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Summary
In fungi, as with all walled organisms, cytokinesis followed by septation marks the end of the cell cycle and is essential for cell division
and viability. For yeasts, the septal cross-wall comprises a ring and primary septal plate composed of chitin, and a secondary septum

thickened with b(1,3)-glucan. In the human pathogen Candida albicans, chitin synthase enzyme Chs1 builds the primary septum that is
surrounded by a chitin ring made by Chs3. Here we show that the lethal phenotype induced by repression of CHS1 was abrogated by
stress-induced synthesis of alternative and novel septal types synthesized by other chitin synthase enzymes that have never before been

implicated in septation. Chs2 and Chs8 formed a functional salvage septum, even in the absence of both Chs1 and Chs3. A second type
of salvage septum formed by Chs2 in combination with Chs3 or Chs8 was proximally offset in the mother-bud neck. Chs3 alone or in
combination with Chs8 formed a greatly thickened third type of salvage septum. Therefore, cell wall stress induced alternative forms of

septation that rescued cell division in the absence of Chs1, demonstrating that fungi have previously unsuspected redundant strategies to
enable septation and cell division to be maintained, even under potentially lethal environmental conditions.
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Introduction
In fungi and other walled organisms, successful reproduction via

cell division requires accurate partitioning of cellular components

via cytokinesis and septation. Interdiction of this process

represents a major chemotherapeutic opportunity for the control

of pathogens and so an understanding of the regulation of

cytokinesis and septation is an important endeavour in

microbiology. Relative to our understanding of cell cycle

regulation, our knowledge of the vital process of septation in

fungi is rudimentary. Candida albicans is the major human

fungal pathogen and is responsible for a range of superficial

mucosal infections and, in immunocompromised patients, can

lead to life-threatening systemic infections (Gow et al., 2012).

The cell wall of C. albicans is vital for the viability, shape and

interactions of this fungus with its host and the synthesis of the

lateral cell wall and the cross-wall/septum is essential in both the

yeast and filamentous forms of this pleomorphic fungus (Douglas

et al., 1997; Munro and Gow, 2001; Klis et al., 2002; Roncero,

2002; Ruiz-Herrera et al., 2002; Denning, 2003; Klis et al.,

2006).

The main structural components of fungal cell walls

responsible for maintaining cell wall integrity are chitin and

b(1,3)-glucan (Sudoh et al., 2000; Munro and Gow, 2001; Klis

et al., 2002; Roncero, 2002; Ruiz-Herrera et al., 2002; Klis et al.,

2006; Lenardon et al., 2010). During cell division, yeast cells

synthesize a chitin-rich septum which acts as a stabilizing barrier

between the mother and daughter cell (Cabib et al., 1989; Cabib,

2004). C. albicans has four chitin synthase enzymes – Chs1,
Chs2, Chs3 and Chs8 (Munro and Gow, 2001; Lenardon et al.,

2010), of which only Chs1 and Chs3 participate in canonical
septum formation (Munro et al., 2001), although all four chitin

synthases are present at septation sites prior to cytokinesis
(Lenardon et al., 2007). Chs1 synthesizes the primary chitinous

septal plate and its action is essential for viability under normal
growth conditions in both the yeast and hyphal forms (Munro

et al., 2001). Chs3 synthesizes a chitin ring at the incipient bud
site which subsequently acts as the cellular navigation point for

septum formation. Null mutants lacking Chs3 are viable but have

very low cell wall chitin contents (Bulawa et al., 1995). Chs2 and
Chs8 account for .90% of in vitro chitin synthase activity (Gow

et al., 1994; Munro et al., 1998; Munro et al., 2003), are normally
non-essential, but are strongly upregulated in response to cell

wall stress such as treatment with echinocandin antifungals
(Munro et al., 2007; Walker et al., 2008).

The synthesis of the septum and cell wall must be regulated
carefully to ensure that, at cytokinesis, dividing cells do not lyse

due to the action of chitinase and glucanase enzymes which
partially degrade the completed septum allowing cell separation

of the mother and daughter cells to take place (Cabib et al., 1989;
Cabib, 2004). Chitin synthesis is therefore critical for septation

and growth of C. albicans and is essential for viability of all fungi
thus far investigated (Bulawa, 1993; Munro and Gow, 1995;

Popolo et al., 1997; Munro et al., 2001). Hence, an antifungal
drug that specifically targets the essential septum-synthesizing

CaChs1 was generated by Roche (RO-09-3143), but this was
only fungicidal in a chs2D mutant background (Sudoh et al.,

2000).
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Much of the molecular detail regarding cytokinesis and
septation in yeast has been dissected in studies of

Saccharomyces cerevisiae. During vegetative growth, the
septins form a ring or collar through which the bud emerges
(Gladfelter et al., 2001; Versele and Thorner, 2004) and act as a
scaffold for cell division, recruiting key proteins to septation sites

