide corroborating lines of evidence and to better explore 

the complexity of the weaning process, through the examining both protein source 

(δ15N) and source of ingested fluids (δ18O). However, the results of this study do 

confirm that the investigation of past weaning practices using archaeological bone 

samples need not be dependent on protein preservation (as with δ15Ncoll analysis) and 

that bone δ18Op analysis can be applied where collagen cannot be yielded (e.g. at older 

sites, or sites in warmer regions where collagen is often poorly preserved). 
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Figure Legends: 

Figure 1: Map of Yorkshire showing location of the deserted Medieval village 

Wharram Percy (based on Beresford and Hurst 1990: 16, Figure 1). 

 

Figure 2: Oxygen isotope composition of bone phosphate (y-axis) in infants and 

children under 12 years of age (x-axis) at Wharram Percy, showing nitrogen isotope 

composition of bone collagen from the same individuals (secondary y-axis; collagen 

data from Richards et al. 2002). Polynomial (non-linear) regressions and correlation 

coefficients are shown (δ18O and age=solid line; δ15N and age=dotted line). Local water 

range is depicted in the area between solid horizontal lines and is taken from Darling et 

al. (2003), converted to estimated bioapatite values following recommendations in 

Daux et al. (2008: 1143, equation 6). The mean value ‘local’ human tooth enamel 

(±2σ), measured at the proximal Anglo-Saxon site of West Heslerton is depicted in the 

area between dashed horizontal lines (from Budd et al. 2004, recalculated in Chenery 

et al. 2010: 161). 

 

Figure 3: Tooth and bone oxygen phosphate data from selected individuals from 

Wharram Percy, including deciduous second molars and rib bone from three children, 

and permanent canines, third molars and rib bone from three adults. Approximate 

crown formation times for teeth are shown (Garn et al. 1962; Gustafson and Koch 1974; 

Anderson et al. 1976; Levesque et al. 1981). Burial References: 1=WCO97; 2=NA79; 

3=NA31A; 4=G443; 5=G635; 6=G643 (connecting lines and arrows denote materials 

from the same individuals). Local water range is depicted in the area between dashed 

lines and is taken from Darling et al. (2003), converted to estimated bioapatite values 

following recommendations in Daux et al. (2008: 1143, equation 6). The mean value 
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‘local’ human tooth enamel (±2σ), measured at the proximal Anglo-Saxon site of West 

Heslerton is depicted in the area between dashed horizontal lines (from Budd et al. 

2004, recalculated in Chenery et al. 2010: 161). 

 

Figure 4: Oxygen isotope composition of bone phosphate of infants, children, unsexed 

juveniles, adult females and adult males from Wharram Percy, plotted against age 

(years). Local water range is depicted in the area between dashed lines and is taken 

from Darling et al. (2003), converted to estimated bioapatite values following 

recommendations in Daux et al. (2008: 1143, equation 6). The mean value ‘local’ 

human tooth enamel (±2σ), measured at the proximal Anglo-Saxon site of West 

Heslerton is depicted in the area between dashed horizontal lines (from Budd et al. 

2004, recalculated in Chenery et al. 2010: 161). 

 

Figure 5: Nitrogen isotope composition of bone collagen (x-axis) and oxygen isotope 

composition of bone phosphate (y-axis) of infants (<3.5 yrs), children (4-12 yrs) and 

adults (>18 yrs) from Wharram Percy. Linear regressions and correlation coefficients 

(δ15N and δ18O) are shown for each data series (infants=black line; children=dashed 

line; adults=grey line). 
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Table 1. Stable oxygen isotope values (δP

18
PORpR [‰]) for bone phosphate from Medieval Wharram Percy. Note: asterisk (*) denotes where mean values 

and standard deviations are calculated from duplicate rather than triplicate measurements. Stable carbon (δP

13
PC) and nitrogen (δP

15
PN) data for bone 

collagen from the same individuals are also presented (collagen previously-published as data in figures in Richards et al. 2002). 

Burial No. S-Eva No. Age Age (yrs) m/f δP

13
PC δP

15
PN Mean 

δP

18
PORpR 

(‰) 

Stdev (±1σ) 

G492 16802 41 weeks (in utero) 0.0 - -20.1 10.4 17.1 0.1  
NA220 16803 42 weeks (in utero) 0.0 - -19.2 10.2 17.7 0.2  
G470 16804 44-46 weeks (in utero) 0.0 - -18.8 10.9 17.9 0.2  
G579 16805 46-48 weeks (in utero) 0.0 - -18.5 11.8 17.2 0.1  
WCO104 16808 3 months 0.3 - -19.8 10.3 19.7 0.1 * 
NA191 16809 3 months 0.3 - -19.4 10.9 18.7 0.2  
G534 15327 3-5 months 0.3 - -19.6 12.0 18.2 0.2 * 
NA194 16810 4-6 months 0.4 - -18.8 10.8 18.0 0.0 * 
WCO042 16812 6 months 0.5 - -19.8 10.1 18.7 0.2 * 
NA119 16813 6 months 0.5 - -20.5 10.4 17.4 0.1 * 
NA231 16814 6 months 0.5 - -18.2 11.5 17.2 0.2 * 
NA050 16815 8-9 months 0.7 - -19.8 12.9 17.7 0.0 * 
EE068 15326 9 months 0.8 - -18.9 12.4 18.5 0.0 * 
NA107 16816 9 months 0.8 - -18.8 11.8 18.4 0.1  
V31 16817 10 months 0.8 - -19.7 11.0 18.6 0.1 * 
EE048 16818 10-12 months 0.9 - -19.1 10.3 17.0 0.1 * 
WCO085 16819 1 year 1.0 - -19.1 8.3 17.1 0.3  
NA164 16820 1 year 1.0 - -20.0 12.0 18.5 0.0 * 
G522 16822 15 months 1.3 - -19.7 11.6 17.3 0.0 * 
NA037 16823 1-1.5 years 1.3 - -20.6 9.9 17.9 0.0 * 
NA028  16821 1.5 years 1.5 - -19.2 11.2 17.3 0.1  
G327 16824 1.5 years 1.5 - -19.1 12.3 16.6 0.1 * 
EE057 16825 2 years 2.0 - -20.1 8.3 17.5 0.1 * 
G298 16826 2 years 2.0 - -19.4 11.0 16.6 0.2 * 
WCO072 16827 2 years 2.0 - -19.7 8.3 18.3 0.1 * 
SA055 16828 2-2.5 years 2.3 - -20.0 7.1 17.0 0.2 * 
G339 16829 2.5 years 2.5 - -19.9 9.1 16.5 0.0 * 