(Gladfelter et al., 2001). These include ScMyo1, which is
recruited shortly after bud emergence and in turn recruits actin,
facilitating the assembly of the contractile actomyosin ring (Bi

et al., 1998; Lippincott et al., 2001; Oh and Bi, 2011), and
ScChs3, which is tethered to the septin ScCdc10 via interactions
with ScBni4, ScChs4 and ScGlc7 (DeMarini et al., 1997; Larson

et al., 2008) and lays down a chitin ring at the mother-bud neck
prior to cytokinesis (Shaw et al., 1991). At mitotic exit, the
septins split into two rings, one on either side of the mother-bud
neck (Cid et al., 2001; Lippincott et al., 2001), and ScChs2

(equivalent to the C. albicans Chs1 enzyme) is dephosphorylated
by ScCdc14 and transported from the endoplasmic reticulum to
the mother bud-neck (Zhang et al., 2006; Chin et al., 2012;

Meitinger et al., 2010). As the actomyosin ring contracts, it
invaginates the plasma membrane and chitin synthesized by
ScChs2 forms the primary septum (Silverman et al., 1988;

Schmidt et al., 2002; Meitinger et al., 2010). ScChs2 stabilizes
the actomysin ring during contraction (VerPlank and Li, 2005).
The b-glucan-rich secondary septum is then synthesized.

ScCHS2 was initially reported as an essential gene as in its
absence cells failed to form septa or divide (Silverman et al.,
1988). Later studies demonstrated that in a different strain
background, Scchs2 mutants could form thickened, aberrant septa

that lacked a primary septum and which were synthesised by
ScChs3. In addition, mutations in ScMYO1, which encodes
myosin I which forms the contractile septal ring, also could form

thickened aberrant septa (Schmidt et al., 2002). Therefore, cells
deficient in ScCHS2 compensated for the loss of a primary
septum by activating ScChs3 to form a salvage septum (Bulawa

and Osmond, 1990; Shaw et al., 1991). In contrast, strains lacking
ScChs3 had thin septa compared to the wild-type and were able to
synthesise a primary septum (Shaw et al., 1991). In S. cerevisiae,
CHS1 was the only chitin synthase that was unable to compensate

for the loss of the other chitin synthase genes and as a result
a Scchs2DScchs3D double mutant was reported as being
synthetically lethal (Shaw et al., 1991).

In C. albicans the septins Cdc3, Cdc10, Cdc11 and Cdc12
appear to be organized and function similarly to those of
S. cerevisiae (Gladfelter et al., 2001; Gladfelter and Sudbery,

2008). In C. albicans, Chs1 and Chs3 apparently perform the
equivalent septation functions to ScChs2 and ScChs3, although
Chs1 also appears to be necessary for the stability of the lateral

cell wall of both yeasts cells and hyphae (Munro et al., 2001). In
filamentous fungi such as Wangiella dermatitidis and Aspergillus

nidulans, disruption of individual chitin synthases had no effect
on growth suggesting that mechanisms may exist that can

compensate for the loss of individual Chs enzymes. Simultaneous
disruption of multiple enzymes, however, was either lethal, or
resulted in poor growth and the formation of aberrant septa

(Motoyama et al., 1994; Motoyama et al., 1997; Ichinomiya et al.,
2005; Zheng et al., 2006).

Chitin synthesis is regulated by the Ca2+/calcineurin, PKC and

HOG signaling pathways (Munro et al., 2007). Treating
C. albicans yeast cells with a combination of CaCl2 and
Calcofluor White (CFW) activates the Ca2+/calcineurin and

PKC pathways and results in stimulation of chitin synthesis
(Munro et al., 2007). This stimulation of chitin synthesis protects
C. albicans from an otherwise lethal concentration of

caspofungin (Walker et al., 2008; Lee et al., 2012), and is
capable of restoring viability to cells, even in the absence of Chs1
and Chs3, through formation of septa, which are dependent on

the activity of the remaining chitin synthases (Walker et al.,
2008). Here we show that the activation of these stress pathways
resulted in the synthesis of as many as three morphologically

distinct forms of novel salvage septa, all of which were
architecturally distinct from the canonical septum formed under
non-stressed conditions. These salvage septa restored the
capacity for budding in the absence of the Chs1 enzyme and

were synthesized by residual combinations of chitin synthase
enzymes that have not previously been implicated in septation.
These results suggest that fungi have redundant cytokinesis and

septation strategies that enable cell division to continue under
conditions of cell wall stress.

Results
Redundant septation strategies in the absence of Chs1

Canonical septation of yeast and hyphal cells of C. albicans

involves the activity of two chitin synthases, Chs1 and Chs3, under
non-stressed conditions (Fig. 1A), Chs1 is essential for septation
and viability (Munro and Gow, 2001). Exposure to RO-09-3143,
the Chs1 inhibitor resulted in swollen, septum-less chains of cells

that eventually lysed at the growing apex (Fig. 1B–G0) (Sudoh
et al., 2000), which phenocopied the effect of the conditional chs1

mutant (Munro et al., 2001). However, if such cells were treated

with CaCl2 and CFW, as agonists of the cell wall salvage
pathways, novel septa were formed that restored the capacity for
cell division (Fig. 1H–K,M). These septa were therefore

hypothesized to be fabricated by one or more of the residual
three Chs enzymes – Chs2, Chs3 and Chs8.

To determine which Chs enzymes were involved in the
formation of salvage septa, we then examined septum formation
in chsD mutant strains grown in the presence of the Chs1 inhibitor,

RO-09-3143. The chsD mutant cells pre-grown either on YPD or
YPD with CaCl2 and CFW were exposed to the Chs1 inhibitor for
6 hours. The cells were then examined by fluorescence

microscopy after staining with CFW to visualize chitin. The
Chs1 inhibitor prevented septum formation resulting in the
formation of swollen, septum-less chains of cells (Fig. 1C–G).

Pre-growth of the chsD mutants in medium containing CaCl2 and
CFW for 6 hours prior to addition of the Chs1 inhibitor abrogated
chain formation and induced formation of salvage septa which

stained brightly with CFW (Fig. 1I–K,M), compared to untreated
wild-type septa (Fig. 1A). The exception was the chs2Dchs3D
mutant, which could not be stimulated by pre-growth with CaCl2
and CFW to synthesize salvage septa in the presence of RO-09-

3143 (Fig. 1L). Therefore chitin synthesis by Chs8 alone was not
sufficient to form a salvage septum upon stimulation of the cell
wall salvage pathways and cell division did not occur.

Morphogenesis of C. albicans salvage septa

Electron microscopy distinguished four septa types, including
three novel salvage septa classes, that were formed using different
combinations of Chs enzymes to compensate for repression of

CHS1 or inhibition of Chs1 (Fig. 2A–C). In wild-type cells, a
trilaminate septum was formed composed of a primary septum
synthesized by Chs1 surrounded by a chitin ring synthesized by

Stress-induced septation strategies 2669
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Chs3 between the two secondary septa composed of b-glucan

(Fig. 2Aa,g; Fig. 2Ba,Ca). Treatment of a conditional C. albicans

mutant that lacked both Chs1 and Chs3 with CaCl2 and CFW

resulted in the formation of a proximally offset salvage septum that

appeared unilaminate in transmission electron micrographs

(TEMs) (Fig. 2Ab,h,Cb). Cells containing Chs3 alone

(chs2Dchs8D + Chs1 inhibitor) were capable of forming a thick,

amorphous salvage septum, after pre-growth with CaCl2 and CFW

(Fig. 2Ac,i). These thickened salvage septa left chitin rich deposits

within the cell wall after cell division (Fig. 1I,M; Fig. 2Ac).

Similarly, treatment with CaCl2 and CFW stimulated Chs3 in

combination with Chs2 or Chs8 to produce different forms of

salvage septa (Fig. 2Ad–e,j–k).

Staining of TEM sections with wheat germ agglutinin (WGA)

conjugated to colloidal gold revealed the salvage septa contained

chitin (Fig. 2Bb). Controls for non-specific binding of colloidal gold

using Goat anti-Mouse (Fab9)2 conjugated to colloidal gold were

negative (not shown). Therefore, the salvage septum formed in the

absence of both Chs1 and Chs3 contained chitin that was

synthesized by Chs2 and/or Chs8. These septa were proximally

offset 0.5760.16 mm (n530) towards the daughter cell. Likewise,

the thick salvage septum synthesized in cells containing Chs3 alone

or in combination with Chs8 were chitin rich (Fig. 2Bc,e,Cc). The

Chs2/Chs3 salvage septa were also offset 0.3260.09 mm (n530)

towards the daughter cell and were chitin rich (Fig. 2Bd).

Shadow cast TEM was used to confirm the nature of the chitin

present in salvage septa that was synthesized by different Chs

enzymes. In C. albicans, the septum of wild-type cells is

comprised predominantly of long microfibrils (Gow et al., 1980;

Gow and Gooday, 1982; Lenardon et al., 2007) (supplementary

material Fig. S1Aa). Chs8 is required for the formation of long

microfibrils, whereas Chs3 is required for the synthesis of the

short chitin rodlets predominantly seen in the cell walls of wild-

type cells and septa of chs8D cells (Lenardon et al., 2007).

Examination of the chitin in the salvage septa reflected the

presence or absence of the particular chitin synthase enzyme

required for synthesis of the longer or shorter microfibrils. The

salvage septum generated by Chs2/Chs8 was comprised primarily

of long microfibrils (supplementary material Fig. S1Ab), whilst

the Chs3 septum was formed solely of short chitin rodlets

(supplementary material Fig. S1Ac). The septum synthesized by

Chs2/Chs3 was predominantly composed of shorter rodlets with

some evidence of a small proportion of longer microfibrils

interwoven with the rodlets (supplementary material Fig. S1Ad).

Fig. 1. Salvage septa abrogate the

chained-cell phenotype that occurs

when Chs1 is inhibited. Formation of

salvage septa in wild-type and chitin

synthase mutants grown in the presence

of Chs1 inhibitor RO-09-3143 (10 mM).

DIC (top panels) and CFW fluorescent

images (bottom panels). (A) Untreated

control showing the wild-type septum.

(B–M) The chained, septum-less

phenotype, as a result of treatment with

RO-09-3143 (B–G), was overcome in

most cases by pre-growth in YPD with

200 mM CaCl2 and 100 mg/ml CFW

(H–M). The active Chs enzymes

remaining in each culture are annotated

under the lower panels. Scale bars: 2 mm.