G363 16830 2.5 years 2.5 - -19.6 8.9 17.1 0.4  
NA031A 16831 2.5 years 2.5 - -20.2 8.9 17.2 0.1 * 
NA079 16832 3 years 3.0 - -20.2 8.4 18.2 0.0 * 
WCO002 16833 3 years 3.0 - -19.2 7.9 18.5 0.1 * 
G576 16834 3-3.5 years 3.3 - -20.4 9.2 17.5 0.0 * 
NA219 16835 4 years 4.0 - -19.5 8.5 17.4 0.1 * 
EE069 16836 4-5 years 4.5 - -19.9 6.3 17.2 0.2 * 
WCO97 16837 5 years 5.0 - -19.3 7.7 17.1 0.2  
G614 16838 5-6 years 5.5 - -20.2 7.9 16.3 0.3 * 
G424 16840 6-7 years 6.5 - -19.8 8.5 16.7 0.1 * 
NA23 16811 7 years 7.0 - -19.1 8.4 16.9 0.3 * 
EE065 16841 7-8 years 7.5 - -20.6 7.1 17.2 0.2  
EE066 16842 8-9 years 8.5 - -20.2 9.6 16.8 0.1 * 
WCO140 16843 9 years 9.0 - -20.3 8.0 16.4 0.2  
G500 15329 9-10 years 9.5 - -20.4 7.2 16.3 0.2 * 
EE072 16844 10 years 10.0 - -20.9 8.7 17.3 0.2  
G658 15328 11 years 11.0 - -20.1 6.9 16.8 0.2 * 
NA185 17034 16.5 years 16.5 - -19.6 8.4 19.6 0.1 * 
WCO092 17036 17-18 years 17.5 - -19.6 7.7 16.9 0.3 * 
EE036 16845 18 years 18.0 m -19.6 8.5 16.1 0.3  
G635 16846 21years 21.0 f -19.6 8.6 15.9 0.2  
G443 16848 21-24 years 22.5 f -19.4 8.6 16.2 0.0 * 
G597 15330 21-25 years 23.0 f -20.1 6.6 16.4 0.1 * 
SA002 16850 22-24 years 23.0 m -20.1 6.0 17.2 0.1 * 
G760 16852 25 years 25.0 f -19.9 8.2 15.1 0.1  
EE003 16856 25-35 years 30.0 m -20.4 9.0 17.3 0.1  
G643 16857 25-35 years 30.0 f -20.2 8.4 16.8 0.0 * 
SA014 16858 25-35 years 30.0 f -19.2 9.0 17.0 0.1 * 
G416 16859 25-35 years 30.0 f -19.6 9.8 16.2 0.1  
G746 16861 30-40 years 35.0 f -19.3 6.7 16.6 0.1  
NA059 16860 35-45 years 40.0 m -20.2 8.7 16.3 0.2 * 
EE067 16863 30-50 years 40.0 m -19.6 8.1 16.6 0.1  
V51  16864 40-50 years 45.0 m -19.2 10.6 17.0 0.0 * 



 
 

NA046 16869 50+ years 50.0 f -20.1 11.0 16.1 0.1 * 
G636 16870 50+ years 50.0 f -19.9 9.1 16.9 0.1  
SA034 16871 50+ years 50.0 m -18.7 10.3 17.0 0.1 * 



Table 2. Stable oxygen isotope values (δP

18
PO [‰]) for tooth phosphate from Medieval Wharram Percy. Note: asterisk (*) denotes where mean 

values and standard deviations are calculated from duplicate rather than triplicate measurements.  
 
 Burial No. S-Eva No. Tooth Mean δP

18
PO (‰) Stdev (±1σ) 

WCO97 17915 Deciduous Second Molar 18.5 0.2 * 
NA079 17918 Deciduous Second Molar 18.0 0.1 * 
NA031A 17919 Deciduous Second Molar 18.0 0.1 * 
G443 17908 Permanent Canine 16.7 0.1  
 17907 Third Molar 17.3 0.2 * 
G635 17910 Permanent Canine 17.1 0.0 * 
 17909 Third Molar 17.5 0.0  
G643 17912 Permanent Canine 18.0 0.3 * 
 17911 Third Molar 16.9 0.2 * 
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