Journal of Cell Science 126 (12)2670
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Time lapse imaging revealed that the Chs2/Chs8 synthesized

unilaminar septa often formed by extending across the cell from one

side (Fig. 3Ciii-v; Fig. 4Ab; supplementary material Movie 1),

rather than by centripetal invagination as in wild-type cells (Fig. 3A;

Fig. 4Aa). The Chs2/Chs3 salvage septa were also proximally offset

but in this case invagination was centripetal (Fig. 3D; Fig. 4Ac;

supplementary material Movie 2). No obvious secondary septa were

observed in the Chs2/Chs8 and Chs2/Chs3 septa.

The greatly thickened chitin-rich salvage septa made by Chs3

and Chs3/Chs8 formed at the bud-mother cell neck (Fig. 4Ad).

Fig. 2. Multiple types of salvage septa are formed under

stress. (A) TEMs of the wild-type septum (Aa,g) and salvage

septa (Ab–f,h–l) shown at lower magnification (upper panels)

and higher magnification (lower panels). The chsD mutants

were treated with the Chs1 inhibitor RO-09-3143 (10 mM)

after pre-treatment with 0.2 M CaCl2 and 100 mg/ml CFW to

stimulate chitin synthesis in the mutants. Salvage septa shown

are for the following mutants: chs3D (Ab,h), chs2Dchs8D

(Ac,i), chs8D (Ad,j), chs2D (Ae,k) and chs2Dchs3D (Af,l). The

residual active Chs enzymes are shown above each pair of

micrographs. TEM images are representative of three

independent experiments. (B) Salvage septa are chitin-rich.

WGA-colloidal gold-stained TEM sections showing chitin in

wild-type septum (Ba), Chs2/Chs8 (chs3D + RO-09-3143)

salvage septum (Bb), Chs3 (chs2D8D + RO-09-3143) salvage

septum (Bc), Chs2/Chs3 (chs8D + RO-09-3143) salvage

septum (Bd) and Chs8/Chs3 (chs2D + RO-09-3143) salvage

septum (Be). (C) Hypothetical model showing the deployment

of Chs enzymes in the synthesis of different septal types. The

wild-type septum of C. albicans (Ca) and salvage septa (Cb,c)

are illustrated: (Cb) The proximally offset septum formed by

Chs2/Chs8 and Chs2/Chs3. These two septa were

distinguishable by their morphogenesis since only Chs2/Chs8

septa formed by invagination from one side of the cell. (Cc)

The thickened septum formed by Chs3 alone and by Chs3/

Chs8 together. Scale bars: 0.2 mm (Ag,i–k; Ba,b,d), 0.5 mm

(Ah,l; Bc), 1 mm (Aa,c–e), 2 mm (Ab,f).

Fig. 3. Dynamics of salvage septum formation.

(A,B) Selected time-lapse images illustrating

septum formation (arrow) in wild-type cells

(Ai–v), and the formation of the septum-less chains

of cells undergoing lysis in the conditional

chs1chs3D mutant under repressing conditions

(Bi–vii). (C–E) CaCl2 and CFW was added to

cultures to induce cell wall stress responses. The

formation of the Chs2/Chs8 (chs3D + RO-09-3143)

salvage septum is shown in Ci–v, and the Chs2/

Chs3 (chs8D + RO-09-3143) salvage septum in

Di–v. The Chs3 (chs2D8D + RO-09-3143) salvage

septum formation is also shown Ei–v. Arrows

indicate positions of septum formation. Scale bars:

2 mm (A,C–E) and 5 mm (B).

Stress-induced septation strategies 2671
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These again apparently lacked secondary septa and the total

chitin content per cell in these cells was over double that of

normal wild-type yeast cells (supplementary material Fig. S1B).

Therefore, in addition to the canonical Chs1/Chs3 septum,

C. albicans can synthesize three salvage septa types using

different permutations of chitin synthases: (i) Chs2/Chs8; (ii)

Chs2/Chs3 or (iii) Chs3 (alone) or Chs3/Chs8 (Fig. 2C).

We next examined the distribution of actin in septating cells.

Unlike in wild-type cells (Fig. 4Ba,e,i), no contractile ring of

actin could be resolved in cells generating salvage septa

(Fig. 4Bb–d,f–h,j–l). In cells containing Chs2/Chs8 salvage

septa, a bright spot of actin was observed predominantly to one

side of the bud neck (Fig. 4Bb,f,j). In the Chs2/Chs3 salvage

septa, that exhibited centripetal invagination actin appeared as a

central punctuate patch in the septal region (Fig. 4Bc,g,k).

Regions with focussed deposits of chitin (for example in the Chs3

salvage septum) exhibited punctuate actin plaque staining along

the periphery of the chitin-rich zones (Fig. 4Bd,h,l), perhaps

indicating extensive endocytosis and membrane turnover in these

regions.

Altered localization of Chs3-YFP in the presence of chitin
synthase inhibitors

The salvage septa that were formed were frequently abnormally

positioned in the neck region of buds (above). Therefore, we used

time lapse video-microscopy to determine whether inhibition of

different classes of chitin synthase affected the localization of

Chs3-YFP. RO-09-3143 was used to inhibit Chs1, and

nikkomycin Z to preferentially inhibit the class I enzymes,

Chs2 and Chs8 (Gaughran et al., 1994; Munro and Gow, 1995;

Munro et al., 1998).

Chs3-YFP normally localizes to the tip of growing buds and is

then observed as a single ring at the site of septum formation

prior to cytokinesis (Lenardon et al., 2007; Lenardon et al.,

2010). After a short lag-phase, live cells expressing Chs3-YFP

formed long chains of cells in the presence of the Chs1 inhibitor.

New buds emerged in a polarized fashion and growth stasis

occurred 7 hours after the emergence of the first bud [Fig. 5,

441 minutes; supplementary material Movie 3 (DIC) and Movie

4 (YFP)]. Instead of being localized at the very tips of emerging

buds, Chs3-YFP was observed as a crescent on the budding

mother cell wall (Fig. 5, 0 minutes, 63 minutes). During the first

few cell cycles, Chs3-YFP formed a double ring at the site where

septa formation normally occurred (Fig. 5, 63–69 minutes), and

in later cell cycles, Chs3-YFP formed a large ring that did not

close (Fig. 5, 231 minutes, 381 minutes). Therefore, Chs3 was

repositioned when Chs1 was inhibited and functional septa could

not be formed.

Cells growing in the presence of nikkomycin Z budded in an

unusual manner [Fig. 6A; supplementary material Movie 5 (DIC)

and Movie 6 (YFP)]. Chs3-YFP formed a double ring in the

centre of an elongated bud neck (Fig. 6A, 12 minutes). Buds

could be observed during cytokinesis where one Chs3-YFP ring

was visible at the poles of the cells (Fig. 6A, 18 minutes). Cells

did not lyse but continued to grow in this fashion for 8 hours or

more, even in the presence of nikkomycin Z, indicating that Chs2

and Chs8 were required to correctly position Chs3 as septa form,

but that functional septa were formed despite the altered

localization of Chs3.

Cells growing in the presence of both the Chs1 inhibitor and

nikkomycin Z were unable to lay down septa and formed short

chains of cells that ballooned and lysed after 4 hours [Fig. 6B;

Fig. 4. Salvage septum formation deploys non-

canonical mechanisms. (A) TEMs of early stages of

salvage septa formation in the wild-type septum (Aa),

Chs2/Chs8 (chs3D + RO-09-3143) salvage septum (Ab),

Chs2/Chs3 (chs8D + RO-09-3143) salvage septum (Ac)

and Chs3 (chs2D8D + RO-09-3143) salvage septum (Ad).

(B) Chitin and actin localization in cells forming salvage

septa. An actomyosin ring typical of wild-type septa

(Be,i, arrows) is not seen in any of the salvage septa

(Ba,e,i). Chs2/Chs8 (chs3D + RO-09-3143) salvage

septum (Bb,f,j), Chs2/Chs3 (chs8D + RO-09-3143)

salvage septum (Bc,g,k) and Chs3 (chs2D8D + RO-09-

3143) salvage septum (Bd,h,l). CFW-staining of chitin

(Ba–d), rhodamine-phalloidin staining of actin (Be–h), and

overlay of CFW and rhodamine-phalloidin images (Bi–l).

Scale bars:1 mm (B), 0.2 mm (A).

Journal of Cell Science 126 (12)2672
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supplementary material Movie 7 (DIC) and Movie 8 (YFP)]. As in

the presence of the Chs1 inhibitor alone, Chs3-YFP was observed a

as crescent as the bud emerged (Fig. 6B, 201 minutes) and formed

a ring at the site of unclosed early septa (Fig. 6B, 66 minutes,

135 minutes, 186–201 minutes). Although Chs3-YFP became

localized to the entire surface in later cell cycles (Fig. 6B, 171

minutes, 252 minutes), the integrity of the wall was not maintained

and cell lysis was frequent (Fig. 6B, 267 minutes). Therefore, the

normal localization of Chs3-YFP was again altered and functional

septa were not formed when Chs1, Chs2 and Chs8 were all

inhibited simultaneously.

Salvage septa restores the capacity for cell division

Finally we determined whether the various salvage septa

observed were able to restore the capacity for growth. The

untreated and pre-treated wild-type and chs mutants were grown

in YPD in the presence of the Chs1 inhibitor and after 12 hours

samples were removed, washed and dilutions plated on YPD

plates and incubated overnight. There was a significant reduction

in the number of viable cells after 12 hours in the presence of the

Chs1 inhibitor in all genetic backgrounds (Fig. 7). Pre-treatment

of the wild-type or chs mutant strains with CaCl2 and CFW had

no effect on growth or viability (Fig. 7). Therefore, cells pre-

treated with CaCl2 and CFW synthesized salvage septa that

maintained their viability and the ability to undergo cell division

when exposed to Chs1 inhibitor (Fig. 7). In contrast, CaCl2 and

CFW pre-treatment could not rescue the chs2Dchs3D mutant

strain from the effects of the Chs1 inhibitor implying that Chs8

was not sufficient on its own to rescue growth when Chs1

function was compromised (Fig. 7).

Discussion
In wild-type cells, the primary septum is synthesized by Chs1 and

is built upon a chitin ring synthesized by Chs3 that is scaffolded

by a protein complex that assembles on the septin rings. The

Chs1 chitin synthase has been considered to be essential for

septation and cell division under most growth conditions (Munro

and Gow, 2001). Here we show that activation of cell wall

salvage pathways can induce the formation of a number of

alternative types of salvage septa that restores the capacity for

cell division even in the absence of Chs1. The salvage septum

can be fabricated from chitin synthases, including Chs2 and Chs8

Fig. 5. Chs3-YFP is mislocalized when Chs1 is inhibited. Selected frames from a time-lapse movie (supplementary material Movie 4) showing the localization of Chs3-

YFP in cells grown in the presence of the Chs1 inhibitor RO-09-3143 (10 mM). Dashed circles indicate Chs3-YFP localized as a crescent on the budding mother cell wall.

Arrows indicate Chs3-YFP in double ring conformation at sites where septum formation would normally occur. Dashed squares indicate Chs3-YFP forming a large ring that

did not close. The last frame shows the DIC image at 441 minutes (supplementary material Movie 3). Scale bars: 10 mm.
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that have been shown to localize to septation sites (Lenardon
et al., 2007) but have thus far not been functionally implicated in

this process.

The salvage septa synthesized by Chs2/Chs8 in live cells was

unusual in so far as: (a) it was located on the daughter side of the
mother bud neck and not at the narrowest part of the bud-neck;
(b) actin was abnormally localized at the site of septation and did

not form a normal actomyosin ring and (c) septation proceeded
from one side of the mother-bud neck to the other rather than by
centripetal invagination. This suggests that Chs2/Chs8 do not
associate with a normal actomyosin ring in the absence of Chs1

or Chs3. In S. cerevisiae a similar asymmetrical septum is formed
in mutants involved in the mitotic-exit network that coordinates
mitotic exit and cytokinesis by controlling the localization of

components of septum formation including ScChs2 (Meitinger
et al., 2010).

The Chs2/Chs3 salvage septum was similar in morphology to
the Chs2/Chs8 septum but differed in exhibiting centripetal

invagination and the actomyosin ring appeared to be positioned
centrally in the mother bud neck. In the absence of Chs1, Chs2

and Chs8 and upon stimulation of chitin synthesis, Chs3 alone
synthesized a thick chitinous plug with actin localized to the

periphery of the plug. Therefore salvage septum formation
involves departures from canonical mechanisms that normally

couple chitin synthesis to actomyosin ring function.

Salvage septa of a similar appearance to those synthesized in

C. albicans by Chs3 (alone or with Chs8) after treatment with
CaCl2 and CFW were observed in Scchs2D, Scchs1Dchs2D and

Scmyo1D mutants (Bulawa and Osmond, 1990; Shaw et al., 1991;
Schmidt et al., 2002). The PKC cell wall integrity pathway is

activated in both Scchs2D and Scmyo1D mutants (Rodrı́guez-
Quiñones and Rodrı́guez-Medina, 2009), and chitin synthesized

by ScChs3 is necessary for the functionality of this salvage
septum (Schmidt et al., 2002; Cabib and Schmidt, 2003).

However, Scmyo1D mutants have also been shown to induce
alternative mechanisms which are capable of restoring growth

Fig. 6. Chs3-YFP is mislocalized in the presence of chitin synthase inhibitors. (A) The localization of Chs3-YFP (left; supplementary material Movie 6) and

corresponding DIC images (right; supplementary material Movie 5) of cells grown in the presence of nikkomycin Z (10 mM). The arrow indicates Chs3-YFP forming a

double ring in the centre of an elongated mother-bud neck. The dashed squares indicate Chs3-YFP rings visible at each pole of the split cells. (B) The localization of Chs3-

YFP (left; supplementary material Movie 8) and corresponding DIC images (right; supplementary material Movie 7) of cells grown in the presence of RO-09-3143 (10 mM)

and nikkomycin Z (10 mM). Dashed circles indicate Chs3-YFP localized to sites of unclosed septa. Dashed squares indicate Chs3-YFP localized to the entire cell surface. In

all panels, the time (minutes) since the emergence of the first bud is indicated on each frame. Scale bars: 10 mm.
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and cytokinesis. This abrogation of cell division correlated with

an increased copy number of specific regulatory genes as a result

of induced aneuploidy (Rancati et al., 2008). The salvage septa

synthesized by ScChs3 also formed in an aberrant manner and

appeared to be the result of increased and unregulated deposition

of chitin at the bud neck, which is sufficient to close and cauterise

the channel between the mother and daughter cell (Shaw et al.,

1991; Schmidt et al., 2002; Cabib, 2004).

Observing the localization of Chs3-YFP in the presence of

chitin synthase inhibitors provided further insights into the

mechanisms of septum formation. In the presence of the Chs1

inhibitor, Chs3-YFP formed a crescent, probably part of a larger

ring as the bud emerged instead of being tightly localized to the

tip of the emerging bud. Later in the cell cycle, it was observed as

an open, double ring at the site of septum formation. This

localization mirrors that of the septin collar and split rings.

However, in this case, cytokinesis did not occur. In the presence

of nikkomycin Z, a primary septum was formed and Chs3-YFP

was visible as two large, abnormal open rings on either side of an

elongated mother-bud neck that were visible on both the mother

and daughter cells after cell separation. This indicates that the

inhibition of Chs2 or Chs8 affects the normal localization of

Chs3 during septum formation or that nikkomycin Z causes

mislocalization of Chs3-YFP directly. Nikkomycin Z can inhibit

class IV chitin synthases (ScChs3, Chs3), albeit with a Ki six

times higher than for the class I chitin synthases (ScChs1, Chs2

and Chs8) (Gaughran et al., 1994).

The Chs1 inhibitor RO-09-3143 is fungistatic on its own, but is

fungicidal in a chs2D mutant background (Sudoh et al., 2000).

We show here that this inhibitor is also not lethal in the chs2D
mutant if chitin synthesis was activated by pre-treatment with

CaCl2 and CFW. However, combinations of RO-09-3143 and

nikkomycin Z were lethal and nikkomycin Z prevented CaCl2/

CFW abrogation of growth and viability in the absence of Chs1.

Therefore although redundancy exists within the repertoire of

C. albicans chitin synthases that can be used for septation, chitin

synthesis was ultimately essential for viability of C. albicans

under all conditions tested.

In conclusion, we show that priming cells to activate chitin

synthesis can compensate for the loss of the Chs1 through

formation of novel forms of salvage septa which are capable of

restoring viability and cell division in C. albicans. This

demonstrates remarkable compensation in the way in which the

essential process of septum formation is regulated in this fungus

and suggests that fungi may have evolved redundant mechanisms

to enable cell division to occur under conditions of severe cell

wall stress.

Materials and Methods
Strains, media and growth conditions

C. albicans strains used in this study are listed in supplementary material Table S1.
Strains were maintained on solid YPD medium [1% (w/v) yeast extract, 2% (w/v)

mycological peptone, 2% (w/v) glucose, 2% (w/v) agar] and yeast cell cultures

were grown at 30 C̊ in YPD with shaking at 200 rpm. The MRP1p-CHS1/chs1D
conditional mutant was maintained in SMal medium [1% (w/v) yeast extract, 2%

(w/v) mycological peptone, 2% (w/v) maltose] that induces CHS1 expression and

grown in YPD to repress expression of CHS1 (Munro et al., 2001).

Growth and viability in the presence of chitin synthase inhibitors

Cells were grown in YPD supplemented with the chitin synthase inhibitors

nikkomycin Z which preferentially inhibits the class I enzymes Chs2 and Chs8

(Munro and Gow, 1995) and RO-09-3143 which inhibits Chs1 (Sudoh et al., 2000).

Nikkomycin Z (Sigma-Aldrich, Dorset, UK) at 10 mM was dissolved in sterile

water and RO-09-3143 at 10 mM in DMSO. RO-09-3143 was synthesized and
provided by D. van Aalten (University of Dundee, Dundee, UK). In some

Fig. 7. Stimulation of chitin synthesis with

CaCl2 and CFW induces multiple forms of

salvage septa that restore the capacity for

growth in the presence of the Chs1 inhibitor

RO-09-3143. Wild-type (WT) and chsD mutants

were pre-incubated with 0.2 M CaCl2 and

100 mg/ml CFW for 24 hours prior to the

addition of 10 mM RO-09-3143. The wild type

was also grown without addition of RO-09-3143,

showing that pre-treatment with CaCl2 and CFW

had no effect on growth. Asterisks indicate

significant differences (t-test, P,0.05) compared

with untreated controls in the same genetic

background. Hash symbol indicates significant

difference to wild-type cells in the same growth

conditions. Error bars indicate s.d. (n53).
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experiments the inoculum was pre-treated by growing in YPD containing 0.2 M

CaCl2 and 100 mg/ml CFW (Sigma-Aldrich, Dorset, UK) to induce the cell wall

salvage pathways (Munro et al., 2007) and then washed before exposing to RO-09-

3143. Cultures were incubated for 6 hours at 30 C̊ with shaking at 200 rpm to

maintain hypha-free cell preparations. The viability of cell cultures was measured
following serial dilution of cultures spotted onto YPD plates which were incubated

at 30 C̊ for 24 hours.

Fluorescence microscopy

Samples were fixed in 10% (v/v) neutral buffered formalin (Sigma-Aldrich,

Dorset, UK) and examined by differential interference contrast (DIC) microscopy.

Cells were stained with 25 mg/ml CFW to visualize chitin. For actin staining with

rhodamine-phalloidin, cells were fixed with 4% formaldehyde for 1 hour at room

temperature. Cells were washed twice in PBS and resuspended in 500 ml of PBS.

After addition of 6.6 mM rhodamine-phalloidin (Invitrogen, Paisley, UK), cells

were incubated in the dark for 1 hour and washed five times with PBS before

viewing. All samples were examined by DIC and fluorescence microscopy using a
Zeiss Axioplan 2 microscope. Images were recorded digitally using the Openlab

system (Openlab v 4.04, Improvision, Coventry, UK) and a Hamamatsu C4742- 95

digital camera (Hamamatsu Photonics, Hamamatsu, Hertfordshire, UK). CFW

fluorescence was quantified for individual yeast cells using region of interest

measurements (Walker et al., 2008). Mean fluorescence intensities were then

calculated for at least 35 individual cells. In some experiments the exposure time

for a series of fluorescence images was fixed so the intensity of fluorescence

relative to a control of known chitin content was used as standard.

Electron microscopy

Yeast cultures were harvested by centrifugation and the pellets were fixed in 2.5%

(v/v) gluteraldehyde in 0.1 M sodium phosphate buffer (pH 7.3) for 24 hours at
4 C̊. Samples were encapsulated in 3% (w/v) low melting point agarose prior to

processing in Spurr’s resin following a 24 hours processing schedule on a Lynx

tissue processor (secondary 1% OsO4 fixation, 1% uranyl acetate as contrasting

agents, ethanol dehydration and infiltration with acetone/Spurr resin). Additional

infiltration was provided under vacuum at 60 C̊ before embedding in TAAB

embedding capsules and polymerizing at 60 C̊ for 48 hours. Survey sections of

0.5 mm thickness were stained with toluidine blue to identify areas of optimal cell

density. Ultrathin sections (60 nm) were then prepared using a Diatome diamond
knife on a Leica UC6 ultramicrotome, and stained with uranyl acetate and lead

citrate for examination with a Philips CM10 transmission microscope (FEI UK

Ltd, Cambridge, UK) and imaging with a Gatan Bioscan 792 (Abingdon, UK).

Shadow cast electron microscopy of septal regions was performed as described in

Lenardon et al. (Lenardon et al., 2007).

Lectin colloidal gold staining of chitin

To establish if septa contained chitin, TEM thin sections were stained with WGA

(Hilenski et al., 1986; Tronchin et al., 1981; Munro et al., 2001). Unstained

ultrathin sections were mounted on 300 mesh nickel grids (Agar Scientific Ltd,

Essex, UK) and labeled with 10 nm WGA-colloidal gold particles (British Biocell

International Ltd, Cardiff, UK). All incubation steps were performed at room

temperature by placing the grids into drops of reagent on dental wax. The grids
were immersed for 1 hour in WGA-gold which had been diluted 1:5 with Tris-

buffered saline (TBS). To test for non-specific binding of colloidal gold, grids

were incubated with a 1:10 dilution of Goat anti-Mouse F(ab9)2 conjugated to

colloidal gold (British Biocell International Ltd, Cardiff, UK). All grids were

transferred through 10 drops of TBS and then jet-rinsed in TBS followed by

washing in six drops of dH2O and finally jet-rinsed in dH2O. The thin sections

were post-stained for 10 minutes with 5% (w/v) aqueous uranyl acetate and with

lead citrate for 4 minutes (Reynolds, 1963).

Time-lapse photography

To visualize the formation of salvage septa, chs mutant strains were pre-treated

with 0.2 M CaCl2 and 100 mg/ml CFW for 6 hours at 30 C̊. Cells were collected
and resuspended in 20 ml of sterile dH2O. Cultures were diluted 1:250 and 3 ml

was spotted onto a cavity slide containing 2% (w/v) agarose in YPD + 10 mM RO-

09-3143 (Veses and Gow, 2008). A coverslip was applied immediately and cells

were visualized by DIC microscopy using a DeltaVision RT microscope (Applied

Precision, Leeds, UK) with a CoolSNAP camera (Photometrics, London, UK) in a

constant temperature hood surrounding the microscope which was maintained at

30 C̊. Pictures were taken every 10 seconds for 2 hours to visualize the formation

of salvage septa. To visualize the phenotype of the MRP1p-CHS1/chs1 conditional
mutant, cells were grown overnight in YPMal then collected, washed and

resuspended in 10 ml of water. The culture was diluted 1:500 and 3 ml was spotted

onto a concave slide containing 2% (w/v) agarose in YPD in which the presence of

glucose and the absence of maltose represses expression of CaCHS1. Pictures were

taken every 2 minutes for 6 hours at 30 C̊ to visualize the chaining and lysis of the

conditional Cachs1 mutant.

Time-lapse fluorescence microscopy

To assess the localization of Chs3-YFP in cells growing in the presence of chitin
synthase inhibitors, time-lapse movies of C. albicans strain NGY477 expressing
Chs3-YFP from its native chromosomal locus as described previously (Veses and
Gow, 2008). Cells from an overnight culture were washed in PBS and inoculated
on the surface of an agar pad filling the cavity of a glass cavity slide (Agar
Scientific, Essex, UK), covered with a coverslip and sealed using a mixture of
lanoline, Vaseline and paraffin wax (1:1:1). The agar pad was made from rich
medium (SC) containing 0.67% yeast nitrogen base with ammonium sulphate,
0.2% complete amino acid mix, 2% glucose and 1.2% purified agar. Chitin
synthase inhibitors were added to the agar pad at a final concentration of 10 mM.
Slides were incubated in the environmental chamber in a DeltaVision RT
microscope at 30 C̊. DIC and YFP-fluorescent images were taken with a
CoolSNAP camera every 3 minutes.
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